25 februari 2023: Naar aanleiding van de opmerking van Peter onderaan artikel heb ik enkele zinnen gecorrigeeerd in dit artikel. Met name deze zin: ........ volgens de onderzoekers had vitamine K2 binnen gekregen door eten van vlees nog meer een preventief effect.
Dit is een redelijk recente studie over de preventieve effecten van vitamine K2 - menaquinones (abstract plus referentielijst staat onderaan artikel):
Conclusie: Kortom, VK2 kan kankercellen positief remmen. VK2 lijkt een zeer veelbelovend middel te zijn met een zeer beperkte toxiciteit, dat een nuttige optie kan zijn voor de preventie van kanker en de klinische therapie van kanker. De remming van vitamine K en D bij kankers wees er echter op dat vitamines positieve effecten kunnen hebben op de preventie en therapie van tumoren. Daarom moeten de effecten van vitamines of mineralen op tumoren verder worden onderzocht.
23 april 2010: bron: Am J Clin Nutr.2010; 0: ajcn.2009.28691v1-ajcn.28691
Mensen die veel voedsel eten rijk aan vitamine K2 - menaquinones verkleinen daarmee met 28% het risico op het krijgen van kanker blijkt uit een postpectieve studie aan de universiteit van Heidelberg ( EPIC - Heidelberg) bij 24340 deelnemers. Vooral longkanker en prostaatkanker springen eruit aldus de onderzoekers. Vitamine K2 - menaquinones zit o.a. veel in kaas. Ook in vlees en volgens de onderzoekers had vitamine K2 binnen gekregen door eten van vlees nog meer een preventief effect.
In dezelfde studie werd geen assiociatie gevonden voor de inname van vitamine K1 - phylloquinone. Hier achtereenvolgens het abstract van de algemene studie en het abstract van de studie welke suggereert dat vitamine K2 - menaquinones preventief werkt bij prostaatkanker..
Am J Clin Nutr (March 24, 2010). doi:10.3945/ajcn.2009.28691
Katharina Nimptsch, Sabine Rohrmann, Rudolf Kaaks and Jakob Linseisen
1 From the Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany (KN SR RKJL); the Department of Nutrition Harvard School of Public Health Boston MA (KN);the Institute of Epidemiology Helmholtz Zentrum München Neuherberg Germany (JL).
2 Supported by ECNIS (Environmental Cancer Risk, Nutrition and Individual Susceptibility), a network of excellence operating within the European Union 6th Framework Program, Priority 5: "Food Quality and Safety" (contract no 513943). 3 Address correspondence to J Linseisen, Institute of Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, D-85746 Neuherberg, Germany. E-mail: j.linseisen@helmholtz-muenchen.de .
ABSTRACT
Background: Anticarcinogenic activities of vitamin K have been observed in animal and cell studies.
Objective: On the basis of the growth inhibitory effects of vitamin K as observed in a variety of cancer cell lines, we hypothesized that dietary intake of phylloquinone (vitamin K1) and menaquinones (vitamin K2) may be associated with overall cancer incidence and mortality.
Design: In the prospective EPIC-Heidelberg (European Prospective Investigation into Cancer and Nutrition–Heidelberg) cohort study, 24,340 participants aged 35–64 y and free of cancer at enrollment (1994–1998) were actively followed up for cancer incidence and mortality through 2008. Dietary vitamin K intake was estimated from food-frequency questionnaires completed at baseline by using HPLC-based food-composition data. Multivariate-adjusted hazard ratios (HRs) and 95% CIs were estimated by using Cox proportional hazards models.
Results: During a median follow-up time of >10 y, 1755 incident cancer cases occurred, of which 458 were fatal. Dietary intake of menaquinones was nonsignificantly inversely associated with overall cancer incidence (HR for the highest compared with the lowest quartile: 0.86; 95% CI: 0.73, 1.01; P for trend = 0.08), and the association was stronger for cancer mortality (HR: 0.72; 95% CI: 0.53, 0.98; P for trend = 0.03). Cancer risk reduction with increasing intake of menaquinones was more pronounced in men than in women, mainly driven by significant inverse associations with prostate (P for trend = 0.03) and lung cancer (P for trend = 0.002). We found no association with phylloquinone intake.
Conclusion: These findings suggest that dietary intake of menaquinones, which is highly determined by the consumption of cheese, is associated with a reduced risk of incident and fatal cancer.
