Helpt u ons aan 500 donateurs?

17 mei 2019: Lees ook dit artikel: 

https://kanker-actueel.nl/immuuntherapie-met-atezolizumab-plus-avestin-bevacizumab-geeft-betere-progressievrije-ziekte-en-overall-overleving-dan-sunitinib-bij-patienten-met-gevorderde-uitgezaaide-nierkanker.html

4 maart 2019: lees ook dit artikel: 

https://kanker-actueel.nl/immuuntherapie-met-axitinib-inlyta-en-pembrolizumab-keytruda-bij-gevorderde-nog-onbehandelde-nierkanker-verdubbelt-progressievrije-ziekte-10-vs-20-maanden.html

20 februari 2018: Lees ook dit artikel van het Zorginstituut: 

https://www.zorginstituutnederland.nl/actueel/nieuws/2018/02/05/verbetersignalement-niercelkanker-toont-aan-betere-inzet-kankermedicijnen-mogelijk

29 oktober 2017: Bron: Annals of Oncology, Volume 28, Issue suppl_5, 1 September 2017

Immuuntherapie met rocapuldencel-T (AGS-003) een vorm van gepersonaliseerde dendritische celtherapie met stimulatie van de T-cellen voor nieuw gediagnosteerde patiënten met reeds uitgezaaide niercelkanker is al eerder door de FDA goedgekeurd nadat uitstekende resultaten uit de fase II en fase III studie (ADAPT studie) waren aangetoond. De ADAPT studie werd gestopt met het werven van patiënten nadat de statistische significantie was bereikt. Maar de onderzoekers bleven / blijven de patiënten wel volgen om een overall overlevingsvergelijking te kunnen maken met beste zorg.

nierkanker 2

Afgelopen week werden weer tussenevaluaties opgemaakt en gepubliceerd in Annals of Oncology. En daarin werden de eerdere resultaten bevestigd:

De mediane duur van deze follow-up presentatie was 20 maanden of langer en meer dan de helft van de patiënten leefde nog in beide groepen, dus ook die in de groep van beste zorg). Data van de eerste groep patiënten, een derde van de totale groep patiënten  (n = 154), en daarvoor de langste tijd zijn gevolgd suggereert een statistisch significant verschil in potentiële overall overleving voor de groep die rocapuldencel-T kreeg.

Aanvullend werd een statistisch significant verschil gezien voor de stijging van de door de rocapuldencel-T aanpak aangemaakte T cellen (CD8+/CD28+/CD45RA-) en betere overall overleving voor die patiënten die  7 doses van de rocapuldencel-T cellen hadden gekregen (n = 114).

Deze resultaten coresponderen met de resultaten uit 2015 van een fase II studie bij 13 patienten die na sunitinib immmuuntherapie hadden gekregen met dendritische celtherapie met toen nog onder codenaam AGS-003 de rocapuldencel-T aanpak

Figure 2

An external file that holds a picture, illustration, etc.
Object name is 40425_2015_55_Fig2_HTML.jpg

Overall survival. Kaplan-Meier estimates of overall survival (months) for all patients and by patients in Heng intermediate and poor risk factor groups. Similar results were obtained for MSKCC intermediate (39.5 months) and poor (7.9 months) risk factor group.

In de fase III ADAPT studie zijn tussen februari 2013 en oktober 2015 462 patiënten die bij de diagnose al uitgezaaide nierkanker hadden gerandomiseerd ingedeeld in een 2:1 verhouding tussen immuuntherapie met rocapuldencel-T (AGS-003) of beste zorg. Nadat 75% van de beoogde sterfgevallen waren bereikt en een statistisch significant verschil was bereikt met de beste zorggroep  (0.98) werd de studie stopgezet.

Maar met de FDA werd afgesproken om de patiënten wel te blijven volgen.

Hieronder het persbericht / abstract van de interim analyse: Interim analysis of the phase 3 ADAPT trial evaluating rocapuldencel-T (AGS-003), an individualized immunotherapy for the treatment of newly-diagnosed patients with metastatic renal cell carcinoma (mRCC)

en het abstract van het volledige studierapport: Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results die gedetailleerd beschrijft hoe immuuntherapie met rocapuldencel-T (AGS-003) wordt toegediend.

