Als u de informatie op kanker-actueel waardeert wilt u misschien donateur worden van onze Stichting Gezondheid Actueel. Wij zijn ook een ANBI organisatie. Als donateur kunt u korting krijgen op voedingssupplementen bij verschillende bedrijven.

 Bij Oriveda krijgen onze donateurs 25% korting op extracten van medicinale paddenstoelen. Nog een reden om donateur te worden als u extracten van medicinale paddenstoelen wilt gaan gebruiken misschien?

30 december 2018: lees ook dit artikel: 

https://kanker-actueel.nl/waar-moet-je-op-letten-bij-de-aankoop-van-extracten-van-medicinale-paddenstoelen-hier-wat-richtlijnen.html

30 december 2018: Bron: Oncotarget 2018 Jun 26; 9(49): 29259–29274

Zoals in gerelateerde artikelen te lezen geven extracten van medicinale paddenstoelen, al of niet als aanvulling op andere behandelingen, bijzonder goede resultaten bij vormen van kanker met solide tumoren. Waaronder longkanker, borstkanker, darmkanker enz. Toch worden extracten van medicinale paddenstoelen nog altijd weinig tot niet erkend door de Westerse reguliere oncologie. 

Toch worden meer en meer studies gepubliceerd en worden ook opgemerkt in de reguliere oncologie. Zo publiceerde Oncotarget recent een reviewstudie over de effectiviteit en bewezen publicaties van vier extracten van medicinale paddenstoelen, waaronder de meest bekende Coriolus Versicolor (PSK) 

Uit het studierapport vertaald:

De vier in dit artikel besproken paddenstoelen illustreren verschillende stadia van de ontwikkeling van geneesmiddelen op basis van natuurlijke producten. Elke medicinale plant of schimmel ondergaat meerdere stadia van extractie, fractionering en zuivering van actieve verbindingen. Tegelijkertijd worden deze extracten, fracties en verbindingen getest op verschillende kankermodellen, van van tumor afkomstige cellijnen tot diermodellen en klinische studies. Een andere dimensie is het bestuderen van de werkingsmechanismen en doelen van de natuurlijke producten en hun derivaten. Maximale vooruitgang in al deze onderzoeken brengt ons dichter bij een perfect natuurlijk medicijn voor gerichte kankerbehandelingen. 

De bekendste uit de vier is de Coriolus Versicolor, en is waarschijnlijk ook het meest onderzocht:

Trametes versicolor

Trametes versicolor, class Agaricomycetes, order Polyporales, family Polyporaceae (Figure (Figure4),4), is a medicinal mushroom also known as Coriolus versicolor or Polyporus versicolor, “Yun-Zhi” in China, “Kawaratake” in Japan, and “Turkey tail mushroom” in English. This fungus has been used as a therapeutic agent worldwide []. It grows on tree trunks throughout the world in many diverse climates, including North America [].

An external file that holds a picture, illustration, etc.
Object name is oncotarget-09-29259-g004.jpg
The anticancer properties of Trametes versicolor

Effects of different mushroom derivatives and their mechanisms of actions in various models are depicted. Human, mouse and cell icons indicate results obtained in human patients, animal and cell models, respectively. Arrows up and down reflect up- or down-regulation of respective proteins or pathways. PSP – polysaccharopeptide, PSK – polysaccharide Krestin, HH – Hedgehog pathway, TLR2, TLR4 – Toll-like receptors 2 and 4. IL-10 – Interleukin 10.

Ik ga maar niet alles vertalen uit dit studierapport: Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy dat gratis is in te zien met een mooie referentielijst die onderaan het abstract is te lezen.

In general, there has been a strong progress in the field of medicinal mushroom research in terms of anticancer drug development, but this work continues and much more progress still awaits us, especially in the fields of molecular targets of the medicinal mushrooms and the complex synergistic interplay of their different components.

. 2018 Jun 26; 9(49): 29259–29274.
Published online 2018 Jun 26. doi: 10.18632/oncotarget.25660
PMCID: PMC6044372
PMID: 30018750

Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy

Abstract

Medicinal mushrooms have been used throughout the history of mankind for treatment of various diseases including cancer. Nowadays they have been intensively studied in order to reveal the chemical nature and mechanisms of action of their biomedical capacity. Targeted treatment of cancer, non-harmful for healthy tissues, has become a desired goal in recent decades and compounds of fungal origin provide a vast reservoir of potential innovational drugs. Here, on example of four mushrooms common for use in Asian and Far Eastern folk medicine we demonstrate the complex and multilevel nature of their anticancer potential, basing upon different groups of compounds that can simultaneously target diverse biological processes relevant for cancer treatment, focusing on targeted approaches specific to malignant tissues. We show that some aspects of fungotherapy of tumors are studied relatively well, while others are still waiting to be fully unraveled. We also pay attention to the cancer types that are especially susceptible to the fungal treatments.

