Mocht u de informatie op onze website kanker-actueel.nl waarderen dan wilt u ons misschien ondersteunen met een donatie

Ons rekeningnummer is: RABO 37.29.31.138 t.n.v. Stichting Gezondheid Actueel in Terneuzen. 

Onze IBANcode is NL79 RABO 0372 9311 38

Als donateur kunt u ook korting krijgen bij verschillende bedrijven.

En we hebben een ANBI status

Update 6 december 2020: Bron: . 2017 Sep; 13(9): e1005758.

Vormen van kanker met een K-ras mutatie zijn heel moeilijk te behandelen met de tot nu toe beschikbare behandelingen voor vormen van kanker. Zelfs immuuntherapie heeft nauwelijks effect bij deze vormen van kanker waaronder vooral bij alvleesklierkanker en longkanker en bepaalde vormen van darmkanker deze K-ras mutaties voorkomen. 

Uit onderstaande studies blijkt dat vooral glucose en glutamine hierin een grote rol spelen omdat die een cruciale rol spelen in het apoptoseproces van cellen.

Uit Wikipedia: Apoptose is het proces van geprogrammeerde celdood dat plaatsvindt in meercellige organismen.[1] Apoptose is een normale cellulaire respons die onder meer belangrijk is voor de vroege ontwikkeling van een individu. Tijdens apoptose vinden er binnen de cel verschillende biochemische processen plaats die ervoor zorgen dat de cel zichzelf vernietigt en het DNA gefragmenteerd wordt. Gemiddeld genomen verliest een volwassen mens elke dag tussen de 50 en 70 miljard cellen door middel van apoptose.[2]

Prof. dr. Otto Warburg benoemde dit proces al in zijn wetenschappelijke onderzoeken waarvoor hij de Nobelprijs kreeg. Engelbert Valstar wees me erop dat dr. Otto Warburg alleen veel onderzoek heeft gedaan naar glucose. Over de rol van glutamine is pas later wetenschappelijk bewijs gekomen. Zo ook wees hij me erop dat glucose een rol bij in principe alle vormen van kanker, ook bij die vormen van kanker die wel gevoelig zijn voor reguliere behandelingen. 

Hier de twee studies, maar in referenties staan nog veel meer studies gerelateerd aan dit onderwerp.

Studie 1 is: A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect

Studie 2 is: Oncogenic K‐Ras decouples glucose and glutamine metabolism to support cancer cell growth

In deze studie is in het abstract een synopsis opgenomen met verwijzingen naar verschillende studies: 

Synopsis

De ras- en myc-oncogenen stimuleren pleiotrope veranderingen in celsignalering, opname van voedingsstoffen en intracellulair metabolisme (Chiaradonna et al, 2006bYuneva et al, 2007Wise et al, 2008Vander Heiden et al, 2009). Gemuteerde ras-eiwitten, geïdentificeerd in 25% van de menselijke kankers (Bos, 1989; Downward, 2003), correleren met een verhoogde glucoseconsumptie, lactaataccumulatie, veranderde expressie van mitochondriale genen, verhoogde ROS-productie en verminderde mitochondriale activiteit (Bos, 1989Downward, 2003Vizan et al, 2005Chiaradonna et al, 2006aYun et al, 2009Baracca et al, 2010Weinberg et al, 2010). Bovendien zijn K-Ras-getransformeerde kankercellen afhankelijk van de beschikbaarheid van glucose en glutamine, aangezien hun terugtrekking respectievelijk apoptose en celcyclusstilstand induceert.(Ramanathan et al, 2005Telang et al, 2006Yun et al, 2009). De precieze metabole effecten afkomend van oncogene Ras-signalering, evenals de mechanismen waarmee intracellulaire veranderingen in het glucose- en glutaminemetabolisme worden beïnvloed zijn echter niet volledig opgehelderd.