Received for publication September 17, 2009. Accepted for publication February 28, 2010.
Hier abstract van het effect van vtamine K2 - menaquinones bij prostaatkanker. Voor het volledige studierapport klik hier
Am J Clin Nutr. 2008 Apr;87(4):985-92.
Nimptsch K, Rohrmann S, Linseisen J.
Division of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany.
Abstract
BACKGROUND: Anticarcinogenic activities of vitamin K have been observed in various cancer cell lines, including prostate cancer cells. Epidemiologic studies linking dietary intake of vitamin K with the development of prostate cancer have not yet been conducted.
OBJECTIVE: We evaluated the association between dietary intake of phylloquinone (vitamin K1) and menaquinones (vitamin K2) and total and advanced prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. DESIGN: At baseline, habitual dietary intake was assessed by means of a food-frequency questionnaire. Dietary intake of phylloquinone and menaquinones (MK-4-14) was estimated by using previously published HPLC-based food-content data. Multivariate-adjusted relative risks of total and advanced prostate cancer in relation to intakes of phylloquinone and menaquinones were calculated in 11 319 men by means of Cox proportional hazards regression.
RESULTS: During a mean follow-up time of 8.6 y, 268 incident cases of prostate cancer, including 113 advanced cases, were identified. We observed a nonsignificant inverse association between total prostate cancer and total menaquinone intake [multivariate relative risk (highest compared with lowest quartile): 0.65; 95% CI: 0.39, 1.06]. The association was stronger for advanced prostate cancer (0.37; 0.16, 0.88; P for trend = 0.03). Menaquinones from dairy products had a stronger inverse association with advanced prostate cancer than did menaquinones from meat. Phylloquinone intake was unrelated to prostate cancer incidence (1.02; 0.70, 1.48).
CONCLUSIONS: Our results suggest an inverse association between the intake of menaquinones, but not that of phylloquinone, and prostate cancer. Further studies of dietary vitamin K and prostate cancer are warranted.
PMID: 18400723 [PubMed - indexed for MEDLINE]Free Article
Abstract
Despite the availability of multiple therapeutic methods for patients with cancer, the long-term prognosis is not satisfactory in a number of different cancer types. Vitamin K2 (VK2), which exerts anticancer effects on a number of cancer cell lines, is considered to be a prospective novel agent for the treatment of cancer. The present review aims to summarize the results of studies in which VK2 was administered either to patients with cancer or animals inoculated with cancerous cells, particularly investigating the inhibitory effects of VK2 on cancerous cells, primarily involving cell-cycle arrest, cell differentiation, apoptosis, autophagy and invasion. The present review summarizes evidence stating that treatment with VK2 could positively inhibit the growth of cancer cells, making it a potentially useful approach for the prevention and clinical treatment of cancer. Additionally, the combination treatment of VK2 and established chemotherapeutics may achieve better results, with fewer side effects. Therefore, more attention should be paid to the effects of micronutrients on tumors.
5. Discussion
The present review summarizes the effects of VK2 on cancer in clinical, in vivo, and in vitro studies. Clinical trials demonstrated that VK2 has the potential to improve the prognosis of patients with cancer. In addition, evidence indicates that VK2 treatment can prevent HCC in patients with hepatic cirrhosis, and the dietary intake of VK2 can decrease the risk of developing cancer, particularly prostate and lung cancer (54). Furthermore, VK2 is confirmed to restrain tumor cell growth in animal studies (1,7,20–22,55), with cell-cycle arrest and apoptosis involved in this inhibition. In vitro studies (1,23–27,35) certified that VK2 could inhibit the growth of several cancer cell lines. Although several detailed links remain to be investigated, studies included in the present review (23–25,33–37,39,41,45,48,49) indicated that induction of the cell-cycle arrest, cell differentiation, apoptosis, and autophagy is crucial for VK2-dependent suppression of cancer cell growth. Certain protein kinases, such as PKA and PKC, signaling pathways, such as the MAPK pathways, transcription factors, such as NF-κB and AP-2, and essential proteins, such as Bak and Cx43, are involved in the mechanism of VK2 activity against cancer cells (23,24,33,37,41). The combination treatment of VK2 with other chemotherapeutics, such as sorafenib, can exert a synergistic effect and reduce adverse drug reactions.