CONCLUSIONS

The complex anticancer potential of medicinal mushrooms may be embodied not only through inhibition of certain cancer-specific processes or targeted activation of tumor-specific apoptosis, but also through indirect actions such as immunomodulation []. The polysaccharide-mediated antitumor immunomodulatory action seems to be rather common for many medicinal mushrooms and gives a major input into the therapeutic potential of at least three out of the four reviewed species, which is probably determined by similar carbohydrate composition and thus similar effects on the immune system of different mushrooms. Extrapolating these data, we can suppose that other, less studied, polysaccharide-rich mushroom species could possess similar or even superior immuno-stimulatory properties. Moreover, some of additional biological activities can be used for cancer prevention, diminishing the risk of tumorigenic conditions; to such activities we can attribute antioxidant, antibacterial and anti-inflammatory properties. That is why research on whole fungal extracts (sometimes reaching to the clinical trials) and even on extracts of complex mixtures of different medicinal mushrooms [] are the important part of the given research field.

The four mushrooms reviewed in this article illustrate different stages of natural product-derived drug development. Each medicinal plant or fungus undergoes multiple stages of extraction, fractionation and purification of active compounds. At the same time these extracts, fractions and compounds are tested against different cancer models, from tumor-derived cell lines to animal models and clinical trials. Another dimension is studying the mechanisms-of-action and targets of the natural products and their derivatives. Maximum progress in all these trials brings us closer to a perfect natural drug for targeted cancer therapy. The mushroom discussed first in our review, Fomitopsis pinicola, is closer to the initial stages of involvement into modern cancer treatment: it is known to possess certain anticancer activities, and a set of compounds were isolated, but experiments on animal models and clinical trials are lacking, as well as precise studies on the molecular targets and signaling pathways affected by the fungus. Inonotus obliquus is a better-studied mushroom: here we have more data on mouse xenograft experiments and more molecular targets, including the Wnt/β-catenin pathway, a promising target for anticancer drugs of the future, but the medical relevance is still to be improved by clinical trials. Hericium erinaceus and especially Trametes versicolor are much more advanced in terms of medical applications due to their uncovered strong and complex immunomodulatory potential provided by rich polysaccharide and proteoglycan diversity. There are numerous clinical trials confirming applicability of these mushrooms and their extracts as components of modern anticancer chemotherapy. But the complex modes of action and molecular targets as well as exact structures of the active molecules from these mushrooms still have to be studied in more detail. In general, there has been a strong progress in the field of medicinal mushroom research in terms of anticancer drug development, but this work continues and much more progress still awaits us, especially in the fields of molecular targets of the medicinal mushrooms and the complex synergistic interplay of their different components.

Acknowledgments

The work was supported by Ministry of Education and Science of the Russian Federation (project # 6.7997.2017/8.9). The photographs of the mushrooms were kindly provided by Eugenia M. Bulakh.

Footnotes

CONFLICTS OF INTEREST

The authors declare that there are no conflicts of interest between them for this manuscript.

