3 januari 2025: zie ook dit artikel: https://kanker-actueel.nl/bloedtest-panseer-kan-met-zogenoemde-ctmdna-technologie-verschillende-vormen-kanker-opsporen-jaren-voordat-de-eerste-symptomen-zich-voordoen.html

4 juni 2023: zie ook dit artikel: https://kanker-actueel.nl/galleri-bloedtest-geeft-uitstekende-resultaten-via-ctdna-en-voorspelt-voor-85-procent-plaats-van-primaire-tumor-en-slechts-paar-procent-vals-positieve-uitslag.html

30 maart 2023: lees ook in gerelateerde artikelen

13 oktober 2022: lees ook dit artikel: https://kanker-actueel.nl/bloedtest-mced-spoort-kanker-op-nog-voor-de-eerste-symptomen-optreden-en-geeft-97-procent-zekerheid-blijkt-uit-pathfinderstudie.html

2 april 2020: Bron: Annals of oncology

Een bloedtest, uitgevoerd op in bloed circulerend DNA (ctDNA) op de zogenoemde methylatie afwijkingen, kan heel nauwkeurig nagenoeg alle vormen van kanker ontdekken. Ook ruim voordat mensen klachten / symptomen van kanker vertonen kwamen er resultaten naar voren die aantoonden dat die mensen ook al kanker hadden.  Bovendien kunnen artsen via deze bloedtest redelijk goed inschatten waar een tumor zich bij de patiënt bevindt. 

Wetenschappers van de Mayo Clinic in Rochester, Minnesota beoordeelden de prestaties van een doelgerichte methyleringsanalyse van in bloed circulerend DNA (ctDNA) onder 6.689 deelnemers (2.428 mensen met kanker [> 50 typen] en 4.207 mensen zonder kanker) die waren onderverdeeld in trainings- en validatiesets ( bevestigingsets). 

Bij deze bloedtest zochten wetenschappers via een zogeheten machine learning-algoritme naar bekende kankersignalen in het DNA, die methylatiepatronen worden genoemd en waarvan bekend is dat die de genexpressie regelen. Abnormale methylatiepatronen en veranderingen in de genenexpressie kunnen tumorgroei stimuleren. 

Uit de gevonden resultaten kwam naar voren dat de bloedtest met succes in feite alle vormen van kanker kon opsporen. De onderzoekers constateerden gelijkblijvende prestaties in zowel de trainings- als de validatiesets. Specificiteit was 99,3 procent in de validatieset.

In een vooraf gespecificeerde set gebruikt voor 12 kankertypes, die jaarlijks verantwoordelijk zijn voor ongeveer 63 procent van de Amerikaanse sterfgevallen door kanker, was de gevoeligheid van stadium I tot III 67,3 procent; gevoeligheid was 43,9 procent voor alle kankertypes. Naarmate het stadium van kanker toenam, nam ook de opsporing toe: bij de vooraf gespecificeerde kankersoorten was de gevoeligheid respectievelijk 39, 69, 83 en 92 procent in stadia I, II, III en IV. In 96 procent van de monsters met een methylatieafwijking en genexpressie die zou duiden op kanker werd de plaats van de primaire tumor voorspeld; lokalisatie van de primaire tumor was nauwkeurig in 93 procent.

En dat is voor een doelgerichte behandeling natuurlijk ontzettend belangrijk. Ook was het vals-positieve percentage slechts 0,7 procent, wat betekent dat minder dan 1 procent van de mensen ten onrechte de diagnose kanker kreeg. Dat is een zeer goed resultaat. Bedenkende dat met de op dit moment gebruikte standaardtesten 10 procent van de vrouwen een diagnose van borstkanker krijgen terwijl ze dat niet hebben. 

Belangrijkste punten uit de studie onvertaald:

Targeted methylation analysis of cfDNA simultaneously detected and localized >50 cancer types, including high-mortality cancers that lack screening paradigms.

Cancers were detected across all stages (stage I–III sensitivity: 43.9%; stage I–IV sensitivity: 54.9%) at a specificity of >99% and a single false positive rate of <1%.

This targeted methylation approach localized the tissue of origin with >90% accuracy, which will be critical for directing follow-up care.

This supports the continued investigation of this test with the goal of population-scale early multi-cancer detection.

Het volledige studierapport: Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA is gratis in te zien.

Hier het abstract van de studie:

Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA

Under a Creative Commons license
open access

Highlights

Targeted methylation analysis of cfDNA simultaneously detected and localized >50 cancer types, including high-mortality cancers that lack screening paradigms.