In conclusion, VK2 can positively inhibit cancer cells. VK2 appears to be an extremely promising agent with very limited toxicity, which can be a useful option for prevention of cancer and clinical therapy of cancer. However, the inhibition of vitamin K and D in cancers indicated that vitamins might have positive effects on the prevention and therapy of tumors. Therefore, the effects of vitamins or minerals on tumors should be investigated further.
Funding
The present study was funded by the National Nature Science Foundation of China (grant no. 30971065), the Science and Technology Plan of Dalian (grant no. 2012E12SF074) and the Education Fund Item of Liaoning Province (grant no. 2009 A 194).
Availability of data and materials
All data analyzed during this study are included in this published article.
Authors' contributions
SL decided the topic of the manuscript. FX was a major contributor in writing the manuscript. SL, FX, JC and LD revised it critically for important intellectual content. JC and LD analyzed and interpreted all the data. All authors read and approved the final manuscript.
Ethics approval and consent to participate
Not applicable.
Consent for publication
All authors have read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
References
1.
Ogawa M, Nakai S, Deguchi A, Nonomura T, Masaki T, Uchida N, Yoshiji H, Kuriyama S. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol. 2007;31:323–331. [PubMed] [Google Scholar]
2.
Yoshida H, Shiratori Y, Kudo M, Shiina S, Mizuta T, Kojiro M, Yamamoto K, Koike Y, Saito K, Koyanagi N, et al. Effect of vitamin K2 on the recurrence of hepatocellular carcinoma. Hepatology. 2011;54:532–540. doi: 10.1002/hep.24430. [PubMed] [CrossRef] [Google Scholar]
3.
Li ZQ, He FY, Stehle CJ, Wang Z, Kar S, Finn FM, Carr BI. Vitamin K uptake in hepatocytes and hepatoma cells. Life Sci. 2002;70:2085–2100. doi: 10.1016/S0024-3205(01)01525-9. [PubMed] [CrossRef] [Google Scholar]
4.
Iwamoto J, Takeda T, Sato Y. Effects of vitamin K2 on osteoporosis. Curr Pharm Des. 2004;10:2557–2576. doi: 10.2174/1381612043383782. [PubMed] [CrossRef] [Google Scholar]
5.
Ushiroyama T, Ikeda A, Ueki M. Effect of continuous combined therapy with vitamin K(2) and vitamin D(3) on bone mineral density and coagulofibrinolysis function in postmenopausal women. Maturitas. 2002;41:211–221. doi: 10.1016/S0378-5122(01)00275-4. [PubMed] [CrossRef] [Google Scholar]
6.
Bouzahzah B, Nishikawa Y, Simon D, Carr BI. Growth control and gene expression in a new hepatocellular carcinoma cell line, Hep40: Inhibitory actions of vitamin K. J Cell Physiol. 1995;165:459–467. doi: 10.1002/jcp.1041650303. [PubMed] [CrossRef] [Google Scholar]
7.
Hitomi M, Yokoyama F, Kita Y, Nonomura T, Masaki T, Yoshiji H, Inoue H, Kinekawa F, Kurokohchi K, Uchida N, et al. Antitumor effects of vitamins K1, K2 and K3 on hepatocellular carcinoma in vitro and in vivo. Int J Oncol. 2005;26:713–720. [PubMed] [Google Scholar]
8.
Takami A, Nakao S, Ontachi Y, Yamauchi H, Matsuda T. Successful therapy of myelodysplastic syndrome with menatetrenone, a vitamin K2 analog. Int J Hematol. 1999;69:24–26. [PubMed] [Google Scholar]
9.
Fujita H, Tomiyama J, Tanaka T. Vitamin K2 combined with all-trans retinoic acid induced complete remission of relapsing acute promyelocytic leukaemia. Br J Haematol. 1998;103:584–585. doi: 10.1046/j.1365-2141.1998.01088.x. [PubMed] [CrossRef] [Google Scholar]
10.
Yoshiji H, Noguchi R, Yamazaki M, Ikenaka Y, Sawai M, Ishikawa M, Kawaratani H, Mashitani T, Kitade M, Kaji K, et al. Combined treatment of vitamin K2 and angiotensin-converting enzyme inhibitor ameliorates hepatic dysplastic nodule in a patient with liver cirrhosis. World J Gastroenterol. 2007;13:3259–3261. doi: 10.3748/wjg.v13.i23.3259. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11.
