, Formal analysis, Data curation, Writing – original draft, Writing – review & editing,1 , Methodology, Data curation, Writing – original draft, Writing – review & editing,2,3 , Methodology, Data curation, Writing – review & editing,2,3,4 , Methodology, Data curation, Writing – original draft, Writing – review & editing,4 , Data curation, Writing – review & editing,2 , Methodology, Data curation, Writing – review & editing,4 , Methodology, Data curation, Writing – review & editing,4 , Formal analysis, Data curation, Writing – original draft, Writing – review & editing,2,5 , Conceptualization, Methodology, Resources, Writing – original draft, Writing – review & editing, Supervision,4 , Conceptualization, Methodology, Resources, Writing – original draft, Writing – review & editing, Supervision,2,3 and , Conceptualization, Methodology, Resources, Writing – original draft, Writing – review & editing, Supervision, Funding acquisition1,*
Elisa Belluzzi, Academic Editor
1. Introduction
Osteosarcoma (OS) is the most commonly occurring primary bone tumor and primarily occurs in children and adolescents [1,2,3,4,5]. The worldwide incidence in children and adolescents is 3–4.5 cases per 1 million people and accounts for 55% of primary bone tumor diagnoses in children in the United States [3,6,7]. Over 30 years ago, chemotherapeutics were introduced into the standard of care treatment regimen for OS patients, which greatly improved patient survival. However, survival outcomes remain at a median 5-year survival rate of 70% for patients presenting without metastatic disease at the time of diagnosis, and less than 25% for patients with metastatic or recurrent disease [1,2,4,8]. The current definitive standard of care treatment for OS consists of surgical resection of the primary bone tumor via limb salvage surgery or amputation with neoadjuvant and adjuvant chemotherapy [1,9]. Advancements in limb salvage surgeries have resulted in improving quality of life outcomes for OS patients, but these procedures are still associated with complications and risks, including mobility limitations, fracture, infection, and tumor recurrence [1,9,10]. Additionally, limb salvage surgery is an invasive procedure, and often multiple surgeries are required [11,12,13]. Consequently, there is a continued need to advance OS treatment modalities in order to improve patient quality of life and survival. A noninvasive limb salvage treatment option has the potential to immensely improve patient quality of life.
In a similar manner to many cancers, the cellular interactions that occur in the tumor microenvironment (TME) in OS result in immunosuppression, contributing to OS progression and metastatic disease development, which is the major contributing factor to OS mortality [14,15,16,17]. Thus, more recent approaches for developing novel OS treatments have focused on immunomodulation in efforts to stimulate an antitumor immune response to moderate metastatic disease development [14,18,19,20,21]. The novel focused ultrasound technique, histotripsy, has been shown to ablate targeted tumor tissue and induce immunomodulation to stimulate an antitumor immune response [22,23,24,25,26,27,28,29,30,31]. Histotripsy is thus an exciting technique that can potentially treat primary and metastatic OS to improve treatment and survival outcomes.
Histotripsy is a precise, nonthermal, noninvasive, focused ultrasound technique that utilizes high-amplitude ultrasound pulses to generate acoustic cavitation to mechanically homogenize targeted tissue [31,32,33,34,35,36]. Histotripsy has previously been employed in humans to ablate prostate tissue, heart valves, and liver tumors [36,37,38,39] and in canines for experimentally induced prostate tumors [40], spontaneously occurring primary bone tumors [25,41,42,43], and soft tissue sarcomas [43,44]. Preclinical rodent models have demonstrated effective ablation of liver tumors [45], melanoma [27], renal cell carcinoma [28], and pancreatic [24] tumors and have also reported that the resulting disruption of targeted tissue causes the release of immunogenic cellular proteins, which stimulates a proinflammatory/antitumor immune response [26,27,28,29,45,46]. The destruction of tumors with histotripsy leads to the release of tumor antigens and damage-associated molecular patterns (DAMPs), such as high mobility group box-1 (HMGB-1), orchestrating an antitumor immune response [24,26,27,28]. Furthermore, an increased infiltration of cytotoxic T-lymphocytes (CTLs) into the tumor microenvironment is observed after histotripsy treatment, as is an increase in tumor antigen recognition and tumor cell cytotoxicity [23,24,26,27,28]. In longer-term preclinical studies, the abscopal immune response associated with histotripsy was reported to decrease metastases within 20 days after histotripsy treatment [27,46,47]. A clinical trial investigating histotripsy hepatic tumor ablation observed a decrease in the growth of non-histotripsy-treated tumors in study patients [47]. Histotripsy has the potential to serve as both a primary tumor ablation modality and to stimulate an antitumor immune response. However, in the context of OS, much remains to be investigated regarding the potential of employing histotripsy ablation and the associated immunomodulatory effects.