REFERENCES

1. Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GA. Plant Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata1,2. Journal of the American Chemical Society. 1966;88:3888–90. doi: 10.1021/ja00968a057. [CrossRef]
2. van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem. 2004;11:607–28. [PubMed]
3. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971;93:2325–7. [PubMed]
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef]
5. Xu TT, Beelman RB, Lambert JD. The Cancer Preventive Effects of Edible Mushrooms. Anti-Cancer Agents in Medicinal Chemistry. 2012;12:1255–63. doi: 10.2174/187152012803833017. [PubMed] [CrossRef]
6. Hao YF, Jiang JG. Origin and evolution of China Pharmacopoeia and its implication for traditional medicines. Mini Rev Med Chem. 2015;15:595–603. [PubMed]
7. Shikov AN, Pozharitskaya ON, Makarov VG, Wagner H, Verpoorte R, Heinrich M. Medicinal Plants of the Russian Pharmacopoeia; their history and applications. Journal of Ethnopharmacology. 2014;154:481–536. doi: 10.1016/j.jep.2014.04.007. [PubMed] [CrossRef]
8. Byerrum RU, Clarke DA, Lucas EH, Ringler RL, Stevens JA, Stock CC. Tumor inhibitors in Boletus edulis and other Holobasidiomycetes. Antibiot Chemother (Northfield) 1957;7:1–4. [PubMed]
9. Rosecke J, Pietsch M, Konig WA. Volatile constituents of wood-rotting basidiomycetes. Phytochemistry. 2000;54:747–50. doi: 10.1016/S0031-9422(00)00138-2. [PubMed] [CrossRef]
10. Keller AC, Maillard MP, Hostettmann K. Antimicrobial steroids from the fungus Fomitopsis pinicola. Phytochemistry. 1996;41:1041–6. doi: 10.1016/0031-9422(95)00762-8. [PubMed] [CrossRef]
11. Zjawiony JK. Biologically active compounds from Aphyllophorales (polypore) fungi. J Nat Prod. 2004;67:300–10. doi: 10.1021/np030372w. [PubMed] [CrossRef]
12. Grienke U, Zoll M, Peintner U, Rollinger JM. European medicinal polypores - A modern view on traditional uses. Journal of Ethnopharmacology. 2014;154:564–83. doi: 10.1016/j.jep.2014.04.030. [PubMed] [CrossRef]
13. Usui T, Hosokawa S, Mizuno T, Suzuki T, Meguro H. Investigation of the heterogeneity of heterogalactan from the fruit bodies of Fomitopsis pinicola, by employing concanavalin A-Sepharose affinity chromatography. J Biochem. 1981;89:1029–37. [PubMed]
14. Khadhri A, Aouadhi C, Aschi-Smiti S. Screening of Bioactive Compounds of Medicinal Mushrooms Collected on Tunisian Territory. International Journal of Medicinal Mushrooms. 2017;19:127–35. doi: 10.1615/IntJMedMushrooms.v19.i2.40. [PubMed] [CrossRef]
15. Reis FS, Pereira E, Barros L, Sousa MJ, Martins A, Ferreira ICF. Biomolecule Profiles in Inedible Wild Mushrooms with Antioxidant Value. Molecules. 2011;16:4328–38. doi: 10.3390/molecules16064328. [PMC free article] [PubMed] [CrossRef]
16. Choi D, Park SS, Ding JL, Cha WS. Effects of Fomitopsis pinicola extracts on antioxidant and antitumor activities. Biotechnology and Bioprocess Engineering. 2007;12:516–24. doi: 10.1007/Bf02931349. [CrossRef]
17. Yoshikawa K, Inoue M, Matsumoto Y, Sakakibara C, Miyataka H, Matsumoto H, Arihara S. Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. Journal of Natural Products. 2005;68:69–73. doi: 10.1021/np040130b. [PubMed] [CrossRef]
18. Ren G, Liu XY, Zhu HK, Yang SZ, Fu CX. Evaluation of cytotoxic activities of some medicinal polypore fungi from China. Fitoterapia. 2006;77:408–10. doi: 10.1016/j.fitote.2006.05.004. [PubMed] [CrossRef]
19. Shnyreva AV, Shnyreva AA, Espinoza C, Padron JM, Trigos A. Antiproliferative Activity and Cytotoxicity of Some Medicinal Wood-Destroying Mushrooms from Russia. Int J Med Mushrooms. 2018;20:1–11. doi: 10.1615/IntJMedMushrooms.2018025250. [PubMed] [CrossRef]
20. Wang Y, Cheng X, Wang P, Wang L, Fan J, Wang X, Liu Q. Investigating migration inhibition and apoptotic effects of Fomitopsis pinicola chloroform extract on human colorectal cancer SW-480 cells. PLoS One. 2014;9:e101303. doi: 10.1371/journal.pone.0101303. [PMC free article] [PubMed] [CrossRef]
