Inlichtingingen over onderstaande studie kunnen worden ingewonnen bij Zwi N. Berneman, Division of Hematology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Antwerp, Belgium; e-mail: eb.azu@namenreb.iwz.
22 maart 2021: Bron: Blood. 2017 Oct 12; 130(15): 1713–1721.
Een recidief krijgen is een groot probleem bij acute myeloïde leukemie (AML) en heeft invloed op de mediane overall overleving. Als patiënten met AML in remissie komen door chemotherapie en aansluitend dendritische celtherapie krijgen versterkt met een Wilms Tumor 1 mRNA vaccin dan blijft een remissie veel langer weg of helemaal weg dan zonder deze extra dendritische celtherapie. In een fase 2 studie onderzochten onderzoekers deze aanpak bij 30 patiënten met AML, die weliswaar in een complete remissie waren van hun AML, maar waarvan zij wisten dat die een heel hoog risico op een recidief liepen.
Er was een aantoonbare antileukemische respons bij 13 patiënten. Negen patiënten bereikten een moleculaire remissie, zoals aangetoond door normalisatie van WT1-transcriptniveaus, waarvan er 5 duurzaam bleken na een mediane follow-up van 109,4 maanden. Stabiele ziekte werd bereikt bij 4 andere patiënten. De totale mediane overall overleving (OS) na vijf jaar was hoger bij de patiënten die goed reageerden op de dendritische celtherapie dan bij de patiënten die niet of nauwelijks reageerden. Een verdubbeling van de overall overleving op 5 jaar dus. (53,8% versus 25,0%; P = 0,01).
Bij patiënten die de dendritische cellen kregen na de 1e complete remissie, werd er bij 25 procent een recidief gezien. De recidief vrije tijd op 5-jaars meting was stukken hoger bij responders dan bij non-responders (50% versus 7,7%; P <. 0001).
Bij patiënten van ≤ 65 jaar en > 65 jaar die DC kregen na 1e remissie, was de 5-jaars overall overleving respectievelijk 69,2% en 30,8%, vergeleken met 51,7% en 18% zoals geregistreerd in de Zweedse Acute Leukemia Registry.
Kaplan-Meier curves of the OS data. The values on the curves are 5-year relative survival from the start of WT1/DC vaccination; the values underneath in gray (A-C) are 5-year relative survival data from SEER (observed survival of newly diagnosed patients with AML included in SEER*Stat database,50 whereby the following case selection criteria were applied: age [minimum age, 30 years; maximum age, 79 years], race , and year of diagnosis [2005-2012]; the patient with an undefinable response was not included in panel D). For median OS (mOS), values in brackets represent median follow-up. n.r., not reached.
Het volledige studieverslag met grafieken en meer details is gratis in te zien.
Hier het abstract:
Blood. 2017 Oct 12; 130(15): 1713–1721.
,
1,2,* ,
1,2,* ,
2,* ,
2,* ,
3,* ,
2 ,
1,2 ,
1,2 ,
2 ,
1,2 ,
1 ,
1,2 ,
1,2 ,
1,2 ,
1,2 ,
1 ,
1 ,
1 ,
1 ,
4 ,
1 ,
1 ,
1 ,
1,2 ,
4 ,
4 ,
5 ,
6 ,
7 ,
6 and
1,2
Key Points
-
WT1 mRNA-electroporated DCs can prevent or delay relapse in 43% of patients with AML in remission after chemotherapy.
-
OS compares favorably with the new survival data from the Swedish Acute Leukemia Registry and correlates with molecular and WT1-specific CD8+ T-cell responses.