The current study was conducted to investigate the ablative and preliminary immunological outcomes associated with histotripsy ablation of OS in the syngeneic C3H/HeN mouse and DLM8 cell line models. Ablation outcomes were evaluated histologically immediately after histotripsy and 72 h after treatment. We analyzed the expression of immune activation genes Il6, Ifnγ, Il-1β, Il10, Il13, and Pdl1 and characterized immune cell populations within the TME 72 h after treatment. We hypothesized that histotripsy ablation would result in disruption of the targeted OS tumors, yield acellular debris, and stimulate a proinflammatory immune response. Our results indicate successful targeted ablation of OS tumors and suggest that histotripsy modulates the TME, thus supporting the potential of histotripsy as a treatment modality for OS.
Funding Statement
National Institutes of Health (1R21EB030182-01, R01CA269811). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author Contributions
A.N.H.—data analysis and primary contributor for manuscript writing and revision. K.M.I.—procedure execution, data curation, data analysis, manuscript writing, and revision. A.H.-W.—procedure execution, data curation, data analysis, and manuscript revision. J.M.G.—procedure execution, data curation, data analysis, and manuscript revision. J.S.—procedure execution, data curation, and manuscript revision. A.S.—procedure execution, data curation, data analysis, and manuscript revision. V.A.L.—procedure execution, data curation, data analysis, and manuscript revision. S.C.-O.—performed all histological data curation and analysis, manuscript writing, and revision. E.V.—study design, data review, project management, and manuscript revision. I.C.A.—project conceptualization, methodology, resources, project management, and manuscript revision. J.L.T.—project conceptualization, methodology, data analysis, resources, and manuscript revision. All authors have read and agreed to the published version of the manuscript.
Institutional Review Board Statement
The animal study protocol was approved by the Institutional Review Board (or Ethics Committee) of Virginia Tech (protocol number 21-063 and approved 2021-4).
Informed Consent Statement
Not applicable.
Data Availability Statement
The data that support the findings of this study are available from the corresponding author, [J.L.T.], upon reasonable request. The data are not publicly available due to privacy.
Conflicts of Interest
Eli Vlaisavljevich has an ongoing research partnership and financial relationship with HistoSonics, Inc. No other authors have conflict of interest to report. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
References
2.
Friebele J.C., Peck J., Pan X., Abdel-Rasoul M., Mayerson J.L. Osteosarcoma: A Meta-Analysis and Review of the Literature. Am. J. Orthop. 2015;44:547–553. [PubMed] [Google Scholar]
3.
Mirabello L., Troisi R.J., Savage S.A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer. 2009;125:229–234. doi: 10.1002/ijc.24320. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4.
Nie Z., Peng H. Osteosarcoma in patients below 25 years of age: An observational study of incidence, metastasis, treatment and outcomes. Oncol. Lett. 2018;16:6502–6514. doi: 10.3892/ol.2018.9453. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5.
Moukengue B., Lallier M., Marchandet L., Baud’huin M., Verrecchia F., Ory B., Lamoureux F. Origin and Therapies of Osteosarcoma. Cancers. 2022;14:3503. doi: 10.3390/cancers14143503. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6.
Mirabello L., Troisi R.J., Savage S.A. Osteosarcoma incidence and survival rates from 1973 to 2004: Data from the Surveillance, Epidemiology, and End Results Program. Cancer. 2009;115:1531–1543. doi: 10.1002/cncr.24121. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8.
Meazza C., Scanagatta P. Metastatic osteosarcoma: A challenging multidisciplinary treatment. Expert Rev. Anticancer Ther. 2016;16:543–556. doi: 10.1586/14737140.2016.1168697. [PubMed] [CrossRef] [Google Scholar]
9.
Grinberg S.Z., Posta A., Weber K.L., Wilson R.J. Limb Salvage and Reconstruction Options in Osteosarcoma. Adv. Exp. Med. Biol. 2020;1257:13–29. doi: 10.1007/978-3-030-43032-0_2. [PubMed] [CrossRef] [Google Scholar]
10.
