Mocht u de informatie op onze website kanker-actueel.nl waarderen dan wilt u ons misschien ondersteunen met een donatie?
Ons rekeningnummer is: RABO 37.29.31.138 t.n.v. Stichting Gezondheid Actueel in Terneuzen. Onze IBANcode is NL79 RABO 0372 9311 38
Als donateur kunt u ook korting krijgen bij verschillende bedrijven. En we hebben een ANBI status
Zie ook in gerelateerde artikelen.
6 september 2019:
Recent is een nieuwe reviewstudie gepubliceerd over het New Castle Disease Virus bij de behandeling van kanker. Auteurs prof. dr. Volker Schirrmacher *, Dr. Stefaan van Gool en Wilfried Stuecker , allen werkzaam in het IOZK - Keulen. Zij werken al jaren met het Newcastle Disease Virus.
Klik op de titel van de studie voor het studierapport in PDF vorm:
Breaking Therapy Resistance: An Update on Oncolytic Newcastle Disease Virus for Improvements of Cancer Therapy
Hier het abstract maar het studierapport is zeer uitgebreid. Zeker de moeite waard dit te lezen.
Volker Schirrmacher *, Stefaan van Gool and Wilfried Stuecker Immune-Oncological Center Cologne (IOZK), D-50674 Cologne, Germany * Correspondence: V.Schirrmacher@web.de Received: 30 July 2019; Accepted: 23 August 2019; Published: 30 August 2019 Abstract: Resistance to therapy is a major obstacle to cancer treatment. It may exist from the beginning, or it may develop during therapy. The review focusses on oncolytic Newcastle disease virus (NDV) as a biological agent with potential to break therapy resistance. This avian virus combines, upon inoculation into non-permissive hosts such as human, 12 described anti-neoplastic effects with 11 described immune stimulatory properties. Fifty years of clinical application of NDV give witness to the high safety profile of this biological agent. In 2015, an important milestone was achieved, namely the successful production of NDV according to Good Manufacturing Practice (GMP). Based on this, IOZK in Cologne, Germany, obtained a GMP certificate for the production of a dendritic cell vaccine loaded with tumor antigens from a lysate of patient-derived tumor cells together with immunological danger signals from NDV for intracutaneous application. This update includes single case reports and retrospective analyses from patients treated at IOZK. The review also presents future perspectives, including the concept of in situ vaccination and the combination of NDV or other oncolytic viruses with checkpoint inhibitors.
24 juni 2016: Afgelopen week heb ik het IOZK bezocht ik samen met twee patiënten (hersentumoren) en hebben een uitvoerig gesprek gehad met dr. Stefan van Gool. Het was een open en prettig gesprek en ik zal komende week hier verslag van doen.
Allereerst lees ook dit studierapport: Safety and Clinical Usage of Newcastle Disease Virus in Cancer Therapy
Onderaan abstract van deze studie met referentielijst.
Citaat uit dit studierapport:
The advantages of using NDV in cancer treatment are summarized as below.
-
Ability of virus to bind to the tumor cell surface via its HN glycoprotein.
-
Virus replicating in infected tumor cells leads to an enhanced expression of viral antigen on tumor cell surfaces.
-
Ability of virus to induce synthesis of cytokines, like IFN and TNF, as well as stimulates production of heat shock proteins, adrenocorticotropic hormone, and tissue inhibitor of metalloproteases.
-
Pleiotropic immunostimulatory effects of virus as the virus can augment the effects of T helper (TH) cells, cytotoxic T lymphocyte (CTL), NK cells, and macrophages.
-
Oncolytic activity or direct killing of tumor cells in treated patients.
-
Rapid growth of virus in tumor cells.
-
The virus is not pathogenic to humans.