AGS-003 in combination with sunitinib was well tolerated and yielded supportive immunologic responses coupled with extension of median and long-term survival in an unselected, intermediate and poor risk prognosis mRCC population.

J Immunother Cancer. 2015; 3: 14.
Published online 2015 Apr 21. doi:  10.1186/s40425-015-0055-3
PMCID: PMC4404644

Survival with AGS-003, an autologous dendritic cell–based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results

Asim Amin,corresponding author Arkadiusz Z Dudek, Theodore F Logan, Raymond S Lance, Jeffrey M Holzbeierlein, Jennifer J Knox, Viraj A Master, Sumanta K Pal, Wilson H Miller, Jr, Lawrence I Karsh, Irina Y Tcherepanova, Mark A DeBenedette, W Lee Williams, Douglas C Plessinger, Charles A Nicolette, and Robert A Figlincorresponding author

Abstract

Background

AGS-003 is an autologous immunotherapy prepared from fully matured and optimized monocyte-derived dendritic cells, which are co-electroporated with amplified tumor RNA plus synthetic CD40L RNA. AGS-003 was evaluated in combination with sunitinib in an open label phase 2 study in intermediate and poor risk, treatment naïve patients with metastatic clear cell renal cell carcinoma (mRCC).

Methods

Twenty-one intermediate and poor risk patients were treated continuously with sunitinib (4 weeks on, 2 weeks off per 6 week cycle). After completion of the first cycle of sunitinib, patients were treated with AGS-003 every 3 weeks for 5 doses, then every 12 weeks until progression or end of study. The primary endpoint was to determine the complete response rate. Secondary endpoints included clinical benefit, safety, progression free survival (PFS) and overall survival (OS). Immunologic response was also monitored.

Results

Thirteen patients (62%) experienced clinical benefit (9 partial responses, 4 with stable disease); however there were no complete responses in this group of intermediate and poor risk mRCC patients and enrollment was terminated early. Median PFS from registration was 11.2 months (95% CI 6.0, 19.4) and the median OS from registration was 30.2 months (95% CI 9.4, 57.1) for all patients. Seven (33%) patients survived for at least 4.5 years, while five (24%) survived for more than 5 years, including 2 patients who remain progression-free with durable responses for more than 5 years at the time of this report. AGS-003 was well tolerated with only mild injection-site reactions. The most common adverse events were related to expected toxicity from sunitinib therapy. In patients who had sequential samples available for immune monitoring, the magnitude of the increase in the absolute number of CD8+ CD28+ CD45RA effector/memory T cells (CTLs) after 5 doses of AGS-003 relative to baseline, correlated with overall survival.

Conclusions

AGS-003 in combination with sunitinib was well tolerated and yielded supportive immunologic responses coupled with extension of median and long-term survival in an unselected, intermediate and poor risk prognosis mRCC population.

Clinical Trial Registry

#NCT00678119

Interim analysis of the phase 3 ADAPT trial evaluating rocapuldencel-T (AGS-003), an individualized immunotherapy for the treatment of newly-diagnosed patients with metastatic renal cell carcinoma (mRCC)

Annals of Oncology, Volume 28, Issue suppl_5, 1 September 2017, mdx376.003, https://doi.org/10.1093/annonc/mdx376.003
Published:
18 September 2017

Methods: The Phase 3 ADAPT trial was designed to evaluate overall survival (OS) of rocapuldencel-T in combination (Combo) with standard-of-care (SOC) for the treatment of newly diagnosed mRCC as compared to SOC alone (Control). It included adults with synchronous, clear cell mRCC who were eligible for nephrectomy at 107 sites across North America, Europe and Israel.

Results: 462 patients were randomized 2:1 from February 2013 - October 2015. In February 2017, an interim analysis by the Independent Data Monitoring Committee after 75% of the targeted number of 290 events (deaths) prompted a recommendation to stop the trial because the OS hazard ratio was greater than the pre-defined futility boundary (0.98) for the 3rd interim assessment. However, in consultation with investigators and the FDA, the sponsor has continued the trial due to the still maturing survival data, the mechanism of action of rocapuldencel-T, which involves the induction of long-term memory immune responses, and its’ safety profile. The median duration of follow-up was 20 months and more than half the patients in both treatment groups were still alive. Data from the first third of patients randomized (n = 154), and, therefore the longest follow up time and least censored data (44%), suggest a potential survival benefit for the combination worthy of further assessment. Additionally, a statistically significant correlation was observed between the increase in the number of rocapuldencel-T induced memory T cells (CD8+/CD28+/CD45RA-) and OS in patients for whom data has been analyzed and 7 doses of rocapuldencel-T has been administered (n = 114). Updated long-term response and immune data will be presented.