Yang Y., Han L., He Z., Li X., Yang S., Yang J., Zhang Y., Li D., Yang Y., Yang Z. Advances in limb salvage treatment of osteosarcoma. J. Bone Oncol. 2018;10:36–40. doi: 10.1016/j.jbo.2017.11.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11.
El Ghoneimy A.M., Shehab A.M., Farid N. What is the Cumulative Incidence of Revision Surgery and What Are the Complications Associated with Stemmed Cementless Nonextendable Endoprostheses in Patients 18 Years or Younger with Primary Bone Sarcomas About the Knee. Clin. Orthop. Relat. Res. 2022;480:1329–1338. doi: 10.1097/CORR.0000000000002150. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12.
Kaneuchi Y., Yoshida S., Fujiwara T., Evans S., Abudu A. Limb salvage surgery has a higher complication rate than amputation but is still beneficial for patients younger than 10 years old with osteosarcoma of an extremity. J. Pediatr. Surg. 2022;57:702–709. doi: 10.1016/j.jpedsurg.2022.04.001. [PubMed] [CrossRef] [Google Scholar]
13.
Tóth L., Krieg A.H., Nowakowski A.M. How much is a leg worth following radical tumor resection in bone sarcomas? Literature review. Surg. Oncol. 2022;46:101900. doi: 10.1016/j.suronc.2022.101900. [PubMed] [CrossRef] [Google Scholar]
14.
Luo Z.W., Liu P.P., Wang Z.X., Chen C.Y., Xie H. Macrophages in Osteosarcoma Immune Microenvironment: Implications for Immunotherapy. Front. Oncol. 2020;10:586580. doi: 10.3389/fonc.2020.586580. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16.
Buddingh E.P., Kuijjer M.L., Duim R.A., Bürger H., Agelopoulos K., Myklebost O., Serra M., Mertens F., Hogendoorn P.C., Lankester A.C., et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: A rationale for treatment with macrophage activating agents. Clin. Cancer Res. 2011;17:2110–2119. doi: 10.1158/1078-0432.CCR-10-2047. [PubMed] [CrossRef] [Google Scholar]
17.
Corre I., Verrecchia F., Crenn V., Redini F., Trichet V. The Osteosarcoma Microenvironment: A Complex but Targetable Ecosystem. Cells. 2020;9:976. doi: 10.3390/cells9040976. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
18.
Chen C., Xie L., Ren T., Huang Y., Xu J., Guo W. Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett. 2021;500:1–10. doi: 10.1016/j.canlet.2020.12.024. [PubMed] [CrossRef] [Google Scholar]
19.
DeRenzo C., Gottschalk S. Genetically Modified T-Cell Therapy for Osteosarcoma: Into the Roaring 2020s. Adv. Exp. Med. Biol. 2020;1257:109–131. doi: 10.1007/978-3-030-43032-0_10. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20.
Heymann M.F., Lézot F., Heymann D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell. Immunol. 2019;343:103711. doi: 10.1016/j.cellimm.2017.10.011. [PubMed] [CrossRef] [Google Scholar]
21.
Pratt H.G., Justin E.M., Lindsey B.A. Applying Osteosarcoma Immunology to Understand Disease Progression and Assess Immunotherapeutic Response. Adv. Exp. Med. Biol. 2020;1258:91–109. doi: 10.1007/978-3-030-43085-6_6. [PubMed] [CrossRef] [Google Scholar]
22.
Dubinsky T.J., Khokhlova T.D., Khokhlova V., Schade G.R. Histotripsy: The Next Generation of High-Intensity Focused Ultrasound for Focal Prostate Cancer Therapy. J. Ultrasound Med. 2020;39:1057–1067. doi: 10.1002/jum.15191. [PubMed] [CrossRef] [Google Scholar]
23.
Hendricks-Wenger A., Hutchison R., Vlaisavljevich E., Allen I.C. Immunological Effects of Histotripsy for Cancer Therapy. Front. Oncol. 2021;11:681629. doi: 10.3389/fonc.2021.681629. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24.
Hendricks-Wenger A., Sereno J., Gannon J., Zeher A., Brock R.M., Beitel-White N., Simon A., Davalos R.V., Coutermarsh-Ott S., Vlaisavljevich E., et al. Histotripsy Ablation Alters the Tumor Microenvironment and Promotes Immune System Activation in a Subcutaneous Model of Pancreatic Cancer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021;68:2987–3000. doi: 10.1109/TUFFC.2021.3078094. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
25.