Onderstaande berichtgeving is nog steeds actueel. Het Newcastle Disease Virus en andere virussen worden meer en meer ingezet bij het bestrijden van kanker.. Als u hier klikt kunt u het volledige studierapport gratis inzien van een studie uit 2011. Met de titel:
1 januari 2005
Er wordt in Europa in verschillende klinieken en ziekenhuizen gewerkt met het Newcastle Disease Virus, Zie het abstract van de studie met het Newcastel Disease virus bij Glioblastoma Multiforme. Zie onder de videoknop linksboven ervaringen van kankerpatienten met complementaire aanpak, waarvan enkele ook het Newcastle Disease Virus hebben gebruikt samen met dendritische celtherapie
MTH-68/H , codenaam voor het Newcastle virus, lijkt de helft van de 14 deelnemende ongeneeslijke patiënten met een vergevorderde en uitbehandelde hersentumor / glioblastoma multiforme alsnog te genezen. Een zeer opmerkelijke en hoopgevende uitslag van dit al negen jaar lopende onderzoek.
Kleinschalige studie onder 14 patiënten met vergevorderde glioblastoma multiforme, hersentumoren, met het Newcastle virus / MTH-68/H geeft zeer opmerkelijke en spectaculaire resultaten. Maar liefst 4 patiënten leven nu al meer dan vijf tot zelfs negen jaar en alle vier de patienten leven een normaal leven zonder enige aanwijzing dat de Glioma / hersentumor terugkomt. Drie andere patiënten lijken ook in totale remissie maar de duur van hun behandeling is nog te kort om al definitieve conclusies te trekken. Nog opmerkelijker is dat al deze patiënten alle andere conventionele behandelingen zoals bestraling en operatie en zelfs chemo hebben gehad en steeds een recidief kregen. Vijf patiënten reageerden niet op het Newcastle virus en stierven aan de gevolgen van de groei van hun hersentumor. Twee patiënten stierven aan andere oorzaken. De onderzoekers schrijven er niet bij of dit een gevolg was van de behandeling met het Newcastle virus. Maar al met al een zeer hoopgevend bericht voor alle mensen met een hersentumor want de prognose van deze patienten is 6 maanden tot een jaar om hun hersentumor te overleven.
Bron: Pubmed
J Neurooncol. 2004 Mar-Apr;67(1-2):83-93. (Clinical Study, Abstract)
MTH-68/H oncolytic viral treatment in human high-grade gliomas L.K. Csatary, G. Gosztonyi, J. Szeberenyi, Z. Fabian, V. Liszka, B. Bodey and C.M. Csatary
United Cancer Research Institute, Alexandria, VA, USA (L.K.C., V.L., C.M.C.); Department of Neuropathology, University Clinics Benjamin Franklin, Freie Universitaet Berlin, Berlin, Germany (G.G.); Department of Medical Biology, School of Medicine, University of Pécs, Pécs, Hungary (J.S., Z.F.); Department of Pathology, Keck School of Medicine, University of Southern California (B.B.); Children’s Center for Cancer and Blood Diseases, Children’s Hospital, Los Angeles, CA, USA (B.B.). UCRI@aol.com
Application of virus therapy to treat human neoplasms has over a three decade history. MTH-68/H, a live attenuated oncolytic viral strain of the Newcastle disease virus, is one of the viruses used in the treatment of different malignancies. Here we report on the administration of MTH-68/H to patients with glioblastoma multiforme, the most common and most aggressive neuroectodermal neoplasm with a poor prognosis, averaging six months to a year. Four cases of advanced high-grade glioma were treated with MTH-68/H after the conventional modalities of anti-neoplastic therapies had failed. This treatment resulted in survival rates of 5-9 years, with each patient still living today. Against all odds, each patient resumed a lifestyle that resembles their previous daily routines and enjoys a good quality of life, Each of these patients has regularly received MTH-68/H as their sole form of onco-therapy for a number of years now without interruption.
PMID: 15072452
Onderstaande citaat is gehaald uit de volledige tekst van het studierapport met het Newcastle virus.