Abstract
Relapse is a major problem in acute myeloid leukemia (AML) and adversely affects survival. In this phase 2 study, we investigated the effect of vaccination with dendritic cells (DCs) electroporated with Wilms’ tumor 1 (WT1) messenger RNA (mRNA) as postremission treatment in 30 patients with AML at very high risk of relapse. There was a demonstrable antileukemic response in 13 patients. Nine patients achieved molecular remission as demonstrated by normalization of WT1 transcript levels, 5 of which were sustained after a median follow-up of 109.4 months. Disease stabilization was achieved in 4 other patients. Five-year overall survival (OS) was higher in responders than in nonresponders (53.8% vs 25.0%; P = .01). In patients receiving DCs in first complete remission (CR1), there was a vaccine-induced relapse reduction rate of 25%, and 5-year relapse-free survival was higher in responders than in nonresponders (50% vs 7.7%; P < .0001). In patients age ≤65 and >65 years who received DCs in CR1, 5-year OS was 69.2% and 30.8% respectively, as compared with 51.7% and 18% in the Swedish Acute Leukemia Registry. Long-term clinical response was correlated with increased circulating frequencies of polyepitope WT1-specific CD8+ T cells. Long-term OS was correlated with interferon-γ+ and tumor necrosis factor-α+ WT1-specific responses in delayed-type hypersensitivity-infiltrating CD8+ T lymphocytes. In conclusion, vaccination of patients with AML with WT1 mRNA-electroporated DCs can be an effective strategy to prevent or delay relapse after standard chemotherapy, translating into improved OS rates, which are correlated with the induction of WT1-specific CD8+ T-cell response. This trial was registered at www.clinicaltrials.gov as #NCT00965224
References
2.
Dinmohamed AG, Visser O, van Norden Y, et al. . Treatment, trial participation and survival in adult acute myeloid leukemia: a population-based study in the Netherlands, 1989-2012. Leukemia. 2016;30(1):24-31. [PubMed] [Google Scholar]
4.
Anguille S, Lion E, Smits E, Berneman ZN, van Tendeloo VF. Dendritic cell vaccine therapy for acute myeloid leukemia: questions and answers. Hum Vaccin. 2011;7(5):579-584. [PubMed] [Google Scholar]
5.
van Besien K. Allogeneic transplantation for AML and MDS: GVL versus GVHD and disease recurrence. Hematology Am Soc Hematol Educ Program. 2013;2013:56-62. [PubMed] [Google Scholar]
6.
Berneman ZN. Autologous T cells on the attack against AML. Blood. 2012;120(6):1151-1152. [PubMed] [Google Scholar]
7.
Oka Y, Tsuboi A, Taguchi T, et al. . Induction of WT1 (Wilms’ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA. 2004;101(38):13885-13890. [PMC free article] [PubMed] [Google Scholar]
8.
Rezvani K, Yong AS, Mielke S, et al. . Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood. 2008;111(1):236-242. [PMC free article] [PubMed] [Google Scholar]
9.
Maslak PG, Dao T, Krug LM, et al. . Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood. 2010;116(2):171-179. [PMC free article] [PubMed] [Google Scholar]
10.
Qazilbash MH, Wieder E, Thall PF, et al. . PR1 peptide vaccine induces specific immunity with clinical responses in myeloid malignancies. Leukemia. 2017;31(3):697-704. [PMC free article] [PubMed] [Google Scholar]
11.
Rosenblatt J, Stone RM, Uhl L, et al. . Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8(368):368ra171. [PMC free article] [PubMed] [Google Scholar]
12.
Anguille S, Van Tendeloo VF, Berneman ZN. Leukemia-associated antigens and their relevance to the immunotherapy of acute myeloid leukemia. Leukemia. 2012;26(10):2186-2196. [PubMed] [Google Scholar]
13.
Anguille S, Smits EL, Bryant C, et al. . Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev. 2015;67(4):731-753. [PubMed] [Google Scholar]
14.
Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014;15(7):e257-e267. [PubMed] [Google Scholar]
15.
Van Tendeloo VF, Ponsaerts P, Lardon F, et al. . Highly efficient gene delivery by mRNA electroporation in human hematopoietic cells: superiority to lipofection and passive pulsing of mRNA and to electroporation of plasmid cDNA for tumor antigen loading of dendritic cells. Blood. 2001;98(1):49-56. [PubMed] [Google Scholar]
16.