Otsuka T, Hagiwara S, Tojima H, Yoshida H, Takahashi T, Nagasaka K, Tomioka S, Ando T, Takeuchi K, Kori T, et al. Hepatocellular carcinoma with peritoneal dissemination which was regressed during vitamin K2 and vitamin E administration. Intern Med. 2007;46:711–715. doi: 10.2169/internalmedicine.46.6131. [PubMed] [CrossRef] [Google Scholar]
12.
Miyazawa K, Nishimaki J, Ohyashiki K, Enomoto S, Kuriya S, Fukuda R, Hotta T, Teramura M, Mizoguchi H, Uchiyama T, Omine M. Vitamin K2 therapy for myelodysplastic syndromes (MDS) and post-MDS acute myeloid leukemia: Information through a questionnaire survey of multi-center pilot studies in Japan. Leukemia. 2000;14:1156–1157. doi: 10.1038/sj.leu.2401790. [PubMed] [CrossRef] [Google Scholar]
13.
Sada E, Abe Y, Ohba R, Tachikawa Y, Nagasawa E, Shiratsuchi M, Takayanagi R. Vitamin K2 modulates differentiation and apoptosis of both myeloid and erythroid lineages. Eur J Haematol. 2010;85:538–548. doi: 10.1111/j.1600-0609.2010.01530.x. [PubMed] [CrossRef] [Google Scholar]
14.
Habu D, Shiomi S, Tamori A, Takeda T, Tanaka T, Kubo S, Nishiguchi S. Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. JAMA. 2004;292:358–361. doi: 10.1001/jama.292.3.358. [PubMed] [CrossRef] [Google Scholar]
15.
Kojima K, Tamano M, Akima T, Hashimoto T, Kuniyoshi T, Maeda C, Majima Y, Kusano K, Murohisa T, Iijima M, Hiraishi H. Effect of vitamin K2 on the development of hepatocellular carcinoma in type C cirrhosis. Hepatogastroenterology. 2010;57:1264–1267. [PubMed] [Google Scholar]
16.
Mizuta T, Ozaki I, Eguchi Y, Yasutake T, Kawazoe S, Fujimoto K, Yamamoto K. The effect of menatetrenone, a vitamin K2 analog, on disease recurrence and survival in patients with hepatocellular carcinoma after curative treatment: A pilot study. Cancer. 2006;106:867–872. doi: 10.1002/cncr.21667. [PubMed] [CrossRef] [Google Scholar]
17.
Kakizaki S, Sohara N, Sato K, Suzuki H, Yanagisawa M, Nakajima H, Takagi H, Naganuma A, Otsuka T, Takahashi H, et al. Preventive effects of vitamin K on recurrent disease in patients with hepatocellular carcinoma arising from hepatitis C viral infection. J Gastroenterol Hepatol. 2007;22:518–522. doi: 10.1111/j.1440-1746.2007.04844.x. [PubMed] [CrossRef] [Google Scholar]
18.
Ishizuka M, Kubota K, Shimoda M, Kita J, Kato M, Park KH, Shiraki T. Effect of menatetrenone, a vitamin k2 analog, on recurrence of hepatocellular carcinoma after surgical resection: A prospective randomized controlled trial. Anticancer Res. 2012;32:5415–5420. [PubMed] [Google Scholar]
19.
Zhong JH, Mo XS, Xiang BD, Yuan WP, Jiang JF, Xie GS, Li LQ. Postoperative use of the chemopreventive vitamin K2 analog in patients with hepatocellular carcinoma. PLoS One. 2013;8:58082. doi: 10.1371/journal.pone.0058082. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20.
Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Masaki T, Fukui H. Combination of vitamin K2 and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression. J Hepatol. 2005;42:687–693. doi: 10.1016/j.jhep.2004.12.025. [PubMed] [CrossRef] [Google Scholar]
21.
Zhang Y, Zhang B, Zhang A, Zhao Y, Zhao J, Liu J, Gao J, Fang D, Rao Z. Synergistic growth inhibition by sorafenib and vitamin K2 in human hepatocellular carcinoma cells. Clinics. 2012;67:1093–1099. doi: 10.6061/clinics/2012(09)18. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
22.
Sakakima Y, Hayakawa A, Nagasaka T, Nakao A. Prevention of hepatocarcinogenesis with phosphatidylcholine and menaquinone-4: In vitro and in vivo experiments. J Hepatol. 2007;47:83–92. doi: 10.1016/j.jhep.2007.01.030. [PubMed] [CrossRef] [Google Scholar]
23.