Our group first began to treat patients suffering from high-grade glioma with MTH-68/H viral therapy in 1996. Altogether 14 high-grade glioma patients have been treated. In five patients, the viral therapy did not arrest tumor progression; they died demonstrably as the direct result of their tumor growth. Two patients died of causes unrelated to their brain neoplasm. Seven out of the 14 treated patients are still alive. In three of these patients, the results are promising, however, the duration of their MTH-68/H treatment (4–18 months) has not yet been long enough to allow reliable evaluation. The remaining four patients received MTH-68/H therapy for a duration of 4–7 years and their survival times, up to the present, reach between 5 and 9 years. None of these glioma patients experienced any adverse events throughout their course of treatment. These four high grade glioma patients, who have received MTH-68/H as their sole form of non-surgical onco-therapy over a span of years, have not only survived but have been able to enjoy a good quality of life, with either limited or no detectable sign of tumor progression. These four patients are the subject of this report.
Based on all the previous research, NDV is safe and feasible to be used as a therapeutic agent. More systemic investigations are necessary to enhance the quality and efficacy of NDV vaccine. Further testing or even preparation of a DNA vaccine may be required to confirm the safety of virus administration and to improve the public's acceptance. In short, NDV can be a potential alternative adjuvant in cancer treatment.
J Biomed Biotechnol. 2011; 2011: 718710.
Safety and Clinical Usage of Newcastle Disease Virus in Cancer Therapy
This article has been
cited by other articles in PMC.
Abstract
Newcastle disease virus (NDV) is an avian virus that causes deadly infection to over 250 species of birds, including domestic and wild-type, thus resulting in substantial losses to the poultry industry worldwide. Many reports have demonstrated the oncolytic effect of NDV towards human tumor cells. The interesting aspect of NDV is its ability to selectively replicate in cancer cells. Some of the studies have undergone human clinical trials, and favorable results were obtained. Therefore, NDV strains can be the potential therapeutic agent in cancer therapy. However, investigation on the therapeutic perspectives of NDV, especially human immunological effects, is still ongoing. This paper provides an overview of the current studies on the cytotoxic and anticancer effect of NDV via direct oncolysis effects or immune stimulation. Safety of NDV strains applied for cancer immunotherapy is also discussed in this paper.
References
1.
Al-Qubaisi M, Rozita R, Yeap S-K, Omar A-R, Ali A-M, Alitheen NB. Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells. Molecules. 2011;16(4):2944–2959. [PubMed]
3. National Cancer Registry (NCR) Malaysian Cancer Statistics—Data and Figure Peninsular Malaysia 2006. Malaysia, Kuala Lumpur: National Cancer Registry; 2006.
4.
Blomqvist C, et al. FEC (5-fluorouracil-epirubicin-cyclophosphamide) monthly versus FEC weekly in metastasis breast cancer. First results of a randomized trial. Acta Oncologica. 1996;31:231–236. [PubMed]
5.
Kasuya H, Pawlik TM, Mullen JT, et al. Selectivity of an oncolytic herpes simplex virus for cells expressing the DF3/MUC1 antigen. Cancer Research. 2004;64(7):2561–2567. [PubMed]
6.
Bischoff JR, Kirn DH, Williams A, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996;274(5286):373–376. [PubMed]
7.
Cann SAH, Van Netten JP, Van Netten C. Dr William Coley and tumour regression: a place in history or in the future. Postgraduate Medical Journal. 2003;79(938):672–680. [PMC free article] [PubMed]
8. Yeap SK, Alitheen NBM, Ho WY, et al. Immunomodulatory role of rhaphidophora korthalsii methanol extract on human peripheral blood mononuclear cell proliferation, cytokine secretion and cytolytic activity. Journal of Medicinal Plant Research. 2011;5(6):958–965.
9.
Edwards FR, Whitwell F. Use of BCG as an immunostimulant in the surgical treatment of carcinoma of the lung. Thorax. 1974;29(6):654–658. [PMC free article] [PubMed]
10.
Yeap SK, Alitheen NB, Ali AM, et al. Effect of Rhaphidophora korthalsii methanol extract on human peripheral blood mononuclear cell (PBMC) proliferation and cytolytic activity toward HepG2. Journal of Ethnopharmacology. 2007;114(3):406–411. [PubMed]
11.
Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nature Reviews Cancer. 2002;2(11):850–861. [PubMed]
12. Alexander DJ. Historical aspects. In: Alexander DJ, editor. Newcastle Disease. New York, NY, USA: Kulwer Academic Publishers; 1988. pp. 1–22.
13.
Mayo MA. A summary of taxonomic changes recently approved by ICTV. Archives of Virology. 2002;147(8):1655–1656. [PubMed]
14. Alexander DJ, Jones RC. Paramyxoviridae. In: Pattison M, MacMullin P, Bradburry JM, Alexander D, editors. Poultry Disease. 6th edition. New York, NY, USA: Harcourt Publishers Limited; 2008. pp. 294–316.
15. Peeples ME. Newcastle disease virus replication. In: Alexander DJ, editor. Newcastle Disease. New York, NY, USA: Kulwer Academic Publishers; 1988. pp. 45–78.
16.
Scheid A, Choppin PW. Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai. Virology. 1974;57(2):475–490. [PubMed]
17.
Silverstein SC, Marcus PI. Early stages of newcastle disease virus-hela cell interaction: an electron microscopic study. Virology. 1964;23(3):370–380. [PubMed]
18.
Nelson NJ. Scientific interest in Newcastle disease virus is reviving. Journal of the National Cancer Institute. 1999;91(20):1708–1710. [PubMed]
19.
Pecora AL, Rizvi N, Cohen GI, et al. Phase I trial of intravenous administration of PV701, an oncolytic virus, in patients with advanced solid cancers. Journal of Clinical Oncology. 2002;20(9):2251–2266. [PubMed]
20.
Schirrmacher V, Haas C, Bonifer R, Ahlert T, Gerhards R, Ertel C. Human tumor cell modification by virus infection: an efficient and safe way to produce cancer vaccine with pleiotropic immune stimulatory properties when using Newcastle disease virus. Gene Therapy. 1999;6(1):63–73. [PubMed]
21.
Fournier P, Zeng J, Schirrmacher J. Two ways to induce immune responses in human PBMCs: paracrine stimulation of IFN-alpha responses by viral protein or dsRNA. International Journal of Cancer Research. 2003;23(3):673–680. [PubMed]
22.
Krishnamurthy S, Takimoto T, Scroggs RA, Portner A. Differentially regulated interferon response determines the outcome of newcastle disease virus infection in normal and tumor cell lines. Journal of Virology. 2006;80(11):5145–5155. [PMC free article] [PubMed]
23.
Fiola C, Peeters B, Fournier P, Arnold A, Bucur M, Schirrmacher V. Tumor selective replication of Newcastle Disease Virus: association with defects of tumor cells in antiviral defence. International Journal of Cancer. 2006;119(2):328–338. [PubMed]
24.
Cassel WA, Garrett RE. Newcastle disease virus as an antineoplastic agent. Cancer. 1965;18:863–868. [PubMed]
25.
Csatary LK, Eckhardt S, Bukosza I, et al. Attenuated veterinary virus vaccine for the treatment of cancer. Cancer Detection and Prevention. 1993;17(6):619–627. [PubMed]
26.
Omar AR, Ideris A, Ali AM, et al. An overview on the development of newcastle disease virus as anti-cancer therapy. Malaysian Journal of Medical Sciences. 2003;10(1):4–12. [PMC free article] [PubMed]
27.
Zorn U, Dallmann I, Grosse J, Kirchner H, Poliwoda H, Atzpodien J. Induction of cytokines and cytotoxicity against tumor cells by newcastle disease virus. Cancer Biotherapy. 1994;9(3):225–235. [PubMed]
28.
Avki S, Turutoglu H, Simsek A, Unsal A. Clinical and immunological effects of Newcastle disease virus vaccine on bovine papillomatosis. Veterinary Immunology and Immunopathology. 2004;98(1-2):9–16. [PubMed]
29.