Conclusions: The ADAPT trial is ongoing to further assess the long-term effects of this well-tolerated individualized immunotherapy.

Clinical trial identification: NCT01582672

Legal entity responsible for the study: Argos Therapeutics

Funding: Argos Therapeutics

Disclosure: R. Figlin: Institution receives research funding. C. Nicolette, M. Debenedette, T. Monesmith, W. Tan, S. Leland: Employee of Argos Therapeutics. N. Tannir: Grants and/or personal fees and non-financial support from Bristol-Myers Squibb, Exelixis, Nektar, Pfizer, Argos, Calithera, Epizyme, Miranti, outside the submitted work. All other authors have declared no conflicts of interest.

References

1. Singer EA, Gupta GN, Srinivasan R. Targeted therapeutic strategies for the management of renal cell carcinoma. Curr Opin Oncol. 2012;24(3):284–290. doi: 10.1097/CCO.0b013e328351c646. [PMC free article] [PubMed] [Cross Ref]
2. Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int. 2011;108(10):1556–1563. doi: 10.1111/j.1464-410X.2011.10629.x. [PubMed] [Cross Ref]
3. Albiges L, Oudard S, Negrier S, Caty A, Gravis G, Joly F, Duclos B, Geoffrois L, Rolland F, Guillot A, Laguerre B, Legouffe E, Kohser F, Dietrich PY, Theodore CA, Escudier B. Complete remission with tyrosine kinase inhibitors in renal cell carcinoma. J Clin Oncol. 2012;30(5):482–487. doi: 10.1200/JCO.2011.37.2516. [PubMed] [Cross Ref]
4. Gore ME, Larkin JM. Challenges and opportunities for converting renal cell carcinoma into a chronic disease with targeted therapies. Br J Cancer. 2011;104(3):399–406. doi: 10.1038/sj.bjc.6606084. [PMC free article] [PubMed] [Cross Ref]
5. George S, Pili R, Carducci MA, Kim JJ. Role of immunotherapy for renal cell cancer in 2011. J Natl Compr Canc Netw. 2011;9(9):1011–1018. [PMC free article] [PubMed]
6. Atkins MB. Treatment selection for patients with metastatic renal cell carcinoma: identification of features favoring upfront IL-2-based immunotherapy. Med Oncol. 2009;26(Suppl 1):18–22. doi: 10.1007/s12032-008-9148-x. [PubMed] [Cross Ref]
7. Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, Fay J, Palucka AK. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci. 2003;987:180–187. doi: 10.1111/j.1749-6632.2003.tb06047.x. [PubMed] [Cross Ref]
8. Tacken P, De Vries I, Torensma R, Figdor C, Tacken PJ, De Vries IJM, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 2007;10:790–802. doi: 10.1038/nri2173. [PubMed] [Cross Ref]
9. Calderhead D, Hedgepeth A, Ketteringham H, Horvatinovich J, Nicolette C, Healey D. Development of CD4+ independent CD8+ CTL activity in vitro by transfection of CD154 (CD40 ligand) mRNA into dendritic cells. Keystone Symposia on Molecular and Cellular Biology. February 1-7, 2005. Vancouver, BC. Poster presentation.
10. Calderhead DM, DeBenedette MA, Ketteringham H, Gamble AH, Horvatinovich JM, Tcherepanova IY, Nicolette CA, Healey DG. Cytokine maturation followed by CD40L mRNA electroporation results in a clinically relevant dendritic cell product capable of inducing a potent proinflammatory CTL response. J Immunother. 2008;31(8):731–741. doi: 10.1097/CJI.0b013e318183db02. [PubMed] [Cross Ref]
11. DeBenedette MA, Calderhead DM, Ketteringham H, Gamble AH, Horvatinovich JM, Tcherepanova IY, Nicolette CA, Healey DG. Priming of a novel subset of CD28+ rapidly expanding high-avidity effector memory CTL by post maturation electroporation-CD40L dendritic cells is IL-12 dependent. J Immunol. 2008;181(8):5296–5305. doi: 10.4049/jimmunol.181.8.5296. [PubMed] [Cross Ref]
12. DeBenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother. 2011;34(1):45–57. doi: 10.1097/CJI.0b013e3181fb651a. [PubMed] [Cross Ref]
13. Logan TF, Gardner TA, Amin A, Cohen V, Wong MKK, Master VA, et al. Phase 1/2 Study of AGS-003, a personalized immunotherapeutic evaluated in newly diagnosed metastatic renal cell carcinoma subjects. J Clin Oncol. 2010:28 (suppl; abstr 379).
14. Heiser A, Dahm P, Yancey DR, Maurice MA, Boczkowski D, Nair SK, Gilboa E, Vieweg J. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J Immunol. 2000;164(10):5508–5514. doi: 10.4049/jimmunol.164.10.5508. [PubMed] [Cross Ref]
15. Mitchell DA, Nair SK. RNA transfected dendritic cells as cancer vaccines. Curr Opin Mol Ther. 2000;2(2):176–181. [PubMed]
16. Mitchell DA, Nair SK. RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. 2000;106(9):1065–1069. doi: 10.1172/JCI11405. [PMC free article] [PubMed] [Cross Ref]
17. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005;115(12):3623–3633. doi: 10.1172/JCI25947. [PMC free article] [PubMed] [Cross Ref]
18. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P, Golshayan A, Rayman PA, Wood L, Garcia J, Dreicer R, Bukowski R, Finke JH. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res. 2009;15(6):2148–2157. doi: 10.1158/1078-0432.CCR-08-1332. [PubMed] [Cross Ref]
19. Finke JH, Rini B, Ireland J, Rayman P, Richmond A, Golshayan A, Wood L, Elson P, Garcia J, Dreicer R, Bukowski R. Sunitinib reverses type-1 immune suppression and decreases T-regulatory cells in renal cell carcinoma patients. Clin Cancer Res. 2008;14(20):6674–6682. doi: 10.1158/1078-0432.CCR-07-5212. [PubMed] [Cross Ref]
20. Vieweg J, Su Z, Dahm P, Kusmartsev S. Reversal of tumor-mediated immunosuppression. Clin Cancer Res. 2007;13(2 Pt 2):727s–732s. doi: 10.1158/1078-0432.CCR-06-1924. [PubMed] [Cross Ref]
21. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kubler H, Yancey D, Dahm P, Vieweg J. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res. 2008;14(24):8270–8278. doi: 10.1158/1078-0432.CCR-08-0165. [PubMed] [Cross Ref]
22. Ko JJ, Choueiri TK, Rini BI, Lee JL, Kroeger N, Srinivas S, Harshman LC, Knox JJ, Bjarnason GA, MacKenzie MJ, Wood L, Vaishampayan UN, Agarwal N, Pal SK, Tan MH, Rha SY, Yuasa T, Donskov F, Bamias A, Heng DY. First-, second-, third-line therapy for mRCC: benchmarks for trial design from the IMDC. Br J Cancer. 2014;110(8):1917–1922. doi: 10.1038/bjc.2014.25. [PMC free article] [PubMed] [Cross Ref]
23. Motzer RJ, Escudier B, Bukowski R, Rini BI, Hutson TE, Barrios CH, Lin X, Fly K, Matczak E, Gore ME. Prognostic factors for survival in 1059 patients treated with sunitinib for metastatic renal cell carcinoma. Br J Cancer. 2013;108(12):2470–2477. doi: 10.1038/bjc.2013.236. [PMC free article] [PubMed] [Cross Ref]
24. Motzer RJ, Bacik J, Murphy BA, Russo P, Mazumdar M. Interferon-alfa as a comparative treatment for clinical trials of new therapies against advanced renal cell carcinoma. J Clin Oncol. 2002;20(1):289–296. doi: 10.1200/JCO.20.1.289. [PubMed] [Cross Ref]
25. Heng DY, Xie W, Regan MM, Warren MA, Golshayan AR, Sahi C, Eigl BJ, Ruether JD, Cheng T, North S, Venner P, Knox JJ, Chi KN, Kollmannsberger C, McDermott DF, Oh WK, Atkins MB, Bukowski RM, Rini BI, Choueiri TK. Prognostic factors for overall survival in patients with metastatic renal cell carcinoma treated with vascular endothelial growth factor-targeted agents: results from a large, multicenter study. J Clin Oncol. 2009;27(34):5794–5799. doi: 10.1200/JCO.2008.21.4809. [PubMed] [Cross Ref]
26. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C, Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–124. doi: 10.1056/NEJMoa065044. [PubMed] [Cross Ref]
27. Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S, Escudier B. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 2014;32(8):752–759. doi: 10.1200/JCO.2013.50.5305. [PubMed] [Cross Ref]
28. Patel PH, Senico PL, Curiel RE, Motzer RJ. Phase I study combining treatment with temsirolimus and sunitinib malate in patients with advanced renal cell carcinoma. Clin Genitourin Cancer. 2009;7(1):24–27. doi: 10.3816/CGC.2009.n.004. [PMC free article] [PubMed] [Cross Ref]
29. Molina AM, Feldman DR, Voss MH, Ginsberg MS, Baum MS, Brocks DR, Fischer PM, Trinos MJ, Patil S, Motzer RJ. Phase 1 trial of everolimus plus sunitinib in patients with metastatic renal cell carcinoma. Cancer. 2012;118(7):1868–1876. doi: 10.1002/cncr.26429. [PMC free article] [PubMed] [Cross Ref]
30. Feldman DR, Baum MS, Ginsberg MS, Hassoun H, Flombaum CD, Velasco S, Fischer P, Ronnen E, Ishill N, Patil S, Motzer RJ. Phase I trial of bevacizumab plus escalated doses of sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(9):1432–1439. doi: 10.1200/JCO.2008.19.0108. [PMC free article] [PubMed] [Cross Ref]
31. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S, Negrier S, Szczylik C, Pili R, Bjarnason GA, Garcia-del-Muro X, Sosman JA, Solska E, Wilding G, Thompson JA, Kim ST, Chen I, Huang X, Figlin RA. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol. 2009;27(22):3584–3590. doi: 10.1200/JCO.2008.20.1293. [PMC free article] [PubMed] [Cross Ref]
32. Motzer RJ, Hutson TE, Olsen MR, Hudes GR, Burke JM, Edenfield WJ, Wilding G, Agarwal N, Thompson JA, Cella D, Bello A, Korytowsky B, Yuan J, Valota O, Martell B, Hariharan S, Figlin RA. Randomized phase II trial of sunitinib on an intermittent versus continuous dosing schedule as first-line therapy for advanced renal cell carcinoma. J Clin Oncol. 2012;30(12):1371–1377. doi: 10.1200/JCO.2011.36.4133. [PubMed] [Cross Ref]
33. Nishino M, Jagannathan JP, Krajewski KM, O'Regan K, Hatabu H, Shapiro G, Ramaiya NH. Personalized tumor response assessment in the era of molecular medicine: cancer-specific and therapy-specific response criteria to complement pitfalls of RECIST. AJR Am J Roentgenol. 2012;198(4):737–745. doi: 10.2214/AJR.11.7483. [PMC free article] [PubMed] [Cross Ref]
34. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723. doi: 10.1056/NEJMoa1003466. [PMC free article] [PubMed] [Cross Ref]
35. Lebbe C, Weber JS, Maio M, Neyns B, Harmankaya K, Hamid O, et al. Survival follow-up and ipilimumab retreatment for patients with advanced melanoma who received ipilimumab in prior phase II studies. Ann Oncol 2014, Sep 10. [Epub ahead of print]. [PMC free article] [PubMed]
36. Feau S, Arens R, Togher S, Schoenberger SP. Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat Immunol. 2011;12(9):908–913. doi: 10.1038/ni.2079. [PMC free article] [PubMed] [Cross Ref]
37. Porta C, Bonomi L, Lillaz B, Paglino C, Rovati B, Imarisio I, Morbini P, Villa C, Danova M, Mensi M, Rovereto B. Renal cell carcinoma-induced immunosuppression: an immunophenotypic study of lymphocyte subpopulations and circulating dendritic cells. Anticancer Res. 2007;27(1A):165–173. [PubMed]