Ozaki I, Zhang H, Mizuta T, Ide Y, Eguchi Y, Yasutake T, Sakamaki T, Pestell RG, Yamamoto K. Menatetrenone, a vitamin K2 analogue, inhibits hepatocellular carcinoma cell growth by suppressing cyclin D1 expression through inhibition of nuclear factor kappaB activation. Clin Cancer Res. 2007;13:2236–2245. doi: 10.1158/1078-0432.CCR-06-2308. [PubMed] [CrossRef] [Google Scholar]
24.
Xia J, Matsuhashi S, Hamajima H, Iwane S, Takahashi H, Eguchi Y, Mizuta T, Fujimoto K, Kuroda S, Ozaki I. The role of PKC isoforms in the inhibition of NF-kappaB activation by vitamin K2 in human hepatocellular carcinoma cells. J Nutr Biochem. 2012;23:1668–1675. doi: 10.1016/j.jnutbio.2011.11.010. [PubMed] [CrossRef] [Google Scholar]
25.
Sibayama-Imazu T, Fujisawa Y, Masuda Y, Aiuchi T, Nakajo S, Itabe H, Nakaya K. Induction of apoptosis in PA-1 ovarian cancer cells by vitamin K2 is associated with an increase in the level of TR3/Nur77 and its accumulation in mitochondria and nuclei. J Cancer Res Clin Oncol. 2008;134:803–812. doi: 10.1007/s00432-007-0349-z. [PubMed] [CrossRef] [Google Scholar]
26.
Showalter SL, Wang Z, Costantino CL, Witkiewicz AK, Yeo CJ, Brody JR, Carr BI. Naturally occurring K vitamins inhibit pancreatic cancer cell survival through a caspase-dependent pathway. J Gastroenterol Hepatol. 2010;25:738–744. doi: 10.1111/j.1440-1746.2009.06085.x. [PubMed] [CrossRef] [Google Scholar]
27.
Enomoto M, Tsuchida A, Miyazawa K, Yokoyama T, Kawakita H, Tokita H, Naito M, Itoh M, Ohyashiki K, Aoki T. Vitamin K2-induced cell growth inhibition via autophagy formation in cholangiocellular carcinoma cell lines. Int J Mol Med. 2007;20:801–808. [PubMed] [Google Scholar]
28.
Miyazawa K, Yaguchi M, Funato K, Gotoh A, Kawanishi Y, Nishizawa Y, You A, Ohyashiki K. Apoptosis/differentiation-inducing effects of vitamin K2 on HL-60 cells: Dichotomous nature of vitamin K2 in leukemia cells. Leukemia. 2001;15:1111–1117. doi: 10.1038/sj.leu.2402155. [PubMed] [CrossRef] [Google Scholar]
29.
Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-B activity. Annu Rev Immunol. 2000;18:621–663. doi: 10.1146/annurev.immunol.18.1.621. [PubMed] [CrossRef] [Google Scholar]
30.
Masaki T, Shiratori Y, Rengifo W, Igarashi K, Yamagata M, Kurokohchi K, Uchida N, Miyauchi Y, Yoshiji H, Watanabe S, et al. Cyclins and cyclin-dependent kinases: Comparative study of hepatocellular carcinoma versus cirrhosis. Hepatology. 2003;37:534–543. doi: 10.1053/jhep.2003.50112. [PubMed] [CrossRef] [Google Scholar]
31.
Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: Key elements of proinflammatory signalling. Semin Immunol. 2000;12:85–98. doi: 10.1006/smim.2000.0210. [PubMed] [CrossRef] [Google Scholar]
32.
Holden NS, Squires PE, Kaur M, Bland R, Jones CE, Newton R. Phorbol ester-stimulated NF-kappaB-dependent transcription: Roles for isoforms of novel protein kinase C. Cell Signal. 2008;20:1338–1348. doi: 10.1016/j.cellsig.2008.03.001. [PubMed] [CrossRef] [Google Scholar]
33.
Otsuka M, Kato N, Shao RX, Hoshida Y, Ijichi H, Koike Y, Taniguchi H, Moriyama M, Shiratori Y, Kawabe T, Omata M. Vitamin K2 inhibits the growth and invasiveness of hepatocellular carcinoma cells via protein kinase A activation. Hepatology. 2004;40:243–251. doi: 10.1002/hep.20260. [PubMed] [CrossRef] [Google Scholar]
34.