21. Wu HT, Lu FH, Su YC, Ou HY, Hung HC, Wu JS, Yang YC, Chang CJ. In Vivo and In Vitro Anti-Tumor Effects of Fungal Extracts. Molecules. 2014;19:2546–56. doi: 10.3390/molecules19022546. [PMC free article] [PubMed] [CrossRef]
22. Colomer R, Sarrats A, Lupu R, Puig T. Natural Polyphenols and their Synthetic Analogs as Emerging Anticancer Agents. Current Drug Targets. 2017;18:147–59. doi: 10.2174/1389450117666160112113930. [PubMed] [CrossRef]
23. Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycological Progress. 2015;14:91. doi: 10.1007/s11557-015-1105-4. [CrossRef]
24. Boddy L, Crockatt ME, Ainsworth AM. Ecology of Hericium cirrhatum, H. coralloides and H. erinaceus in the UK. Fungal Ecology. 2011;4:163–73. doi: 10.1016/j.funeco.2010.10.001. [CrossRef]
25. He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion's Mane) mushroom: A review. Int J Biol Macromol. 2017;97:228–37. doi: 10.1016/j.ijbiomac.2017.01.040. [PubMed] [CrossRef]
26. Khan MA, Tania M, Liu R, Rahman MM. Hericium erinaceus: an edible mushroom with medicinal values. J Complement Integr Med. 2013;10 doi: 10.1515/jcim-2013-0001. [PubMed] [CrossRef]
27. Friedman M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. Journal of Agricultural and Food Chemistry. 2015;63:7108–23. doi: 10.1021/acs.jafc.5b02914. [PubMed] [CrossRef]
28. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Critical Reviews in Biotechnology. 2015;35:355–68. doi: 10.3109/07388551.2014.887649. [PubMed] [CrossRef]
29. Li G, Yu K, Li F, Xu K, Li J, He S, Cao S, Tan G. Anticancer potential of Hericium erinaceus extracts against human gastrointestinal cancers. J Ethnopharmacol. 2014;153:521–30. doi: 10.1016/j.jep.2014.03.003. [PubMed] [CrossRef]
30. Kim SP, Nam SH, Friedman M. Hericium erinaceus (Lion's Mane) mushroom extracts inhibit metastasis of cancer cells to the lung in CT-26 colon cancer-tansplanted mice. J Agric Food Chem. 2013;61:4898–904. doi: 10.1021/jf400916c. [PubMed] [CrossRef]
31. Kim SP, Kang MY, Choi YH, Kim JH, Nam SH, Friedman M. Mechanism of Hericium erinaceus (Yamabushitake) mushroom-induced apoptosis of U937 human monocytic leukemia cells. Food Funct. 2011;2:348–56. doi: 10.1039/c1fo10030k. [PubMed] [CrossRef]
32. Qin T, Ren Z, Huang Y, Song Y, Lin D, Li J, Ma Y, Wu X, Qiu F, Xiao Q. Selenizing Hericium erinaceus polysaccharides induces dendritic cells maturation through MAPK and NF-kappaB signaling pathways. Int J Biol Macromol. 2017;97:287–98. doi: 10.1016/j.ijbiomac.2017.01.039. [PubMed] [CrossRef]
33. Ren Z, Qin T, Qiu F, Song Y, Lin D, Ma Y, Li J, Huang Y. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7. Int J Biol Macromol. 2017;105:879–85. doi: 10.1016/j.ijbiomac.2017.07.104. [PubMed] [CrossRef]
34. Sheng XT, Yan JM, Meng Y, Kang YY, Han Z, Tai GH, Zhou YF, Cheng HR. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology. Food & Function. 2017;8:1020–7. doi: 10.1039/c7fo00071e. [PubMed] [CrossRef]
35. Lu CC, Huang WS, Lee KF, Lee KC, Hsieh MC, Huang CY, Lee LY, Lee BO, Teng CC, Shen CH, Tung SY, Kuo HC. Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. Journal of Functional Foods. 2016;21:474–84. doi: 10.1016/j.jff.2015.12.031. [CrossRef]
36. Kuo HC, Kuo YR, Lee KF, Hsieh MC, Huang CY, Hsieh YY, Lee KC, Kuo HL, Lee LY, Chen WP, Chen CC, Tung SY. A Comparative Proteomic Analysis of Erinacine A's Inhibition of Gastric Cancer Cell Viability and Invasiveness. Cell Physiol Biochem. 2017;43:195–208. doi: 10.1159/000480338. [PubMed] [CrossRef]
37. Lee KC, Kuo HC, Shen CH, Lu CC, Huang WS, Hsieh MC, Huang CY, Kuo YH, Hsieh YY, Teng CC, Lee LY, Tung SY. A proteomics approach to identifying novel protein targets involved in erinacine A-mediated inhibition of colorectal cancer cells' aggressiveness. J Cell Mol Med. 2017;21:588–99. doi: 10.1111/jcmm.13004. [PMC free article] [PubMed] [CrossRef]