Van Driessche A, Van de Velde AL, Nijs G, et al. . Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy. 2009;11(5):653-668. [PubMed] [Google Scholar]
17.
Van Tendeloo VF, Van de Velde A, Van Driessche A, et al. . Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc Natl Acad Sci USA. 2010;107(31):13824-13829. [PMC free article] [PubMed] [Google Scholar]
18.
Benteyn D, Anguille S, Van Lint S, et al. . Design of an optimized Wilms’ tumor 1 (WT1) mRNA construct for enhanced WT1 expression and improved immunogenicity in vitro and in vivo. Mol Ther Nucleic Acids. 2013;2:e134. [PMC free article] [PubMed] [Google Scholar]
19.
Ogawa H, Tamaki H, Ikegame K, et al. . The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukemia. Blood. 2003;101(5):1698-1704. [PubMed] [Google Scholar]
20.
Cilloni D, Renneville A, Hermitte F, et al. . Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195-5201. [PubMed] [Google Scholar]
21.
Inoue K, Sugiyama H, Ogawa H, et al. . WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071-3079. [PubMed] [Google Scholar]
22.
Inoue K, Ogawa H, Yamagami T, et al. . Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996;88(6):2267-2278. [PubMed] [Google Scholar]
23.
Cilloni D, Gottardi E, De Micheli D, et al. . Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115-2121. [PubMed] [Google Scholar]
24.
Trka J, Kalinová M, Hrusák O, et al. ; For Czech Paediatric Haematology Working Group. Real-time quantitative PCR detection of WT1 gene expression in children with AML: prognostic significance, correlation with disease status and residual disease detection by flow cytometry. Leukemia. 2002;16(7):1381-1389. [PubMed] [Google Scholar]
25.
Cilloni D, Messa F, Arruga F, et al. . Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921-924. [PubMed] [Google Scholar]
26.
Cheson BD, Bennett JM, Kopecky KJ, et al. ; International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia [published correction appears in J Clin Oncol. 2004;22(3):576]. J Clin Oncol. 2003;21(24):4642-4649. [PubMed] [Google Scholar]
27.
de Lima M, Strom SS, Keating M, et al. . Implications of potential cure in acute myelogenous leukemia: development of subsequent cancer and return to work. Blood. 1997;90(12):4719-4724. [PubMed] [Google Scholar]
28.
Oji Y, Hashimoto N, Tsuboi A, et al. . Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer. 2016;139(6):1391-1401. [PMC free article] [PubMed] [Google Scholar]
29.
Rezvani K, Brenchley JM, Price DA, et al. . T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: identification, quantification, and characterization. Clin Cancer Res. 2005;11(24 Pt 1):8799-8807. [PubMed] [Google Scholar]
30.
Grimwade D, Walker H, Harrison G, et al. ; Medical Research Council Adult Leukemia Working Party. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98(5):1312-1320. [PubMed] [Google Scholar]
31.
Juliusson G, Lazarevic V, Hörstedt AS, Hagberg O, Höglund M; Swedish Acute Leukemia Registry Group. Acute myeloid leukemia in the real world: why population-based registries are needed. Blood. 2012;119(17):3890-3899. [PMC free article] [PubMed] [Google Scholar]
32.
Keilholz U, Letsch A, Busse A, et al. . A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood. 2009;113(26):6541-6548. [PubMed] [Google Scholar]
33.
Wolchok JD, Hoos A, O’Day S, et al. . Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15(23):7412-7420. [PubMed] [Google Scholar]
34.
Casalegno-Garduño R, Schmitt A, Spitschak A, et al. . Immune responses to WT1 in patients with AML or MDS after chemotherapy and allogeneic stem cell transplantation. Int J Cancer. 2016;138(7):1792-1801. [PubMed] [Google Scholar]
35.