Liu W, Nakamura H, Yamamoto T, Ikeda N, Saito M, Ohno M, Hara N, Imanishi H, Shimomura S, Yamamoto T, et al. Vitamin K2 inhibits the proliferation of HepG2 cells by up-regulating the transcription of p21 gene. Hepatol Res. 2007;37:360–365. doi: 10.1111/j.1872-034X.2007.00058.x. [PubMed] [CrossRef] [Google Scholar]
35.
Maniwa Y, Kasukabe T, Kumakura S. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells. Int J Oncol. 2015;47:473–480. doi: 10.3892/ijo.2015.3028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36.
Yamamoto T, Nakamura H, Liu W, Cao K, Yoshikawa S, Enomoto H, Iwata Y, Koh N, Saito M, Imanishi H, et al. Involvement of hepatoma-derived growth factor in the growth inhibition of hepatocellular carcinoma cells by vitamin K(2) J Gastroenterol. 2009;44:228–235. doi: 10.1007/s00535-008-2304-4. [PubMed] [CrossRef] [Google Scholar]
37.
Kaneda M, Zhang D, Bhattacharjee R, Nakahama K, Arii S, Morita I. Vitamin K2 suppresses malignancy of HuH7 hepatoma cells via inhibition of connexin 43. Cancer Lett. 2008;263:53–60. doi: 10.1016/j.canlet.2007.12.019. [PubMed] [CrossRef] [Google Scholar]
38.
Trosko JE. The role of stem cells and gap junctions as targets for cancer chemoprevention and chemotherapy. Biomed Pharmacother. 2005;59(Suppl 2):S326–S331. doi: 10.1016/S0753-3322(05)80065-4. [PubMed] [CrossRef] [Google Scholar]
39.
Karasawa S, Azuma M, Kasama T, Sakamoto S, Kabe Y, Imai T, Yamaguchi Y, Miyazawa K, Handa H. Vitamin K2 covalently binds to Bak and induces Bak-mediated apoptosis. Mol Pharmacol. 2013;83:613–620. doi: 10.1124/mol.112.082602. [PubMed] [CrossRef] [Google Scholar]
40.
Shibayama-Imazu T, Sonoda I, Sakairi S, Aiuchi T, Ann WW, Nakajo S, Itabe H, Nakaya K. Production of superoxide and dissipation of mitochondrial transmembrane potential by vitamin K2 trigger apoptosis in human ovarian cancer TYK-nu cells. Apoptosis. 2006;11:1535–1543. doi: 10.1007/s10495-006-7979-5. [PubMed] [CrossRef] [Google Scholar]
41.
Tsujioka T, Miura Y, Otsuki T, Nishimura Y, Hyodoh F, Wada H, Sugihara T. The mechanisms of vitamin K2-induced apoptosis of myeloma cells. Haematologica. 2006;91:613–619. [PubMed] [Google Scholar]
42.
Nishimaki J, Miyazawa K, Yaguchi M, Katagiri T, Kawanishi Y, Toyama K, Ohyashiki K, Hashimoto S, Nakaya K, Takiguchi T. Vitamin K2 induces apoptosis of a novel cell line established from a patient with myelodysplastic syndrome in blastic transformation. Leukemia. 1999;13:1399–1405. doi: 10.1038/sj.leu.2401491. [PubMed] [CrossRef] [Google Scholar]
43.
Kanamori T, Shimizu M, Okuno M, Matsushima-Nishiwaki R, Tsurumi H, Kojima S, Moriwaki H. Synergistic growth inhibition by acyclic retinoid and vitamin K2 in human hepatocellular carcinoma cells. Cancer Sci. 2007;98:431–437. doi: 10.1111/j.1349-7006.2006.00384.x. [PubMed] [CrossRef] [Google Scholar]
44.
Olson JM, Hallahan AR. p38 MAP kinase: A convergence point in cancer therapy. Trends Mol Med. 2004;10:125–129. doi: 10.1016/j.molmed.2004.01.007. [PubMed] [CrossRef] [Google Scholar]
45.