38. Lee SR, Jung K, Noh HJ, Park YJ, Lee HL, Lee KR, Kang KS, Kim KH. A new cerebroside from the fruiting bodies of Hericium erinaceus and its applicability to cancer treatment. Bioorganic & Medicinal Chemistry Letters. 2015;25:5712–5. doi: 10.1016/j.bmcl.2015.10.092. [PubMed] [CrossRef]
39. Diling C, Chaoqun Z, Jian Y, Jian L, Jiyan S, Yizhen X, Guoxiao L. Immunomodulatory Activities of a Fungal Protein Extracted from Hericium erinaceus through Regulating the Gut Microbiota. Front Immunol. 2017;8:666. doi: 10.3389/fimmu.2017.00666. [PMC free article] [PubMed] [CrossRef]
40. Zan X, Cui F, Li Y, Yang Y, Wu D, Sun W, Ping L. Hericium erinaceus polysaccharide-protein HEG-5 inhibits SGC-7901 cell growth via cell cycle arrest and apoptosis. Int J Biol Macromol. 2015;76:242–53. doi: 10.1016/j.ijbiomac.2015.01.060. [PubMed] [CrossRef]
41. Jia LM, Liu L, Dong Q, Fang JN. Structural investigation of a novel rhamnoglucogalactan isolated from the fruiting bodies of the fungus Hericium erinaceus. Carbohydr Res. 2004;339:2667–71. doi: 10.1016/j.carres.2004.07.027. [PubMed] [CrossRef]
42. Wong JY, Abdulla MA, Raman J, Phan CW, Kuppusamy UR, Golbabapour S, Sabaratnam V. Gastroprotective Effects of Lion's Mane Mushroom Hericium erinaceus (Bull.:Fr.) Pers. (Aphyllophoromycetideae) Extract against Ethanol-Induced Ulcer in Rats. Evid Based Complement Alternat Med. 2013;2013:492976. doi: 10.1155/2013/492976. [PMC free article] [PubMed] [CrossRef]
43. Liu JH, Li L, Shang XD, Zhang JL, Tan Q. Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus. Journal of Ethnopharmacology. 2016;183:54–8. doi: 10.1016/j.jep.2015.09.004. [PubMed] [CrossRef]
44. Wang MX, Gao Y, Xu DD, Gao QP. A polysaccharide from cultured mycelium of Hericium erinaceus and its anti-chronic atrophic gastritis activity. International Journal of Biological Macromolecules. 2015;81:656–61. doi: 10.1016/j.ijbiomac.2015.08.043. [PubMed] [CrossRef]
45. Wang M, Kanako N, Zhang Y, Xiao X, Gao Q, Tetsuya K. A unique polysaccharide purified from Hericium erinaceus mycelium prevents oxidative stress induced by H2O2 in human gastric mucosa epithelium cell. PLoS One. 2017;12:e0181546. doi: 10.1371/journal.pone.0181546. [PMC free article] [PubMed] [CrossRef]
46. Wolters N, Schembecker G, Merz J. Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus. Fungal Biology. 2015;119:1334–44. doi: 10.1016/j.funbio.2015.10.005. [PubMed] [CrossRef]
47. Kim YO, Park HW, Kim JH, Lee JY, Moon SH, Shin CS. Anti-cancer effect and structural characterization of endo-polysaccharide from cultivated mycelia of Inonotus obliquus. Life Sci. 2006;79:72–80. doi: 10.1016/j.lfs.2005.12.047. [PubMed] [CrossRef]
48. Taji S, Yamada T, Wada S, Tokuda H, Sakuma K, Tanaka R. Lanostane-type triterpenoids from the sclerotia of Inonotus obliquus possessing anti-tumor promoting activity. Eur J Med Chem. 2008;43:2373–9. doi: 10.1016/j.ejmech.2008.01.037. [PubMed] [CrossRef]
49. Zheng W, Zhang M, Zhao Y, Wang Y, Miao K, Wei Z. Accumulation of antioxidant phenolic constituents in submerged cultures of Inonotus obliquus. Bioresour Technol. 2009;100:1327–35. doi: 10.1016/j.biortech.2008.05.002. [PubMed] [CrossRef]
50. Handa N, Yamada T, Tanaka R. An unusual lanostane-type triterpenoid, spiroinonotsuoxodiol, and other triterpenoids from Inonotus obliquus. Phytochemistry. 2010;71:1774–9. doi: 10.1016/j.phytochem.2010.07.005. [PubMed] [CrossRef]
51. Burczyk J, Gawron A, Slotwinska M, Smietana B, Terminska K. Antimitotic activity of aqueous extracts of Inonotus obliquus. Boll Chim Farm. 1996;135:306–9. [PubMed]
52. Tsai CC, Li YS, Lin PP. Inonotus obliquus extract induces apoptosis in the human colorectal carcinoma's HCT-116 cell line. Biomed Pharmacother. 2017;96:1119–26. doi: 10.1016/j.biopha.2017.11.111. [PubMed] [CrossRef]
53. Lee SH, Hwang HS, Yun JW. Antitumor Activity of Water Extract of a Mushroom, Inonotus obliquus, against HT-29 Human Colon Cancer Cells. Phytotherapy Research. 2009;23:1784–9. doi: 10.1002/ptr.2836. [PubMed] [CrossRef]