Breems DA, Van Putten WL, Huijgens PC, et al. . Prognostic index for adult patients with acute myeloid leukemia in first relapse. J Clin Oncol. 2005;23(9):1969-1978. [PubMed] [Google Scholar]
36.
Wheeler CJ, Das A, Liu G, Yu JS, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res. 2004;10(16):5316-5326. [PubMed] [Google Scholar]
37.
Gribben JG, Ryan DP, Boyajian R, et al. . Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res. 2005;11(12):4430-4436. [PubMed] [Google Scholar]
38.
Arlen PM, Gulley JL, Parker C, et al. . A randomized phase II study of concurrent docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate cancer. Clin Cancer Res. 2006;12(4):1260-1269. [PMC free article] [PubMed] [Google Scholar]
39.
Antonia SJ, Mirza N, Fricke I, et al. . Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Res. 2006;12(3 Pt 1):878-887. [PubMed] [Google Scholar]
40.
Gulley JL, Arlen PM, Tsang KY, et al. . Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res. 2008;14(10):3060-3069. [PMC free article] [PubMed] [Google Scholar]
41.
Chiappori AA, Soliman H, Janssen WE, Antonia SJ, Gabrilovich DI. INGN-225: a dendritic cell-based p53 vaccine (Ad.p53-DC) in small cell lung cancer: observed association between immune response and enhanced chemotherapy effect. Expert Opin Biol Ther. 2010;10(6):983-991. [PMC free article] [PubMed] [Google Scholar]
43.
Madan RA, Gulley JL, Fojo T, Dahut WL. Therapeutic cancer vaccines in prostate cancer: the paradox of improved survival without changes in time to progression. Oncologist. 2010;15(9):969-975. [PMC free article] [PubMed] [Google Scholar]
44.
Gulley JL, Madan RA, Schlom J. Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr Oncol. 2011;18(3):e150-e157. [PMC free article] [PubMed] [Google Scholar]
45.
van der Sluis TC, van Duikeren S, Huppelschoten S, et al. . Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell death. Clin Cancer Res. 2015;21(4):781-794. [PubMed] [Google Scholar]
46.
Brayer J, Lancet JE, Powers J, et al. . WT1 vaccination in AML and MDS: a pilot trial with synthetic analog peptides. Am J Hematol. 2015;90(7):602-607. [PMC free article] [PubMed] [Google Scholar]
47.
Wilgenhof S, Corthals J, Heirman C, et al. . Phase II study of autologous monocyte-derived mRNA electroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol. 2016;34(12):1330-1338. [PubMed] [Google Scholar]
48.
Fujiki F, Oka Y, Kawakatsu M, et al. . A WT1 protein-derived, naturally processed 16-mer peptide, WT1(332), is a promiscuous helper peptide for induction of WT1-specific Th1-type CD4(+) T cells. Microbiol Immunol. 2008;52(12):591-600. [PubMed] [Google Scholar]
49.
Anguille S, Fujiki F, Smits EL, et al. . Identification of a Wilms’ tumor 1-derived immunogenic CD4(+) T-cell epitope that is recognized in the context of common Caucasian HLA-DR haplotypes. Leukemia. 2013;27(3):748-750. [PubMed] [Google Scholar]
50.
National Cancer Institute: Surveillance, Epidemiology, and End Results Program: Incidence – SEER 18 Regs Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2014 Sub (1973-2012 varying). https://seer.cancer.gov/data/seerstat/nov2014/. Accessed 31 December 2016.
Articles from Blood are provided here courtesy of The American Society of Hematology
AML, Acute Myeloide Leukemie, WT1 mRNA gemoduleerde dendritische cellen, recidief
Gerelateerde artikelen
Plaats een reactie ...
Reageer op "Met WT1 mRNA versterkte dendritische cellen voorkomen recidief bij 43% van de patiënten met AML - Acute Myeloide Leukemie die in remissie kwamen na chemotherapie."