Umansky V, Shatrov VA, Lehmann V, Schirrmacher V. Induction of NO synthesis in macrophages by Newcastle disease virus is associated with activation of nuclear factor-κB. International Immunology. 1996;8(4):491–498. [PubMed]
30.
Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annual Review of Immunology. 1999;17:189–220. [PubMed]
31.
Sato K, Hida S, Takayanagi H, et al. Antiviral response by natural killer cells through TRAIL gene induction by IFN-α/β European Journal of Immunology. 2001;31(11):31–38. [PubMed]
32.
von Hoegen P, Zawatzky R, Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. III. Potentiation of tumor specific cytolytic T cell activity via induction of interferon-α/β Cellular Immunology. 1990;126(1):80–90. [PubMed]
33.
Washburn B, Weigand MA, Grosse-Wilde A, et al. ITNF-related apoptosis-inducing ligand mediates tumoricidal activity of human monocytes stimulated by newcastle disease virus. Journal of Immunology. 2003;170(4):1814–1821. [PubMed]
34.
Aigner M, Janke M, Lulei M, Beckhove P, Fournier P, Schirrmacher V. An effective tumor vaccine optimized for costimulation via bispecific and trispecific fusion proteins. International Journal of Oncology. 2008;32(4):777–789. [PubMed]
35.
Jarahian M, Watzl C, Fournier P, et al. Activation of natural killer cells by Newcastle disease virus hemagglutinin-neuraminidase. Journal of Virology. 2009;83(16):8108–8121. [PMC free article] [PubMed]
36.
Zeng J, Fournier P, Schirrmacher V. Induction of interferon-α and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology. 2002;297(1):19–30. [PubMed]
37.
Haas C, Strauß G, Moldenhauer G, Iorio RM, Schirrmacher V. Bispecific antibodies increase T-cell stimulatory capacity in vitro of human autologous virus-modified tumor vaccine. Clinical Cancer Research. 1998;4(3):721–730. [PubMed]
38.
Washburn B, Schirrmacher V. Human tumor cell infection by Newcastle Disease Virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. International Journal of Oncology. 2002;21(1):85–93. [PubMed]
39.
Schirrmacher V, Ahlert T, Probstle T, et al. Immunization with virus-modified tumor cells. Seminars in Oncology. 1998;25(6):677–696. [PubMed]
40.
Termeer CC, Schirrmacher V, Bröcker EB, Becker JC. Newcastle disease virus infection induces B7-1/B7-2-independent T-cell costimulatory activity in human melanoma cells. Cancer Gene Therapy. 2000;7(2):316–323. [PubMed]
41.
Cella M, Salio M, Sakakibara Y, Langen H, Julkunen I, Lanzavecchia A. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA. Journal of Experimental Medicine. 1999;189(5):821–829. [PMC free article] [PubMed]
42.
Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Current Opinion in Immunology. 2005;17(4):338–344. [PubMed]
43.
Schulz O, Diebold SS, Chen M, et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 2005;433(7028):887–892. [PubMed]
44.
Bai L, Koopmann J, Fiola C, Fournier P, Schirrmacher V. Dendritic cells pulsed with viral oncolysates potently stimulate autologous T cells from cancer patients. International journal of oncology. 2002;24(4):685–694. [PubMed]
45.
Le Bon A, Schiavoni G, D'Agostino G, Gresser I, Belardelli F, Tough DF. Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity. 2001;14(4):461–470. [PubMed]
46.
Hamburg SI, Manejias RE, Rabinovitch M. Macrophage activation: increased ingestion of IgG-coated erythrocytes after administration of interferon inducers to mice. Journal of Experimental Medicine. 1978;147(2):593–598. [PMC free article] [PubMed]
47.
Schirrmacher V, Bai L, Umansky V, Yu L, Xing Y, Qian Z. Newcastle disease virus activates macrophages for anti-tumor activity. International Journal of Oncology. 2000;16(2):363–373. [PubMed]
48.
Schirrmacher V, Griesbach A, Ahlert T. Antitumor effects of Newcastle Disease Virus in vivo: local versus systemic effects. International journal of oncology. 2001;18(5):945–952. [PubMed]
49.