Latifi M., Hay A., Carroll J., Dervisis N., Arnold L., Coutermarsh-Ott S.L., Kierski K.R., Klahn S., Allen I.C., Vlaisavljevich E., et al. Focused ultrasound tumour ablation in small animal oncology. Vet. Comp. Oncol. 2021;19:411–419. doi: 10.1111/vco.12742. [PubMed] [CrossRef] [Google Scholar]
26.
Pahk K.J., Shin C.H., Bae I.Y., Yang Y., Kim S.H., Pahk K., Kim H., Oh S.J. Boiling Histotripsy-induced Partial Mechanical Ablation Modulates Tumour Microenvironment by Promoting Immunogenic Cell Death of Cancers. Sci. Rep. 2019;9:9050. doi: 10.1038/s41598-019-45542-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
27.
Qu S., Worlikar T., Felsted A.E., Ganguly A., Beems M.V., Hubbard R., Pepple A.L., Kevelin A.A., Garavaglia H., Dib J., et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J. Immunother. Cancer. 2020;8:e000200. doi: 10.1136/jitc-2019-000200. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28.
Schade G.R., Wang Y.N., D'Andrea S., Hwang J.H., Liles W.C., Khokhlova T.D. Boiling Histotripsy Ablation of Renal Cell Carcinoma in the Eker Rat Promotes a Systemic Inflammatory Response. Ultrasound Med. Biol. 2019;45:137–147. doi: 10.1016/j.ultrasmedbio.2018.09.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29.
Singh M.P., Sethuraman S.N., Miller C., Malayer J., Ranjan A. Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint blockade therapy of poorly immunogenic tumors. Theranostics. 2021;11:540–554. doi: 10.7150/thno.49517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30.
Vidal-Jove J., Serres-Creixams X., Ziemlewicz T.J., Cannata J.M. Liver Histotripsy Mediated Abscopal Effect-Case Report. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021;68:3001–3005. doi: 10.1109/TUFFC.2021.3100267. [PubMed] [CrossRef] [Google Scholar]
31.
Vlaisavljevich E., Maxwell A., Mancia L., Johnsen E., Cain C., Xu Z. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment. Ultrasound Med. Biol. 2016;42:2466–2477. doi: 10.1016/j.ultrasmedbio.2016.05.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32.
Bader K.B., Vlaisavljevich E., Maxwell A.D. For Whom the Bubble Grows: Physical Principles of Bubble Nucleation and Dynamics in Histotripsy Ultrasound Therapy. Ultrasound Med. Biol. 2019;45:1056–1080. doi: 10.1016/j.ultrasmedbio.2018.10.035. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33.
Allam C.L., Wilkinson J.E., Cheng X., Ives K.A., Hall T.L., Roberts W.W. Histotripsy effects on the bladder trigone: Functional and histologic consequences in the canine model. J. Endourol. 2013;27:1267–1271. doi: 10.1089/end.2013.0234. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
34.
Khokhlova V.A., Fowlkes J.B., Roberts W.W., Schade G.R., Xu Z., Khokhlova T.D., Hall T.L., Maxwell A.D., Wang Y.N., Cain C.A. Histotripsy methods in mechanical disintegration of tissue: Towards clinical applications. Int. J. Hyperth. 2015;31:145–162. doi: 10.3109/02656736.2015.1007538. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35.
Vlaisavljevich E., Kim Y., Owens G., Roberts W., Cain C., Xu Z. Effects of tissue mechanical properties on susceptibility to histotripsy-induced tissue damage. Phys. Med. Biol. 2014;59:253–270. doi: 10.1088/0031-9155/59/2/253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36.
Xu Z., Hall T.L., Vlaisavljevich E., Lee F.T., Jr. Histotripsy: The first noninvasive, non-ionizing, non-thermal ablation technique based on ultrasound. Int. J. Hyperth. 2021;38:561–575. doi: 10.1080/02656736.2021.1905189. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37.
Vidal J.J., Vlaisavljevich E., Cannata J., Duryea A., Miller R., Lee F., Ziemlewicz T.J. Phase I Study of Safety and Efficacy of Hepatic Histotripsy: Preliminary Results of First in MAn Experience with Robotically-Assisted Sonic Therapy. International Society of Therapeutic Ultrasound; Barcelona, Spain: 2019. [Google Scholar]
38.