54. Youn MJ, Kim JK, Park SY, Kim Y, Kim SJ, Lee JS, Chai KY, Kim HJ, Cui MX, So HS, Kim KY, Park R. Chaga mushroom (Inonotus obliquus) induces G0/G1 arrest and apoptosis in human hepatoma HepG2 cells. World J Gastroenterol. 2008;14:511–7. [PMC free article] [PubMed]
55. Youn MJ, Kim JK, Park SY, Kim Y, Park C, Kim ES, Park KI, So HS, Park R. Potential anticancer properties of the water extract of Inonotus obliquus by induction of apoptosis in melanoma B16-F10 cells. J Ethnopharmacol. 2009;121:221–8. doi: 10.1016/j.jep.2008.10.016. [PubMed] [CrossRef]
56. Chung MJ, Chung CK, Jeong Y, Ham SS. Anticancer activity of subfractions containing pure compounds of Chaga mushroom (Inonotus obliquus) extract in human cancer cells and in Balbc/c mice bearing Sarcoma-180 cells. Nutr Res Pract. 2010;4:177–82. doi: 10.4162/nrp.2010.4.3.177. [PMC free article] [PubMed] [CrossRef]
57. Nakata T, Yamada T, Taji S, Ohishi H, Wada S, Tokuda H, Sakuma K, Tanaka R. Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorganic & Medicinal Chemistry. 2007;15:257–64. doi: 10.1016/j.bmc.2006.09.064. [PubMed] [CrossRef]
58. Nomura M, Takahashi T, Uesugi A, Tanaka R, Kobayashi S. Inotodiol, a Lanostane Triterpenoid, from Inonotus obliquus Inhibits Cell Proliferation through Caspase-3-dependent Apoptosis. Anticancer Research. 2008;28:2691–6. [PubMed]
59. Kuriyama I, Nakajima Y, Nishida H, Konishi T, Takeuchi T, Sugawara F, Yoshida H, Mizushina Y. Inhibitory effects of low molecular weight polyphenolics from Inonotus obliquus on human DNA topoisomerase activity and cancer cell proliferation. Molecular Medicine Reports. 2013;8:535–42. doi: 10.3892/mmr.2013.1547. [PubMed] [CrossRef]
60. Sung B, Pandey MK, Nakajima Y, Nishida H, Konishi T, Chaturvedi MM, Aggarwal BB. Identification of a novel blocker of IkappaBalpha kinase activation that enhances apoptosis and inhibits proliferation and invasion by suppressing nuclear factor-kappaB. Mol Cancer Ther. 2008;7:191–201. doi: 10.1158/1535-7163.MCT-07-0406. [PubMed] [CrossRef]
61. Kim YO, Han SB, Lee HW, Ahn HJ, Yoon YD, Jung JK, Kim HM, Shin CS. Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sci. 2005;77:2438–56. doi: 10.1016/j.lfs.2005.02.023. [PubMed] [CrossRef]
62. Fan LP, Ding SD, Ai LZ, Deng KQ. Antitumor and immunomodulatory activity of water-soluble polysaccharide from Inonotus obliquus. Carbohydrate Polymers. 2012;90:870–4. doi: 10.1016/j.carbpol.2012.06.013. [PubMed] [CrossRef]
63. Won DP, Lee JS, Kwon DS, Lee KE, Shin WC, Hong EK. Immunostimulating activity by polysaccharides isolated from fruiting body of Inonotus obliquus. Molecules and Cells. 2011;31:165–73. doi: 10.1007/s10059-011-0022-x. [PMC free article] [PubMed] [CrossRef]
64. Lee KR, Lee JS, Song JE, Ha SJ, Hong EK. Inonotus obliquus-derived polysaccharide inhibits the migration and invasion of human non-small cell lung carcinoma cells via suppression of MMP-2 and MMP-9. Int J Oncol. 2014;45:2533–40. doi: 10.3892/ijo.2014.2685. [PubMed] [CrossRef]
65. Lee KR, Lee JS, Kim YR, Song IG, Hong EK. Polysaccharide from Inonotus obliquus inhibits migration and invasion in B16-F10 cells by suppressing MMP-2 and MMP-9 via downregulation of NF-kappaB signaling pathway. Oncol Rep. 2014;31:2447–53. doi: 10.3892/or.2014.3103. [PubMed] [CrossRef]
66. Kang JH, Jang JE, Mishra SK, Lee HJ, Nho CW, Shin D, Jin M, Kim MK, Choi C, Oh SH. Ergosterol peroxide from Chaga mushroom (Inonotus obliquus) exhibits anti-cancer activity by down-regulation of the beta-catenin pathway in colorectal cancer. J Ethnopharmacol. 2015;173:303–12. doi: 10.1016/j.jep.2015.07.030. [PubMed] [CrossRef]
67. Blagodatski A, Poteryaev D, Katanaev VL. Targeting the Wnt pathways for therapies. Mol Cell Ther. 2014;2:28. doi: 10.1186/2052-8426-2-28. [PMC free article] [PubMed] [CrossRef]