Ertel C, Millar NS, Emmerson PT, Schirrmacher V, Von Hoegen P. Viral hemagglutinin augments peptide-specific cytotoxic T cell responses. European Journal of Immunology. 1993;23(10):2592–2596. [PubMed]
50. Li X, Jin N, Lian H, et al. Construction and anti-tumor effects of recombinant fowlpox virus expressing Newcastle disease virus hemagglutinin-neuramidinase gene. Chinese Science Bulletin. 2006;51(22):2724–2730.
51.
Janke M, Peeters B, de Leeuw O, et al. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Therapy. 2007;14(23):1639–1649. [PubMed]
52.
DiNapoli JM, Kotelkin A, Yang L, et al. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(23):9788–9793. [PMC free article] [PubMed]
53.
Cassel WA, Murray DR, Torbin AH. Viral oncolysate in the management of malignant melonoma. I. Preparation of the oncolysate and measurement of immunologic responses. Cancer. 1977;40(2):672–679. [PubMed]
54.
Reichard KW, Lorence RM, Cascino CJ, et al. Newcastle disease virus selectively kills human tumor cells. Journal of Surgical Research. 1992;52(5):448–453. [PubMed]
55.
Lorence RM, Katubig BB, Reichard KW, et al. Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy. Cancer Research. 1994;54(23):6017–6021. [PubMed]
56.
Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ. Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Letters. 2001;172(1):27–36. [PubMed]
57.
Murray DR, Cassel WA, Torbin AH. Viral oncolysate in the management of maligant melanoma. II. Clinical studies. Cancer. 1977;40(2):680–686. [PubMed]
58.
Cassel WA, Murray DR, Phillips HS. A Phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncolysate. Cancer. 1983;52(5):856–860. [PubMed]
59.
Cassel WA, Murray DR. A ten-year follow-up on stage II malignant melanoma patients treated postsurgically with newcastle disease virus oncolysate. Medical Oncology and Tumor Pharmacotherapy. 1992;9(4):169–171. [PubMed]
60.
Batliwalla FM, Bateman BA, Serrano D, et al. A 15-year follow-up of AJCC stage III malignant melanoma patients treated postsurgically with newcastle disease virus (NDV) oncolysate and determination of alterations in the CD8 T cell repertoire. Molecular Medicine. 1998;4(12):783–794. [PMC free article] [PubMed]
61.
Liebrich W, Schlag P, Manasterski M, et al. In vitro and clinical characterisation of a Newcastle disease virus-modified autologous tumour cell vaccine for treatment of colorectal cancer patients. European Journal of Cancer. 1991;27(6):703–710. [PubMed]
62.
Heicappell R, Schirrmacher V, Von Hoegen P. Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. I. Parameters for optimal therapeutic effects. International Journal of Cancer. 1986;37(4):569–577. [PubMed]
63.
Schirrmacher V, Heicappell R. Prevention of metastatic spread by postoperative immunotherapy with virally modified autologous tumor cells. II. Establishment of specific systemic anti-tumor immunity. Clinical and Experimental Metastasis. 1987;5(2):147–156. [PubMed]
64.
Schild H, von Hoegen P, Schirrmacher V. Modification of tumor cells by a low dose of Newcastle disease virus. II. Augmented tumor-specific T cell response as a result of CD4+ and CD8+ immune T cell cooperation. Cancer Immunology Immunotherapy. 1989;28(1):22–28. [PubMed]
65.
Bohle W, Schlag P, Liebrich W, et al. Postoperative active specific immunization in colorectal cancer patients with virus-modified autologous tumor-cell vaccine. First clinical results with tumor-cell vaccines modified with live but avirulent Newcastle disease virus. Cancer. 1990;66(7):1517–1523. [PubMed]
66.
Lehner D, Schlag P, Liebrich W, Schirrmacher V. Postoperative active specific immunization in curatively resected colorectal cancer patients with a virus-modified autologous tumor cell vaccine. Cancer Immunology Immunotherapy. 1990;32(3):173–178. [PubMed]
67.