Het is voor een leek waarschijnlijk moeilijk te begrijpen allemaal maar kern van genoemde studies is dat glucose en glutamine blijkbaar een cruciale rol spelen in het ontstaan van K-ras gemuteerde kankercellen. Arts-bioloog drs. Engelbert Valstar vertelde mij dat bv ook bepaalde abstracten van medicinale paddenstoelen hierin een rol kunnen spelen. En veel bekende diëten wijzen op het minimale gebruik van suiker en suikerhoudende voeding. 

Hier de 2 abstracten:

. 2017 Sep; 13(9): e1005758.
Published online 2017 Sep 28. doi: 10.1371/journal.pcbi.1005758
PMCID: PMC5634631
PMID: 28957320

A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: The WarburQ effect

Chiara Damiani, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing,1,2 Riccardo Colombo, Software, Visualization,1,2 Daniela Gaglio, Investigation,1,3 Fabrizia Mastroianni, Investigation,1,4 Dario Pescini, Software, Visualization,1,5 Hans Victor Westerhoff, Methodology, Writing – original draft, Writing – review & editing,6,7,8 Giancarlo Mauri, Software,1,2 Marco Vanoni, Conceptualization, Writing – original draft, Writing – review & editing,1,4,* and Lilia Alberghina, Conceptualization, Writing – original draft, Writing – review & editing1,4,*
Daniel A Beard, Editor

Abstract

Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth.

Author summary

Hallmarks describing common key events in initiation, maintenance and progression of cancer have been identified. One hallmark deals with rewiring of metabolic reactions required to sustain enhanced cell proliferation. The availability of molecular, mechanistic models of cancer hallmarks will mightily improve optimized personal treatment and new drug discovery. Metabolism is the only hallmark for which it is currently possible to derive large scale mathematical models, which have predictive ability. In this paper, we exploit a constraint-based model of the core metabolism required for biomass conversion of the most relevant nutrients—glucose and glutamine—to clarify the logic of control of cancer metabolism. We newly report that, when available oxygen is not sufficient to fully oxidize available glucose and glutamine carbons–a situation compatible with that observed under normal oxygen conditions in human and in cancer cells growing in vitro

Oncogenic K‐Ras decouples glucose and glutamine metabolism to support cancer cell growth

Mol Syst Biol (2011)7:523https://doi.org/10.1038/msb.2011.56

Present address: Department of Bioengineering, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA

Oncogenes such as K‐ras mediate cellular and metabolic transformation during tumorigenesis. To analyze K‐Ras‐dependent metabolic alterations, we employed 13C metabolic flux analysis (MFA), non‐targeted tracer fate detection (NTFD) of 15N‐labeled glutamine, and transcriptomic profiling in mouse fibroblast and human carcinoma cell lines. Stable isotope‐labeled glucose and glutamine tracers and computational determination of intracellular fluxes indicated that cells expressing oncogenic K‐Ras exhibited enhanced glycolytic activity, decreased oxidative flux through the tricarboxylic acid (TCA) cycle, and increased utilization of glutamine for anabolic synthesis. Surprisingly, a non‐canonical labeling of TCA cycle‐associated metabolites was detected in both transformed cell lines. Transcriptional profiling detected elevated expression of several genes associated with glycolysis, glutamine metabolism, and nucleotide biosynthesis upon transformation with oncogenic K‐Ras. Chemical perturbation of enzymes along these pathways further supports the decoupling of glycolysis and TCA metabolism, with glutamine supplying increased carbon to drive the TCA cycle. These results provide evidence for a role of oncogenic K‐Ras in the metabolic reprogramming of cancer cells.