Li L, Qi Z, Qian J, Bi F, Lv J, Xu L, Zhang L, Chen H, Jia R. Induction of apoptosis in hepatocellular carcinoma Smmc-7721 cells by vitamin K(2) is associated with p53 and independent of the intrinsic apoptotic pathway. Mol Cell Biochem. 2010;342:125–131. doi: 10.1007/s11010-010-0476-8. [PubMed] [CrossRef] [Google Scholar]
46.
Meek DW. Tumour suppression by p53: A role for the DNA damage response? Nat Rev Cancer. 2009;9:714–723. doi: 10.1038/nrc2716. [PubMed] [CrossRef] [Google Scholar]
47.
Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem. 1998;273:2926–2930. doi: 10.1074/jbc.273.5.2926. [PubMed] [CrossRef] [Google Scholar]
48.
Yokoyama T, Miyazawa K, Naito M, Toyotake J, Tauchi T, Itoh M, You A, Hayashi Y, Georgescu MM, Kondo Y, et al. Vitamin K2 induces autophagy and apoptosis simultaneously in leukemia cells. Autophagy. 2008;4:629–640. doi: 10.4161/auto.5941. [PubMed] [CrossRef] [Google Scholar]
49.
Ide Y, Zhang H, Hamajima H, Kawaguchi Y, Eguchi Y, Mizuta T, Yamamoto K, Fujimoto K, Ozaki I. Inhibition of matrix metalloproteinase expression by menatetrenone, a vitamin K2 analogue. Oncol Rep. 2009;22:599–604. [PubMed] [Google Scholar]
50.
Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. Philos Trans R Soc Lond B Biol Sci. 1996;351:127–134. doi: 10.1098/rstb.1996.0008. [PubMed] [CrossRef] [Google Scholar]
51.
Zhang H, Ozaki I, Hamajima H, Iwane S, Takahashi H, Kawaguchi Y, Eguchi Y, Yamamoto K, Mizuta T. Vitamin K2 augments 5-fluorouracil-induced growth inhibition of human hepatocellular carcinoma cells by inhibiting NF-κB activation. Oncol Rep. 2011;25:159–166. [PubMed] [Google Scholar]
52.
Funato K, Miyazawa K, Yaguchi M, Gotoh A, Ohyashiki K. Combination of 22-oxa-1,25-dihydroxyvitamin D(3), a vitamin D(3) derivative, with vitamin K(2) (VK2) synergistically enhances cell differentiation but suppresses VK2-inducing apoptosis in HL-60 cells. Leukemia. 2002;16:1519–1527. doi: 10.1038/sj.leu.2402614. [PubMed] [CrossRef] [Google Scholar]
53.
Iguchi T, Miyazawa K, Asada M, Gotoh A, Mizutani S, Ohyashiki K. Combined treatment of leukemia cells with vitamin K2 and 1alpha,25-dihydroxy vitamin D3 enhances monocytic differentiation along with becoming resistant to apoptosis by induction of cytoplasmic p21CIP1. Int J Oncol. 2005;27:893–900. [PubMed] [Google Scholar]
54.
Nimptsch K, Rohrmann S, Kaaks R, Linseisen J. Dietary vitamin K intake in relation to cancer incidence and mortality: Results from the Heidelberg cohort of the European Prospective Investigation into cancer and nutrition (EPIC-Heidelberg) Am J Clin Nutr. 2010;91:1348–1358. doi: 10.3945/ajcn.2009.28691. [PubMed] [CrossRef] [Google Scholar]
55.
Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, Namisaki T, Kitade M, Yamazaki M, Akahane T, et al. Amelioration of carcinogenesis and tumor growth in the rat liver by combination of vitamin K2 and angiotensin-converting enzyme inhibitor via anti-angiogenic activities. Oncol Rep. 2006;15:155–159. [PubMed] [Google Scholar]
Articles from Oncology Letters are provided here courtesy of Spandidos Publications
intake, menaquinones, vitamin, dietary, heidelberg, phylloquinone, nutrition, trend, inverse, cohort
Gerelateerde artikelen
"... volgens de onderzoekers had vitamine K2 binnen gekregen door eten van vlees niet een preventief effect."
Origineel:
"Menaquinones from dairy products had a stronger inverse association with advanced prostate cancer than did menaquinones from meat."
Helemaal niets mis met vlees!
En ja er is zoveel bewijs dat vlees en bewerkte vleeswaren kanker kan veroorzaken dat zou jij toch ook inmiddels wel moeten weten.
Kees Braam
webmaster