38. Ma Y, Shurin GV, Peiyuan Z, Shurin MR. Dendritic cells in the cancer microenvironment. J Cancer. 2013;4(1):36–44. doi: 10.7150/jca.5046. [PMC free article] [PubMed] [Cross Ref]
39. Knutson KL, Disis ML, Salazar LG. CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother. 2007;56(3):271–285. doi: 10.1007/s00262-006-0194-y. [PubMed] [Cross Ref]
40. Lee AW, Truong T, Bickham K, Fonteneau JF, Larsson M, Da Silva I, Somersan S, Thomas EK, Bhardwaj N. A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine. 2002;20(Suppl 4):A8–A22. doi: 10.1016/S0264-410X(02)00382-1. [PubMed] [Cross Ref]
41. Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G, Lagorce C, Wind P, Marliot F, Bruneval P, Zatloukal K, Trajanoski Z, Berger A, Fridman WH, Galon J. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009;27(35):5944–5951. doi: 10.1200/JCO.2008.19.6147. [PubMed] [Cross Ref]
42. Perret R, Ronchese F. Memory T cells in cancer immunotherapy: which CD8 T-cell population provides the best protection against tumours? Tissue Antigens. 2008;72(3):187–194. doi: 10.1111/j.1399-0039.2008.01088.x. [PubMed] [Cross Ref]
43. Klebanoff CA, Gattinoni L, Restifo NP. CD8+ T-cell memory in tumor immunology and immunotherapy. Immunol Rev. 2006;211:214–224. doi: 10.1111/j.0105-2896.2006.00391.x. [PMC free article] [PubMed] [Cross Ref]
44. Kollmannsberger C, Bjarnason G, Burnett P, Creel P, Davis M, Dawson N, Feldman D, George S, Hershman J, Lechner T, Potter A, Raymond E, Treister N, Wood L, Wu S, Bukowski R. Sunitinib in metastatic renal cell carcinoma: recommendations for management of noncardiovascular toxicities. Oncologist. 2011;16(5):543–553. doi: 10.1634/theoncologist.2010-0263. [PMC free article] [PubMed] [Cross Ref]
45. Niraula S, Seruga B, Ocana A, Shao T, Goldstein R, Tannock IF, Amir E. The price we pay for progress: A meta-analysis of harms of newly approved anticancer drugs. J Clin Oncol. 2012;30:3012–3019. doi: 10.1200/JCO.2011.40.3824. [PubMed] [Cross Ref]
46. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000;92(3):205–216. doi: 10.1093/jnci/92.3.205. [PubMed] [Cross Ref]
47. Slagter-Jager JG, Raney A, Lewis WE, Debenedette MA, Nicolette CA, Tcherepanova IY. Evaluation of RNA Amplification Methods to Improve DC Immunotherapy Antigen Presentation and Immune Response. Mol Ther Nucleic Acids. 2013;2:e91. doi: 10.1038/mtna.2013.18. [PMC free article] [PubMed] [Cross Ref]
48. Tcherepanova I, Harris J, Starr A, Cleveland J, Ketteringham H, Calderhead D, Horvatinovich J, Healey D, Nicolette CA. Multiplex RT-PCR amplification of HIV genes to create a completely autologous DC-based immunotherapy for the treatment of HIV infection. PLoS One. 2008;3(1):e1489. doi: 10.1371/journal.pone.0001489. [PMC free article] [PubMed] [Cross Ref]

Articles from Journal for Immunotherapy of Cancer are provided here courtesy of BioMed Central

Plaats een reactie ...

Reageer op "Immuuntherapie met rocapuldencel-T (AGS-003), een vorm van dendritische celtherapie met individuele T-cel stimulatie geeft uitstekende resultaten bij nieuwe patienten met uitgezaaide nierkanker"


Gerelateerde artikelen
 

Gerelateerde artikelen

Specificiteit van het menselijk >> Immuuntherapie met pembrolizumab >> Cabozantinib toegevoegd aan >> Immuuncheckpointremmers nivolumab >> Clostridium butyricum (CBM >> Immuuntherapie met avelumab >> Combinatiebehandelingen met >> Immuuntherapie met combinatiebehandeling >> NLR meting - veranderende >> Immuuntherapie met Atezolizumab >>