68. Zhang X, Bao C, Zhang J. Inotodiol suppresses proliferation of breast cancer in rat model of type 2 diabetes mellitus via downregulation of beta-catenin signaling. Biomed Pharmacother. 2018;99:142–50. doi: 10.1016/j.biopha.2017.12.084. [PubMed] [CrossRef]
69. Gery A, Dubreule C, Andre V, Rioult JP, Bouchart V, Heutte N, Eldin de Pecoulas P, Krivomaz T, Garon D. Chaga (Inonotus obliquus), a Future Potential Medicinal Fungus in Oncology? A Chemical Study and a Comparison of the Cytotoxicity Against Human Lung Adenocarcinoma Cells (A549) and Human Bronchial Epithelial Cells (BEAS-2B) Integr Cancer Ther. 2018:1534735418757912. doi: 10.1177/1534735418757912. [PMC free article] [PubMed] [CrossRef]
70. Kuan YC, Wu YJ, Hung CL, Sheu F. Trametes versicolor Protein YZP Activates Regulatory B Lymphocytes - Gene Identification through De Novo Assembly and Function Analysis in a Murine Acute Colitis Model. Plos One. 2013;8:e72422. doi: 10.1371/journal.pone.0072422. [PMC free article] [PubMed] [CrossRef]
71. Standish LJ, Wenner CA, Sweet ES, Bridge C, Nelson A, Martzen M, Novack J, Torkelson C. Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol. 2008;6:122–8. [PMC free article] [PubMed]
72. Zhou XW, Jiang H, Lin J, Tang KX. Cytotoxic activities of Coriolus versicolor (Yunzhi) extracts on human liver cancer and breast cancer cell line. African Journal of Biotechnology. 2007;6:1740–3.
73. Lau CBS, Ho CY, Kim CF, Leung KN, Fung KP, Tse TF, Chan HHL, Chow MSS. Cytotoxic activities of Coriolus versicolor (Yunzhi) extract on human leukemia and lymphoma cells by induction of apoptosis. Life Sciences. 2004;75:797–808. doi: 10.1016/j.lfs.2004.04.001. [PubMed] [CrossRef]
74. Hsieh TC, Wu JM. Cell growth and gene modulatory activities of Yunzhi (Windsor Wunxi) from mushroom Trametes versicolor in androgen-dependent and androgen-insensitive human prostate cancer cells. Int J Oncol. 2001;18:81–8. [PubMed]
75. Awadasseid A, Hou J, Gamallat Y, Xueqi S, Eugene KD, Musa Hago A, Bamba D, Meyiah A, Gift C, Xin Y. Purification, characterization, and antitumor activity of a novel glucan from the fruiting bodies of Coriolus Versicolor. PLoS One. 2017;12:e0171270. doi: 10.1371/journal.pone.0171270. [PMC free article] [PubMed] [CrossRef]
76. Cui T, Chisti Y. Polysaccharopeptides of Coriolus versicolor: physiological activity, uses, and production. Biotechnology Advances. 2003;21:109–22. doi: 10.1016/S0734-9750(03)00002-8. [PubMed] [CrossRef]
77. Fisher M, Yang LX. Anticancer effects and mechanisms of polysaccharide-K (PSK): Implications of cancer immunotherapy. Anticancer Research. 2002;22:1737–54. [PubMed]
78. Chang Y, Zhang M, Jiang Y, Liu Y, Luo H, Hao C, Zeng P, Zhang L. Preclinical and clinical studies of Coriolus versicolor polysaccharopeptide as an immunotherapeutic in China. Discov Med. 2017;23:207–19. [PubMed]
79. Wang J, Dong B, Tan Y, Yu S, Bao YX. A study on the immunomodulation of polysaccharopeptide through the TLR4-TIRAP/MAL-MyD88 signaling pathway in PBMCs from breast cancer patients. Immunopharmacology and Immunotoxicology. 2013;35:497–504. doi: 10.3109/08923973.2013.805764. [PubMed] [CrossRef]
80. Sekhon BK, Sze DMY, Chan WK, Fan K, Li GQ, Moore DE, Roubin RH. PSP activates monocytes in resting human peripheral blood mononuclear cells: Immunomodulatory implications for cancer treatment. Food Chemistry. 2013;138:2201–9. doi: 10.1016/j.foodchem.2012.11.009. [PubMed] [CrossRef]
81. Sekhon BK, Roubin RH, Li YM, Devi PB, Nammi S, Fan K, Sze DMY. Evaluation of Selected Immunomodulatory Glycoproteins as an Adjunct to Cancer Immunotherapy. Plos One. 2016;11:e0146881. doi: 10.1371/journal.pone.0146881. [PMC free article] [PubMed] [CrossRef]
82. Engel AL, Sun GC, Gad E, Rastetter LR, Strobe K, Yang Y, Dang YS, Disis ML, Lu HL. Protein-bound polysaccharide activates dendritic cells and enhances OVA-specific T cell response as vaccine adjuvant. Immunobiology. 2013;218:1468–76. doi: 10.1016/j.imbio.2013.05.001. [PMC free article] [PubMed] [CrossRef]