Synopsis

The ras and myc oncogenes drive pleiotropic changes in cell signaling, nutrient uptake, and intracellular metabolism (Chiaradonna et al, 2006bYuneva et al, 2007Wise et al, 2008Vander Heiden et al, 2009). Mutated ras proteins, identified in 25% of human cancers (Bos, 1989Downward, 2003), correlate with an increased rate of glucose consumption, lactate accumulation, altered expression of mitochondrial genes, increased ROS production, and reduced mitochondrial activity (Bos, 1989Downward, 2003Vizan et al, 2005Chiaradonna et al, 2006aYun et al, 2009Baracca et al, 2010Weinberg et al, 2010). Furthermore, K‐Ras transformed cancer cells are dependent upon glucose and glutamine availability, since their withdrawal induces apoptosis and cell‐cycle arrest, respectively (Ramanathan et al, 2005Telang et al, 2006Yun et al, 2009). However, the precise metabolic effects downstream of oncogenic Ras signaling as well as the mechanisms by which intracellular glucose and glutamine metabolism change have not been completely elucidated.

In this report, we have investigated the reprogramming of central carbon metabolism in cancer cells and its regulation by the K‐ras oncogene, applying a systems level approach using 13C metabolic flux analysis (MFA), non‐targeted tracer fate detection (NTFD), and transcriptional profiling. These data reveal a coordinated decoupling of glycolysis and the tricarboxylic acid (TCA) cycle. K‐Ras transformed mouse and human cells exhibited a high glucose to lactate flux and relatively lower oxidative metabolism of pyruvate. Such changes were supported by increased expression of glycolytic genes as well as several pyruvate dehydrogenase kinases. In contrast to glucose, the contribution of glutamine carbon to TCA cycle intermediates through both oxidative and reductive metabolism was significantly increased upon K‐Ras transformation. Despite this increase in glutamine anaplerosis, oxidative TCA flux was significantly decreased. Additionally, we observed elevated levels of glutamine‐derived nitrogen in various biosynthetic metabolites in transformed cells, including amino acids, 5‐oxoproline, and the nucleobase adenine. Consistent with these changes, we detected increased transcription of genes associated with glutamine metabolism and nucleotide biosynthesis in cells expressing oncogenic K‐Ras.

Taken together, these findings indicate an important role of oncogenic K‐Ras in cancer cell metabolism. The observed decoupling of glucose and glutamine metabolism enables the efficient utilization of both carbon and nitrogen from glutamine for biosynthetic processes. In accord with these alterations, oncogenic K‐Ras induces gene expression changes that may drive this metabolic reprogramming. Finally, these results may enable the identification of metabolic and transcriptional targets throughout the network and allow more effective cancer therapies.

References

1. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human diseaseNat Rev Genet. 2011. January;12(1):56–68. doi: 10.1038/nrg2918 . [PMC free article] [PubMed[]