Schlag P, Manasterski M, Gerneth T, et al. Active specific immunotherapy with Newcastle-disease-virus-modified autologous tumor cells following resection of liver metastases in colorectal cancer. First evaluation of clinical response of a phase II-trial. Cancer Immunology Immunotherapy. 1992;35(5):325–330. [PubMed]
68.
Kirchner HH, Anton P, Atzpodien J. Adjuvant treatment of locally advanced renal cancer with autologous virus-modified tumor vaccines. World Journal of Urology. 1995;13(3):171–173. [PubMed]
69.
Ockert D, Schirrmacher V, Beck N, et al. Newcastle disease virus-infected intact autologous tumor cell vaccine for adjuvant active specific immunotherapy of resected colorectal carcinoma. Clinical Cancer Research. 1996;2(1):21–28. [PubMed]
70.
Steiner HH, Bonsanto MM, Beckhove P, et al. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefits. Journal of Clinical Oncology. 2004;22(21):4272–4281. [PubMed]
71.
Liang W, Wang H, Sun TM, et al. Application of autologous tumor cell vaccine and NDV vaccine in treatment of tumors of digestive traet. World Journal of Gastroenterology. 2003;9(3):495–498. [PMC free article] [PubMed]
72. Schirrmacher V. Anti-tumor immune memory and its activation for control of residual tumor cells and improvement of patient survival. In: Sinkovics J, Horvath J, editors. Virus Therapy of Human Cancers. New York, NY, USA: Marcel Decker; 2005. pp. 481–574.
73.
Schulze A, Kemmner W, Weitz J, Wernecke KD, Schirrmacher V, Schlag PM. Efficiency of adjuvant active specific immunization with Newcastle disease virus modified tumor cells in colorectal cancer patients following resection of liver metastases: results of a prospective randomized trial. Cancer Immunology, Immunotherapy. 2009;58(1):61–69. [PubMed]
74.
Pomer S, Thiele R, Staehler G, Drehmer I, Lohrke H, Schirrmacher V. Tumor vaccination with and without adjuvant interleukin 2 in renal cell carcinoma. A clinical contribution to the development of effective active specific immunization. Urologe. 1995;34(3):215–220. [PubMed]
75.
Karcher J, Dyckhoff G, Beckhove P, et al. Antitumor vaccination in patients with head and neck squamous cell carcinomas with autologous virus-modified tumor cells. Cancer Research. 2004;64(21):8057–8061. [PubMed]
76.
Ahlert T, Sauerbrei W, Bastert G, et al. Tumor-cell number and viability as quality and efficacy parameters of autologous virus-modified cancer vaccines in patients with breast or ovarian cancer. Journal of Clinical Oncology. 1997;15(4):1354–1366. [PubMed]
77. Lorence RM, et al. Regression of human tumor xenografts following intravenous treatment using PV701, a naturally attenuated oncolytic strain of Newcastle disease virus. In: Proceedings of the American Association for Cancer Research (AACR '01), vol. 42; 2011; p. 454.
78.
Hotte SJ, Lorence RM, Hirte HW, et al. An optimized clinical regimen for the oncolytic virus PV701. Clinical Cancer Research. 2007;13(3):977–985. [PubMed]
79.
Laurie SA, Bell JC, Atkins HL, et al. A phase 1 clinical study of intravenous administration of PV701, an oncolytic virus, using two-step desensitization. Clinical Cancer Research. 2006;12(8):2555–2562. [PubMed]
80.
Lorence RM, Roberts MS, O'Neil JD, et al. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Current Cancer Drug Targets. 2007;7(2):157–167. [PubMed]
81.
Alexander DJ, Hewlett G, Reeve P, Poste G. Studies on the cytopathic effects of Newcastle disease virus the cytopathogenicity of strain Herts 33 in five cell types. Journal of General Virology. 1973;21(2):323–337. [PubMed]
82.