Schuster T.G., Wei J.T., Hendlin K., Jahnke R., Roberts W.W. Histotripsy Treatment of Benign Prostatic Enlargement Using the Vortx R(x) System: Initial Human Safety and Efficacy Outcomes. Urology. 2018;114:184–187. doi: 10.1016/j.urology.2017.12.033. [PubMed] [CrossRef] [Google Scholar]
39.
Messas E., Jsselmuiden A.I., Goudot G., Vlieger S., Zarka S., Puymirat E., Cholley B., Spaulding C., Hagège A.A., Marijon E., et al. Feasibility and Performance of Noninvasive Ultrasound Therapy in Patients with Severe Symptomatic Aortic Valve Stenosis: A First-in-Human Study. Circulation. 2021;143:968–970. doi: 10.1161/CIRCULATIONAHA.120.050672. [PubMed] [CrossRef] [Google Scholar]
40.
Schade G.R., Keller J., Ives K., Cheng X., Rosol T.J., Keller E., Roberts W.W. Histotripsy focal ablation of implanted prostate tumor in an ACE-1 canine cancer model. J. Urol. 2012;188:1957–1964. doi: 10.1016/j.juro.2012.07.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41.
Hendricks-Wenger A., Arnold L., Gannon J., Simon A., Singh N., Sheppard H., Nagai-Singer M.A., Imran K.M., Lee K., Clark-Deener S., et al. Histotripsy Ablation in Preclinical Animal Models of Cancer and Spontaneous Tumors in Veterinary Patients: A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2022;69:5–26. doi: 10.1109/TUFFC.2021.3110083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42.
Arnold L., Hendricks-Wenger A., Coutermarsh-Ott S., Gannon J., Hay A.N., Dervisis N., Klahn S., Allen I.C., Tuohy J., Vlaisavljevich E. Histotripsy Ablation of Bone Tumors: Feasibility Study in Excised Canine Osteosarcoma Tumors. Ultrasound Med. Biol. 2021;47:3435–3446. doi: 10.1016/j.ultrasmedbio.2021.08.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43.
Ruger L.N., Hay A.N., Gannon J.M., Sheppard H.O., Coutermarsh-Ott S.L., Daniel G.B., Kierski K.R., Ciepluch B.J., Vlaisavljevich E., Tuohy J.L. Histotripsy Ablation of Spontaneously Occurring Canine Bone Tumors In Vivo. IEEE Trans. Biomed. Eng. 2023;70:331–342. doi: 10.1109/TBME.2022.3191069. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44.
Ruger L., Yang E., Gannon J., Sheppard H., Coutermarsh-Ott S., Ziemlewicz T.J., Dervisis N., Allen I.C., Daniel G.B., Tuohy J., et al. Mechanical High-Intensity Focused Ultrasound (Histotripsy) in Dogs with Spontaneously Occurring Soft Tissue Sarcomas. IEEE Trans. Biomed. Eng. 2023;70:768–779. doi: 10.1109/TBME.2022.3201709. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45.
Worlikar T., Vlaisavljevich E., Gerhardson T., Greve J., Wan S., Kuruvilla S., Lundt J., Ives K., Hall T., Welling T.H., et al. Histotripsy for Non-Invasive Ablation of Hepatocellular Carcinoma (HCC) Tumor in a Subcutaneous Xenograft Murine Model; Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Honolulu, HI, USA. 18–21 July 2018; pp. 6064–6067. [PubMed] [CrossRef] [Google Scholar]
46.
Worlikar T., Zhang M., Ganguly A., Hall T.L., Shi J., Zhao L., Lee F.T., Mendiratta-Lala M., Cho C.S., Xu Z. Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model. Cancers. 2022;14:1612. doi: 10.3390/cancers14071612. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47.
Vidal-Jove J., Serres X., Vlaisavljevich E., Cannata J., Duryea A., Miller R., Merino X., Velat M., Kam Y., Bolduan R., et al. First-in-man histotripsy of hepatic tumors: The THERESA trial, a feasibility study. Int. J. Hyperth. 2022;39:1115–1123. doi: 10.1080/02656736.2022.2112309. [PubMed] [CrossRef] [Google Scholar]
48.