2. Greaves M. Evolutionary determinants of cancer. Cancer Discov. 2015. August;5(8):806–20. doi: 10.1158/2159-8290.CD-15-0439 . [PMC free article] [PubMed] []
3. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013. September;501(7467):328–37. doi: 10.1038/nature12624 . [PMC free article] [PubMed] []
4. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. March;144(5):646–74. doi: 10.1016/j.cell.2011.02.013 . [PubMed] []
5. Alberghina L, Gaglio D, Gelfi C, Moresco RM, Mauri G, Bertolazzi P, et al. Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling. Front Physiol. 2012;3:362 doi: 10.3389/fphys.2012.00362 . [PMC free article] [PubMed] []
6. Cantor JR, Sabatini DM. Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2012. October;2(10):881–98. doi: 10.1158/2159-8290.CD-12-0345 . [PMC free article] [PubMed] []
7. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell. 2012. March;21(3):297–308. doi: 10.1016/j.ccr.2012.02.014 . [PMC free article] [PubMed] []
8. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009. May;324(5930):1029–33. doi: 10.1126/science.1160809 . [PMC free article] [PubMed] []
9. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010. August;35(8):427–33. doi: 10.1016/j.tibs.2010.05.003 . [PMC free article] [PubMed] []
10. Warburg O. THE CHEMICAL CONSTITUTION OF RESPIRATION FERMENT. Science. 1928. November;68(1767):437–43. doi: 10.1126/science.68.1767.437 . [PubMed] []
11. Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK. Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem. 2008. July;283(30):20621–7. doi: 10.1074/jbc.M706494200 . [PMC free article] [PubMed] []
12. Dang CV. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Cell Cycle. 2010. October;9(19):3884–6. doi: 10.4161/cc.9.19.13302 . [PubMed] []
13. Mullen AR, Hu Z, Shi X, Jiang L, Boroughs LK, Kovacs Z, et al. Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 2014. June;7(5):1679–90. doi: 10.1016/j.celrep.2014.04.037 . [PMC free article] [PubMed] []
14. Mullen AR, DeBerardinis RJ. Genetically-defined metabolic reprogramming in cancer. Trends Endocrinol Metab. 2012. November;23(11):552–9. doi: 10.1016/j.tem.2012.06.009 . [PMC free article] [PubMed] []
15. Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2012. January;481(7381):380–4. doi: 10.1038/nature10602 . [PMC free article] [PubMed] []
16. Fendt SM, Bell EL, Keibler MA, Davidson SM, Wirth GJ, Fiske B, et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 2013. July;73(14):4429–38. doi: 10.1158/0008-5472.CAN-13-0080 . [PMC free article] [PubMed] []
17. Fendt SM, Bell EL, Keibler MA, Olenchock BA, Mayers JR, Wasylenko TM, et al. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat Commun. 2013;4:2236 doi: 10.1038/ncomms3236 . [PMC free article] [PubMed] []
18. Yuneva M. Finding an "Achilles' heel" of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle. 2008. July;7(14):2083–9. doi: 10.4161/cc.7.14.6256 . [PubMed] []
19. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol. 2011;7:523 doi: 10.1038/msb.2011.56 . [PMC free article] [PubMed] []
20. Alberghina L, Gaglio D. Redox control of glutamine utilization in cancer. Cell Death Dis. 2014;5:e1561 doi: 10.1038/cddis.2014.513 . [PMC free article] [PubMed] []
21. Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab. 2016. November;24(5):657–71. doi: 10.1016/j.cmet.2016.08.011 . [PubMed] []
22. Orth JD, Thiele I, Palsson B. What is flux balance analysis? Nat Biotechnol. 2010. March;28(3):245–8. doi: 10.1038/nbt.1614 . [PMC free article] [PubMed] []
23. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, et al. A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013. May;31(5):419–25. doi: 10.1038/nbt.2488 . [PMC free article] [PubMed] []