83. Lu H, Yang Y, Gad E, Wenner CA, Chang A, Larson ER, Dang Y, Martzen M, Standish LJ, Disis ML. Polysaccharide krestin is a novel TLR2 agonist that mediates inhibition of tumor growth via stimulation of CD8 T cells and NK cells. Clin Cancer Res. 2011;17:67–76. doi: 10.1158/1078-0432.CCR-10-1763. [PMC free article] [PubMed] [CrossRef]
84. Lu H, Yang Y, Gad E, Inatsuka C, Wenner CA, Disis ML, Standish LJ. TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy. Clin Cancer Res. 2011;17:6742–53. doi: 10.1158/1078-0432.CCR-11-1142. [PMC free article] [PubMed] [CrossRef]
85. Price LA, Wenner CA, Sloper DT, Slaton JW, Novack JP. Role for toll-like receptor 4 in TNF-alpha secretion by murine macrophages in response to polysaccharide Krestin, a Trametes versicolor mushroom extract. Fitoterapia. 2010;81:914–9. doi: 10.1016/j.fitote.2010.06.002. [PubMed] [CrossRef]
86. Torkelson CJ, Sweet E, Martzen MR, Sasagawa M, Wenner CA, Gay J, Putiri A, Standish LJ. Phase 1 Clinical Trial of Trametes versicolor in Women with Breast Cancer. ISRN Oncol. 2012;2012:251632. doi: 10.5402/2012/251632. [PMC free article] [PubMed] [CrossRef]
87. Quayle K, Coy C, Standish L, Lu H. The TLR2 agonist in polysaccharide-K is a structurally distinct lipid which acts synergistically with the protein-bound beta-glucan. J Nat Med. 2015;69:198–208. doi: 10.1007/s11418-014-0879-z. [PubMed] [CrossRef]
88. Yamasaki A, Onishi H, Imaizumi A, Kawamoto M, Fujimura A, Oyama Y, Katano M. Protein-bound Polysaccharide-K Inhibits Hedgehog Signaling Through Down-regulation of MAML3 and RBPJ Transcription Under Hypoxia, Suppressing the Malignant Phenotype in Pancreatic Cancer. Anticancer Res. 2016;36:3945–52. [PubMed]
89. Xin M, Ji X, De La Cruz LK, Thareja S, Wang B. Strategies to target the hedgehog signaling pathway for cancer therapy. Med Res Rev. 2018;38:870–913. doi: 10.1002/med.21482. [PubMed] [CrossRef]
90. Namikawa T, Fukudome I, Ogawa M, Munekage E, Munekage M, Shiga M, Maeda H, Kitagawa H, Kobayashi M, Hanazaki K. Clinical efficacy of protein-bound polysaccharide K in patients with gastric cancer undergoing chemotherapy with an oral fluoropyrimidine (S-1) Eur J Surg Oncol. 2015;41:795–800. doi: 10.1016/j.ejso.2015.02.012. [PubMed] [CrossRef]
91. Fritz H, Kennedy DA, Ishii M, Fergusson D, Fernandes R, Cooley K, Seely D. Polysaccharide K and Coriolus versicolor Extracts for Lung Cancer: A Systematic Review. Integrative Cancer Therapies. 2015;14:201–11. doi: 10.1177/1534735415572883. [PubMed] [CrossRef]
92. Jiang JH, Thyagarajan-Sahu A, Loganathan J, Eliaz I, Terry C, Sandusky GE, Sliva D. BreastDefend (TM) prevents breast-to-lung cancer metastases in an orthotopic animal model of triple-negative human breast cancer. Oncology Reports. 2012;28:1139–45. doi: 10.3892/or.2012.1936. [PMC free article] [PubMed] [CrossRef]
93. Stamets P. Trametes versicolor (Turkey Tail Mushrooms) and the Treatment of Breast Cancer. Glob Adv Health Med. 2012;1:20. doi: 10.7453/gahmj.2012.1.5.007. [PMC free article] [PubMed] [CrossRef]
94. Standish LJ, Dowd F, Sweet E, Dale L, Weaver M, Osborne B, Andersen MR. Breast Cancer Integrative Oncology Care and Its Costs. Integr Cancer Ther. 2017;16:85–95. doi: 10.1177/1534735416649034. [PMC free article] [PubMed] [CrossRef]
95. Guggenheim AG, Wright KM, Zwickey HL. Immune Modulation From Five Major Mushrooms: Application to Integrative Oncology. Integr Med (Encinitas) 2014;13:32–44. [PMC free article] [PubMed]
96. Jiang J, Sliva D. Novel medicinal mushroom blend suppresses growth and invasiveness of human breast cancer cells. Int J Oncol. 2010;37:1529–36. [PubMed]

Articles from Oncotarget are provided here courtesy of Impact Journals, LLC

Plaats een reactie ...

Reageer op "Algemeen: Extracten van medicinale paddenstoelen worden ook in reguliere oncologie meer en meer gezien als een natuurlijke behandeling van verschillende vormen van kanker. Blijkt uit recente reviewstudie"


Gerelateerde artikelen