Hendricks-Wenger A., Weber P., Simon A., Saunier S., Coutermarsh-Ott S., Grider D., Vidal-Jove J., Allen I.C., Luyimbazi D., Vlaisavljevich E. Histotripsy for the Treatment of Cholangiocarcinoma Liver Tumors: In Vivo Feasibility and Ex Vivo Dosimetry Study. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2021;68:2953–2964. doi: 10.1109/TUFFC.2021.3073563. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49.
Li C., Zhang W., Fan W., Huang J., Zhang F., Wu P. Noninvasive treatment of malignant bone tumors using high-intensity focused ultrasound. Cancer. 2010;116:3934–3942. doi: 10.1002/cncr.25192. [PubMed] [CrossRef] [Google Scholar]
50.
Scipione R., Anzidei M., Bazzocchi A., Gagliardo C., Catalano C., Napoli A. HIFU for Bone Metastases and other Musculoskeletal Applications. Semin. Intervent. Radiol. 2018;35:261–267. doi: 10.1055/s-0038-1673363. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51.
Wang Y., Wang W., Tang J. Primary malignant tumours of the bony pelvis: US-guided high intensity focused ultrasound ablation. Int. J. Hyperth. 2013;29:683–687. doi: 10.3109/02656736.2013.840806. [PubMed] [CrossRef] [Google Scholar]
52.
Yu W., Tang L., Lin F., Yao Y., Shen Z., Zhou X. High-intensity focused ultrasound: Noninvasive treatment for local unresectable recurrence of osteosarcoma. Surg. Oncol. 2015;24:9–15. doi: 10.1016/j.suronc.2014.10.001. [PubMed] [CrossRef] [Google Scholar]
53.
Martin C.H., Martin R.C.G. Optimal Dosing and Patient Selection for Electrochemotherapy in Solid Abdominal Organ and Bone Tumors. Bioengineering. 2023;10:975. doi: 10.3390/bioengineering10080975. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
54.
Locquet M.A., Brahmi M., Blay J.Y., Dutour A. Radiotherapy in bone sarcoma: The quest for better treatment option. BMC Cancer. 2023;23:742. doi: 10.1186/s12885-023-11232-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
55.
Taher M.Y., Davies D.M., Maher J. The role of the interleukin (IL)-6/IL-6 receptor axis in cancer. Biochem. Soc. Trans. 2018;46:1449–1462. doi: 10.1042/BST20180136. [PubMed] [CrossRef] [Google Scholar]
57.
Eranki A., Srinivasan P., Ries M., Kim A., Lazarski C.A., Rossi C.T., Khokhlova T.D., Wilson E., Knoblach S.M., Sharma K.V., et al. High-Intensity Focused Ultrasound (HIFU) Triggers Immune Sensitization of Refractory Murine Neuroblastoma to Checkpoint Inhibitor Therapy. Clin. Cancer Res. 2020;26:1152–1161. doi: 10.1158/1078-0432.CCR-19-1604. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58.
Dumars C., Ngyuen J.M., Gaultier A., Lanel R., Corradini N., Gouin F., Heymann D., Heymann M.F. Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma. Oncotarget. 2016;7:78343–78354. doi: 10.18632/oncotarget.13055. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
59.
Gomez-Brouchet A., Illac C., Gilhodes J., Bouvier C., Aubert S., Guinebretiere J.M., Marie B., Larousserie F., Entz-Werlé N., de Pinieux G., et al. CD163-positive tumor-associated macrophages and CD8-positive cytotoxic lymphocytes are powerful diagnostic markers for the therapeutic stratification of osteosarcoma patients: An immunohistochemical analysis of the biopsies fromthe French OS2006 phase 3 trial. Oncoimmunology. 2017;6:e1331193. doi: 10.1080/2162402x.2017.1331193. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61.
DeVito N.C., Plebanek M.P., Theivanthiran B., Hanks B.A. Role of Tumor-Mediated Dendritic Cell Tolerization in Immune Evasion. Front. Immunol. 2019;10:2876. doi: 10.3389/fimmu.2019.02876. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63.
Kramer E.D., Abrams S.I. Granulocytic Myeloid-Derived Suppressor Cells as Negative Regulators of Anticancer Immunity. Front. Immunol. 2020;11:1963. doi: 10.3389/fimmu.2020.01963. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Articles from Biomedicines are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)
Plaats een reactie ...
Reageer op "Histotripsy, een vorm van Ultra Sound met gepulseerde geluidsgolven gericht op gasbellen in tumorweefsel is ook succesvol bij osteosarcomen in dierstudies."