24. Mardinoglu A, Agren R, Kampf C, Asplund A, Nookaew I, Jacobson P, et al. Integration of clinical data with a genome-scale metabolic model of the human adipocyte. Mol Syst Biol. 2013;9:649 doi: 10.1038/msb.2013.5 . [PMC free article] [PubMed] []
25. Gatto F, Nookaew I, Nielsen J. Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci U S A. 2014. March;111(9):E866–75. doi: 10.1073/pnas.1319196111 . [PMC free article] [PubMed] []
26. Gatto F, Miess H, Schulze A, Nielsen J. Flux balance analysis predicts essential genes in clear cell renal cell carcinoma metabolism. Sci Rep. 2015;5:10738 doi: 10.1038/srep10738 . [PMC free article] [PubMed] []
27. Yizhak K, Le Dévédec SE, Rogkoti VM, Baenke F, de Boer VC, Frezza C, et al. A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol. 2014;10:744 doi: 10.15252/msb.20134993 . [PMC free article] [PubMed] []
28. Keibler MA, Wasylenko TM, Kelleher JK, Iliopoulos O, Vander Heiden MG, Stephanopoulos G. Metabolic requirements for cancer cell proliferation. Cancer Metab. 2016;4:16 doi: 10.1186/s40170-016-0156-6 . Epub 2016/08/18. [PMC free article] [PubMed] []
29. Cazzaniga P, Damiani C, Besozzi D, Colombo R, Nobile MS, Gaglio D, et al. Computational strategies for a system-level understanding of metabolism. Metabolites. 2014;4(4):1034–87. doi: 10.3390/metabo4041034 . [PMC free article] [PubMed] []
30. Zielinski DC, Jamshidi N, Corbett AJ, Bordbar A, Thomas A, Palsson BO. Systems biology analysis of drivers underlying hallmarks of cancer cell metabolism. Sci Rep. 2017. January;7:41241 doi: 10.1038/srep41241 . Epub 2017/01/25. [PMC free article] [PubMed] []
31. Bröer S. Adaptation of plasma membrane amino acid transport mechanisms to physiological demands. Pflugers Arch. 2002. July;444(4):457–66. doi: 10.1007/s00424-002-0840-y . [PubMed] []
32. Mayers JR, Vander Heiden MG. Famine versus feast: understanding the metabolism of tumors in vivo. Trends Biochem Sci. 2015. March;40(3):130–40. doi: 10.1016/j.tibs.2015.01.004 . Epub 2015/01/29. [PMC free article] [PubMed] []
33. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000. January;28(1):27–30. . [PMC free article] [PubMed] []
34. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002. January;30(1):42–6. . [PMC free article] [PubMed] []
35. Schuster S, Fell DA, Dandekar T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol. 2000. March;18(3):326–32. doi: 10.1038/73786 . [PubMed] []
36. De Martino D, Capuani F, Mori M, De Martino A, Marinari E. Counting and correcting thermodynamically infeasible flux cycles in genome-scale metabolic networks. Metabolites. 2013;3(4):946–66. doi: 10.3390/metabo3040946 . [PMC free article] [PubMed] []
37. Kauffman S, Peterson C, Samuelsson B, Troein C. Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci U S A. 2003. December;100(25):14796–9. doi: 10.1073/pnas.2036429100 . [PMC free article] [PubMed] []
38. Damiani C, Pescini D, Colombo R, Molinari S, Alberghina L, Vanoni M, et al. An ensemble evolutionary constraint-based approach to understand the emergence of metabolic phenotypes. Natural Computing. 2014;13(3):321–31. []
39. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E. Genome-scale metabolic modeling elucidates the role of proliferative adaptation in causing the Warburg effect. PLoS Comput Biol. 2011. March;7(3):e1002018 doi: 10.1371/journal.pcbi.1002018 . [PMC free article] [PubMed] []
40. Chiaradonna F, Gaglio D, Vanoni M, Alberghina L. Expression of transforming K-Ras oncogene affects mitochondrial function and morphology in mouse fibroblasts. Biochim Biophys Acta. 2006 2006. Sep-Oct;1757(9–10):1338–56. doi: 10.1016/j.bbabio.2006.08.001 . [PubMed] []