Cancers were detected across all stages (stage I–III sensitivity: 43.9%; stage I–IV sensitivity: 54.9%) at a specificity of >99% and a single false positive rate of <1%.

This targeted methylation approach localized the tissue of origin with >90% accuracy, which will be critical for directing follow-up care.

This supports the continued investigation of this test with the goal of population-scale early multi-cancer detection.

Background

Early cancer detection could identify tumors when outcomes are superior at a time when outcomes are superior and treatment is less morbid. This prospective case-control sub-study (from NCT02889978 and NCT03085888) assessed the performance of targeted methylation analysis of circulating cell-free DNA (cfDNA) to detect and localize multiple cancer types across all stages at high specificity.

Participants and methods

The 6689 participants [2482 cancer (>50 cancer types), 4207 non-cancer] were divided into training and validation sets. Plasma cfDNA underwent bisulfite sequencing targeting a panel of >100 000 informative methylation regions. A classifier was developed and validated for cancer detection and tissue of origin (TOO) localization.

Results

Performance was consistent in training and validation sets. In validation, specificity was 99.3% [95% confidence interval (CI): 98.3% to 99.8%; 0.7% false-positive rate (FPR)]. Stage I–III sensitivity was 67.3% (CI: 60.7% to 73.3%) in a pre-specified set of 12 cancer types (anus, bladder, colon/rectum, esophagus, head and neck, liver/bile-duct, lung, lymphoma, ovary, pancreas, plasma cell neoplasm, stomach), which account for ∼63% of US cancer deaths annually, and was 43.9% (CI: 39.4% to 48.5%) in all cancer types. Detection increased with increasing stage: in the pre-specified cancer types sensitivity was 39% (CI: 27% to 52%) in stage I, 69% (CI: 56% to 80%) in stage II, 83% (CI: 75% to 90%) in stage III, and 92% (CI: 86% to 96%) in stage IV. In all cancer types sensitivity was 18% (CI: 13% to 25%) in stage I, 43% (CI: 35% to 51%) in stage II, 81% (CI: 73% to 87%) in stage III, and 93% (CI: 87% to 96%) in stage IV. TOO was predicted in 96% of samples with cancer-like signal; of those, the TOO localization was accurate in 93%.

Conclusions

cfDNA sequencing leveraging informative methylation patterns detected more than 50 cancer types across stages. Considering the potential value of early detection in deadly malignancies, further evaluation of this test is justified in prospective population-level studies.