Csatary LK. Viruses in the treatment of cancer. The Lancet. 1971;2(7728):p. 825. [PubMed]
83.
Fábián CJ, Csatary CM, Szeberényi J, Csatary LK. p53-independent endoplasmic reticulum stress-mediated cytotoxicity of a Newcastle disease virus strain in tumor cell lines. Journal of Virology. 2007;81(6):2817–2830. [PMC free article] [PubMed]
84.
Apostolidis L, Schirrmacher V, Fournier P. Host mediated anti-tumor effect of oncolytic Newcastle disease virus after locoregional application. International Journal of Oncology. 2007;31(5):1009–1019. [PubMed]
85.
Hrabák A, Csuka I, Bajor T, Csatáry LK. The cytotoxic anti-tumor effect of MTH-68/H, a live attenuated Newcastle disease virus is mediated by the induction of nitric oxide synthesis in rat peritoneal macrophages in vitro. Cancer Letters. 2006;231(2):279–289. [PubMed]
86.
Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma [5] Journal of the American Medical Association. 1999;281(17):1588–1589. [PubMed]
87.
Freeman AI, Zakay-Rones Z, Gomori JM, et al. Phase I/II trial of intravenous NDV-HUJ oncolytic virus in recurrent glioblastoma multiforme. Molecular Therapy. 2006;13(1):221–228. [PubMed]
88.
Ahlert T, Schirrmacher V. Isolation of a human melanoma adapted Newcastle disease virus mutant with highly selective replication patterns. Cancer Research. 1990;50(18):5962–5968. [PubMed]
89.
Bian H, Wilden H, Fournier P, Peeters B, Schirrmacher V. In vivo efficacy of systemic tumor targeting of a viral RNA vector with oncolytic properties using a bispecific adapter protein. International Journal of Oncology. 2006;29(6):1359–1369. [PubMed]
90.
Janke M, Peeters B, Zhao H, et al. Activation of human T cells by a tumor vaccine infected with recombinant Newcastle disease virus producing IL-2. International Journal of Oncology. 2008;33(4):823–832. [PubMed]
91.
Vigil A, Park MS, Martinez O, et al. Use of reverse genetics to enhance the oncolytic properties of newcastle disease virus. Cancer Research. 2007;67(17):8285–8292. [PubMed]
92.
Zamarin D, Martínez-Sobrido L, Kelly K, et al. Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Molecular Therapy. 2009;17(4):697–706. [PMC free article] [PubMed]
93. Othman F, Ideris A, Motalleb G, Eshak ZB, Rahmat A. Oncolytic effect of Newcastle disease virus AF2240 strain on the MCF-7 breast cancer cell line. Yakhteh Medical Journal. 2010;12(1):17–24.
94.
Zulkifli MM, Ibrahim R, Ali AM, et al. Newcastle diseases virus strain V4UPM displayed oncolytic ability against experimental human malignant glioma. Neurological Research. 2009;31(1):3–10. [PubMed]
95. Fauziah O, et al. Microscopy in biomedical research: virotherapy in breast cancer. Microscopy and Microanalysis. 2005;11:1014–1015.
96. Motalleb G, Othman F, Ideris A, Rahmat A. Dissemination of Newcastle disease virus (NDV-AF2240) in liver during intratumoral injection of xenotransplant breast cancer in BALB/c mice. Yakhteh Medical Journal. 2009;11(3):303–310.
97.
Wang Y, Wang H, Li CY, Yuan F. Effects of rate, volume, and dose of intratumoral infusion on virus dissemination in local gene delivery. Molecular Cancer Therapeutics. 2006;5(2):362–366. [PubMed]
hersentumoren, glioblastoom multiforme, Newcastle Disease Virus
Gerelateerde artikelen
Plaats een reactie ...
Reageer op "Studie met Newcastle Diasease Virus bij kankerpatiënten met een hersentumor - Glioblastoma multiforme - geeft spectaculaire en hoopvolle remissies te zien bij de helft van de 14 deelnemende patiënten."