41. Palorini R, Cammarata FP, Balestrieri C, Monestiroli A, Vasso M, Gelfi C, et al. Glucose starvation induces cell death in K-ras-transformed cells by interfering with the hexosamine biosynthesis pathway and activating the unfolded protein response. Cell death & disease. 2013;4:e732 doi: 10.1038/cddis.2013.257 . Epub 2013/07/23. [PMC free article] [PubMed] []
42. Gaglio D, Soldati C, Vanoni M, Alberghina L, Chiaradonna F. Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS One. 2009;4(3):e4715 doi: 10.1371/journal.pone.0004715 . [PMC free article] [PubMed] []
43. Agren R, Mardinoglu A, Asplund A, Kampf C, Uhlen M, Nielsen J. Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol. 2014. March;10:721 doi: 10.1002/msb.145122 . [PMC free article] [PubMed] []
44. Shlomi T, Cabili MN, Ruppin E. Predicting metabolic biomarkers of human inborn errors of metabolism. Mol Syst Biol. 2009;5:263 doi: 10.1038/msb.2009.22 . Epub 2009/04/28. [PMC free article] [PubMed] []
45. King A, Selak MA, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006. August;25(34):4675–82. doi: 10.1038/sj.onc.1209594 . [PubMed] []
46. Palm W, Thompson CB. Nutrient acquisition strategies of mammalian cells. Nature. 2017. June;546(7657):234–42. doi: 10.1038/nature22379 . [PMC free article] [PubMed] []
47. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012. January;15(1):110–21. doi: 10.1016/j.cmet.2011.12.009 . [PMC free article] [PubMed] []
48. Saqcena M, Mukhopadhyay S, Hosny C, Alhamed A, Chatterjee A, Foster DA. Blocking anaplerotic entry of glutamine into the TCA cycle sensitizes K-Ras mutant cancer cells to cytotoxic drugs. Oncogene. 2015. May;34(20):2672–80. doi: 10.1038/onc.2014.207 . [PMC free article] [PubMed] []
49. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007. December;104(49):19345–50. doi: 10.1073/pnas.0709747104 . [PMC free article] [PubMed] []
50. Mariño G, Kroemer G. Ammonia: a diffusible factor released by proliferating cells that induces autophagy. Sci Signal. 2010;3(124):pe19 doi: 10.1126/scisignal.3124pe19 . [PubMed] []
51. Eng CH, Yu K, Lucas J, White E, Abraham RT. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci Signal. 2010;3(119):ra31 doi: 10.1126/scisignal.2000911 . [PubMed] []
52. Jiang L, Shestov AA, Swain P, Yang C, Parker SJ, Wang QA, et al. Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature. 2016. April;532(7598):255–8. doi: 10.1038/nature17393 . [PMC free article] [PubMed] []
53. Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell. 2014. November;56(3):414–24. doi: 10.1016/j.molcel.2014.09.025 . [PMC free article] [PubMed] []
54. Fan J, Kamphorst JJ, Mathew R, Chung MK, White E, Shlomi T, et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol Syst Biol. 2013;9:712 doi: 10.1038/msb.2013.65 . [PMC free article] [PubMed] []
55. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol. 2015. December;17(12):1556–68. doi: 10.1038/ncb3272 . Epub 2015/11/23. [PMC free article] [PubMed] []
56. Kight CE, Fleming SE. Oxidation of glucose carbon entering the TCA cycle is reduced by glutamine in small intestine epithelial cells. Am J Physiol. 1995. June;268(6 Pt 1):G879–88. . [PubMed] []
57. Kelk SM, Olivier BG, Stougie L, Bruggeman FJ. Optimal flux spaces of genome-scale stoichiometric models are determined by a few subnetworks. Sci Rep. 2012;2:580 doi: 10.1038/srep00580 . Epub 2012/08/15. [PMC free article] [PubMed] []
58. Hu J, Locasale JW, Bielas JH, O'Sullivan J, Sheahan K, Cantley LC, et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol. 2013. June;31(6):522–9. doi: 10.1038/nbt.2530 . [PMC free article] [PubMed] []
59. Wagner BA, Venkataraman S, Buettner GR. The rate of oxygen utilization by cells. Free Radic Biol Med. 2011. August;51(3):700–12. doi: 10.1016/j.freeradbiomed.2011.05.024 . Epub 2011/05/27. [PMC free article] [PubMed] []