Similar articles

Cited by

References

    1. NIH National Cancer Insitute. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs Research Data, Nov 2017 Sub (1973-2015) National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission. Statistic based on all invasive cancers, ages 50+ at diagnosis. [www.seer.cancer.gov].
    1. Noone A, Howlander N, Krapcho M, et al., eds. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute, software version 8.3.6. Bethesda. Available at: https://seer.cancer.gov/csr/1975_2015/.
    1. Cossu G, Saba L, Minerba L, Mascalchi M. Colorectal cancer screening: the role of psychological, social and background factors in decision-making process. Clin Pract Epidemiol Ment Health. 2018;14(1):63–69. - PMC PubMed
    1. Narayan A, Fischer A, Zhang Z, et al. Nationwide cross-sectional adherence to mammography screening guidelines: national behavioral risk factor surveillance system survey results. Breast Cancer Res Treat. 2017;164(3):719–725. - PubMed
    1. Brasher P, Tanner N, Yeager D, Silvestri G. Adherence to annual lung cancer screening within the Veterans Health Administration lung cancer screening demonstration project. Chest. 2018;154(4):636A–637A. - PubMed
    1. Limmer K, LoBiondo-Wood G, Dains J. Predictors of cervical cancer screening adherence in the United States: a systematic review. J Adv Pract Oncol. 2014;5(1):31–41. - PMC PubMed
    1. Oxnard GR, Klein EA, Seiden MV, et al. Simultaneous multi-cancer detection and tissue of origin (TOO) localization using targeted bisulfite sequencing of plasma cell-free DNA (cfDNA). Ann Oncol. 2019;30(suppl 5):LBA77.
    1. Liu MC, Jamshidi A, Venn O, et al. Genome-wide cell-free DNA (cfDNA) methylation signatures and effect on tissue of origin (TOO) performance. J Clin Oncol. 2019;37(suppl 15):3049.
    1. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–930. - PMC PubMed
    1. Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA fragmentation in patients with cancer. Nature. 2019;570(7761):385–389. - PMC PubMed
    1. Shen SY, Singhania R, Fehringer G, et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature. 2018;563(7732):579–583. - PubMed
    1. Merker JD, Oxnard GR, Compton C, et al. Circulating tumor DNA analysis in patients with cancer: American Society of Clinical Oncology and College of American Pathologists joint review. J Clin Oncol. 2018;36(16):1631–1641. - PubMed
    1. Razavi P, Li BT, Brown DN, et al. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants. Nat Med. 2019;25(12):1928–1937. - PMC PubMed
    1. Hu Y, Ulrich BC, Supplee J, et al. False-positive plasma genotyping due to clonal hematopoiesis. Clin Cancer Res. 2018;24(18):4437–4443. - PubMed
    1. Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154. - PMC PubMed
    1. Chan KCA, Jiang P, Chan CWM, et al. Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proc Natl Acad Sci. 2013;110(47):18761–18768. - PMC PubMed
    1. Liu MC, Klein E, Hubbell E, et al. Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: the circulating cell-free genome atlas (CCGA) study. Ann Oncol. 2018;29(suppl 8):500.
    1. Swanton C, Venn O, Aravanis A, et al. Prevalence of clonal hematopoiesis of indeterminate potential (CHIP) measured by an ultra-sensitive sequencing assay: exploratory analysis of the Circulating Cancer Genome Atlas (CCGA) study. J Clin Oncol. 2018;36(suppl 15):12003.
    1. Klein E, Hubbell E, Maddala T, et al. Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: the Circulating Cell-free Genome Atlas (CCGA) study. J Clin Oncol. 2018;36(suppl 15):12021.
    1. Amin MB, Greene FL, Edge SB, et al. The Eighth Edition AJCC Cancer Staging Manual: continuing to build a bridge from a population-based to a more ‘personalized’ approach to cancer staging. CA Cancer J Clin. 2017;67(2):93–99. - PubMed
    1. Surveillance, Epidemiology, and End Results (SEER) Program SEER*Stat Database: Mortality - All COD, Aggregated With State, Total U.S. (1969-2016) <Katrina/Rita Population Adjustment>, National Cancer Institute, DCCPS, Surveillance Research Program, released December 2018. Underlying mortality data provided by NCHS (www.cdc.gov/nchs). Statistic based on 2015-2016 data, all ages. [www.seer.cancer.gov].
    1. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. - PubMed
    1. Vogelstein B, Papadopoulos N, Velculescu VE, et al. Cancer genome landscapes. Science. 2013;339(6127):1546–1558. - PMC PubMed
    1. Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Research. 2002;6:996–1006. - PMC PubMed
    1. Cohen JD, Li L, Wang Y, et al. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science. 2018;359(6378):926–930. - PMC PubMed
    1. Croswell JM, Kramer BS, Kreimer AR, et al. Cumulative incidence of false-positive results in repeated, multimodal cancer screening. Ann Fam Med. 2009;7(3):212–222. - PMC PubMed
    1. Surveillance, Epidemiology, and End Results SEER*Stat software. Available at: www.seer.cancer.gov/seerstat.
    1. Lehman CD, Arao RF, Sprague BL, et al. National performance benchmarks for modern screening digital mammography: update from the Breast Cancer Surveillance Consortium. Radiology. 2017;283(1):49–58. - PMC PubMed
    1. U. S. Food and Drug Administration. Cologuard Summary of Safety and Effectiveness Data (Premarket Approval Application P130017). 2014. Available at https://www.accessdata.fda.gov/cdrh_docs/pdf13/P130017B.pdf.
    1. The National Lung Screening Trial Research Team. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368(21):1980–1991. - PMC PubMed
    1. Cohn AL, Seiden MV, Kurtzman KN, et al. The Circulating Cell-free Genome Atlas (CCGA) study: follow-up (F/U) on non-cancer participants with cancer-like cell-free DNA signals. J Clin Oncol. 2019;37(suppl 15):5574.

Plaats een reactie ...

Reageer op "Bloedtest, uitgevoerd op in bloed circulerend DNA (ctDNA) op DNA mutaties afwijkingen, kan heel nauwkeurig nagenoeg alle vormen van kanker ontdekken."


Gerelateerde artikelen
 

Gerelateerde artikelen

Bloedtest PanSeer kan met >> Bloedtest Oncoseek om vroegtijdig >> Bloedtest (MCED) spoort kanker >> Bloedtest op in bloed circulerende >> Bloedtest via witte bloedcellen >> Bloedtest geeft voor 96 procent >> Algemeen: overzicht van artikelen >>