60. Wagner MV, Smolka MB, de Bruin RA, Zhou H, Wittenberg C, Dowdy SF. Whi5 regulation by site specific CDK-phosphorylation in Saccharomyces cerevisiae. PLoS One. 2009;4(1):e4300 doi: 10.1371/journal.pone.0004300 . Epub 2009/01/29. [PMC free article] [PubMed] []
61. Lankelma J, Kooi B, Krab K, Dorsman JC, Joenje H, Westerhoff HV. A reason for intermittent fasting to suppress the awakening of dormant breast tumors. Biosystems. 2015. January;127:1–6. doi: 10.1016/j.biosystems.2014.11.001 . [PubMed] []
62. Baracca A, Chiaradonna F, Sgarbi G, Solaini G, Alberghina L, Lenaz G. Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta. 2010. February;1797(2):314–23. doi: 10.1016/j.bbabio.2009.11.006 . [PubMed] []
63. Zimmermann FA, Mayr JA, Feichtinger R, Neureiter D, Lechner R, Koegler C, et al. Respiratory chain complex I is a mitochondrial tumor suppressor of oncocytic tumors. Front Biosci (Elite Ed). 2011;3:315–25. . [PubMed] []
64. Agren R, Liu L, Shoaie S, Vongsangnak W, Nookaew I, Nielsen J. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol. 2013;9(3):e1002980 doi: 10.1371/journal.pcbi.1002980 . Epub 2013/03/21. [PMC free article] [PubMed] []
65. Boele J, Olivier BG, Teusink B. FAME, the Flux Analysis and Modeling Environment. BMC Syst Biol. 2012. January;6:8 doi: 10.1186/1752-0509-6-8 . Epub 2012/01/30. [PMC free article] [PubMed] []
66. Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011. September;6(9):1290–307. doi: 10.1038/nprot.2011.308 . [PMC free article] [PubMed] []
67. Mahadevan R, Schilling CH. The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng. 2003. October;5(4):264–76. . [PubMed] []
68. Reed JL, Palsson B. Genome-scale in silico models of E. coli have multiple equivalent phenotypic states: assessment of correlated reaction subsets that comprise network states. Genome Res. 2004. September;14(9):1797–805. doi: 10.1101/gr.2546004 . [PMC free article] [PubMed] []
69. Schellenberger J, Palsson B. Use of randomized sampling for analysis of metabolic networks. J Biol Chem. 2009. February;284(9):5457–61. doi: 10.1074/jbc.R800048200 . [PubMed] []
70. Bordel S, Agren R, Nielsen J. Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput Biol. 2010;6(7):e1000859 doi: 10.1371/journal.pcbi.1000859 . [PMC free article] [PubMed] []
71. Damiani C, Di Filippo M, Pescini D, Maspero D, Colombo R, Mauri G. popFBA: tackling intratumour heterogeneity with Flux Balance Analysis. Bioinformatics 2017; 33(14): i311–i318. doi: 10.1093/bioinformatics/btx251 [PMC free article] [PubMed] []
72. Gaglio D, Valtorta S, Ripamonti M, Bonanomi M, Damiani C, Todde S, et al. Divergent in vitro/in vivo responses to drug treatments of highly aggressive NIH-Ras cancer cells: a PET imaging and metabolomics-mass-spectrometry study. Oncotarget. 2016. July doi: 10.18632/oncotarget.10470 . [PMC free article] [PubMed] []
73. Collins JA, Rudenski A, Gibson J, Howard L, O'Driscoll R. Relating oxygen partial pressure, saturation and content: the haemoglobin-oxygen dissociation curve. Breathe (Sheff). 2015. September;11(3):194–201. doi: 10.1183/20734735.001415 . [PMC free article] [PubMed] []

Articles from PLoS Computational Biology are provided here courtesy of Public Library of Science

Plaats een reactie ...

Reageer op "K-Ras kankercellen die ongevoelig lijken voor reguliere behandelingen, zelfs voor immuuntherapie zijn afhankelijk van de beschikbaarheid van glucose en glutamine. Dr. Otto Warburg benadrukte dit al in zijn onderzoeken"


Gerelateerde artikelen
 

Gerelateerde artikelen

K-Ras kankercellen die ongevoelig >> Algemeen: een intensief fitness >> Algemeen: Nieuw bewijs dat >> Algemene artikelen over complementaire >>