-
Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).
CAS PubMed Google Scholar
-
McGuigan, A. et al. Pancreatic cancer: a review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 24, 4846–4861 (2018).
PubMed PubMed Central Google Scholar
-
Amundadottir, L. et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).
CAS PubMed PubMed Central Google Scholar
-
Petersen, G. M. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228 (2010).
CAS PubMed PubMed Central Google Scholar
-
Li, D. et al. Pathway analysis of genome-wide association study data highlights pancreatic development genes as susceptibility factors for pancreatic cancer. Carcinogenesis 33, 1384–1390 (2012).
CAS PubMed PubMed Central Google Scholar
-
Wolpin, B. M. et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat. Genet. 46, 994–1000 (2014).
CAS PubMed PubMed Central Google Scholar
-
Klein, A. P. et al. Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer. Nat. Commun. 9, 556 (2018).
PubMed PubMed Central Google Scholar
-
Kim, J. et al. Genetic and circulating biomarker data improve risk prediction for pancreatic cancer in the general population. Cancer Epidemiol. Biomark. Prev. 29, 999–1008 (2020).
CAS Google Scholar
-
Pereira, S. P. et al. Early detection of pancreatic cancer. Lancet Gastroenterol. Hepatol. 5, 698–710 (2020).
PubMed PubMed Central Google Scholar
-
Singhi, A. D., Koay, E. J., Chari, S. T. & Maitra, A. Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology 156, 2024–2040 (2019).
PubMed Google Scholar
-
Klein, A. P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 18, 493–502 (2021).
-
Chen, F., Roberts, N. J. & Klein, A. P. Inherited pancreatic cancer. Chin. Clin. Oncol. 6, 58 (2017).
PubMed PubMed Central Google Scholar
-
Dietterich, T. G. Machine learning for sequential data: a review. In Structural, Syntactic, and Statistical Pattern Recognition (eds Caelli, T., Amin, A., Duin, R. P. W., Ridder, D. & Kamel, M.) 15–30 (Springer, 2002).
-
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
CAS PubMed Google Scholar
-
Nielsen, A. B. et al. Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records. Lancet Digit. Health 1, e78–e89 (2019).
PubMed Google Scholar
-
Thorsen-Meyer, H.-C. et al. Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records. Lancet Digit. Health 2, e179–e191 (2020).
PubMed Google Scholar
-
Shickel, B., Tighe, P. J., Bihorac, A. & Rashidi, P. Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE J. Biomed. Health Inform. 22, 1589–1604 (2018).
PubMed Google Scholar
-
Hyland, S. L. et al. Early prediction of circulatory failure in the intensive care unit using machine learning. Nat. Med. 26, 364–373 (2020).
CAS PubMed Google Scholar
-
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
CAS PubMed PubMed Central Google Scholar
-
Yala, A., Lehman, C., Schuster, T., Portnoi, T. & Barzilay, R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 292, 60–66 (2019).
PubMed Google Scholar
-
Yamada, M. et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci. Rep. 9, 14465 (2019).
PubMed PubMed Central Google Scholar
-
Jung, A. W. et al. Multi-cancer risk stratification based on national health data: a retrospective modelling and validation study. Preprint at bioRxiv https://doi.org/10.1101/2022.10.12.22280908 (2022).
-
Tomašev, N. et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572, 116–119 (2019).
PubMed PubMed Central Google Scholar
-
Li, Y. et al. BEHRT: transformer for electronic health records. Sci. Rep. 10, 7155 (2020).
CAS PubMed PubMed Central Google Scholar
-
Thorsen-Meyer, H.-C. et al. Discrete-time survival analysis in the critically ill: a deep learning approach using heterogeneous data. NPJ Digit. Med. 5, 142 (2022).
PubMed PubMed Central Google Scholar
-
Muhammad, W. et al. Pancreatic cancer prediction through an artificial neural network. Front. Artif. Intell. 2, 2 (2019).
PubMed PubMed Central Google Scholar
-
Malhotra, A., Rachet, B., Bonaventure, A., Pereira, S. P. & Woods, L. M. Can we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of subsequent diagnosis using machine learning techniques applied to primary care data. PLoS ONE 16, e0251876 (2021).
CAS PubMed PubMed Central Google Scholar
-
Appelbaum, L. et al. Development and validation of a pancreatic cancer risk model for the general population using electronic health records: an observational study. Eur. J. Cancer 143, 19–30 (2021).
PubMed Google Scholar
-
Li, X. et al. A deep-learning based prediction of pancreatic adenocarcinoma with electronic health records from the state of Maine. Int. J. Med. Health Sci. 14, 358–365 (2020).
Google Scholar
-
Chen, Q. et al. Clinical data prediction model to identify patients with early-stage pancreatic cancer. JCO Clin. Cancer Inform. 5, 279–287 (2021).
PubMed Google Scholar
-
Appelbaum, L. et al. Development of a pancreatic cancer prediction model using a multinational medical records database. J. Clin. Oncol. https://doi.org/10.1200/JCO.2021.39.3_suppl.394 (2021).
-
Hu, J. X., Helleberg, M., Jensen, A. B., Brunak, S. & Lundgren, J. A large-cohort, longitudinal study determines precancer disease routes across different cancer types. Cancer Res. 79, 864–872 (2019).
CAS PubMed Google Scholar
-
Jensen, A. B. et al. Temporal disease trajectories condensed from population-wide registry data covering 6.2 million patients. Nat. Commun. 5, 4022 (2014).
CAS PubMed Google Scholar
-
Schmidt, M. et al. The Danish National Patient Registry: a review of content, data quality, and research potential. Clin. Epidemiol. 7, 449–490 (2015).
PubMed PubMed Central Google Scholar
-
Siggaard, T. et al. Disease trajectory browser for exploring temporal, population-wide disease progression patterns in 7.2 million Danish patients. Nat. Commun. 11, 4952 (2020).
CAS PubMed PubMed Central Google Scholar
-
Schmidt, M., Pedersen, L. & Sørensen, H. T. The Danish Civil Registration System as a tool in epidemiology. Eur. J. Epidemiol. 29, 541–549 (2014).
PubMed Google Scholar
-
Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. Preprint at arXiv https://doi.org/10.48550/arXiv.1406.1078 (2014).
-
Vaswani, A. et al. Attention is all you need. 31st Conference on Neural Information Processing Systems (NIPS, 2017).
-
Yuan, C. et al. Diabetes, weight change, and pancreatic cancer risk. JAMA Oncol. 6, e202948 (2020).
PubMed PubMed Central Google Scholar
-
Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. Proc. 34th Intl. Conf. Mach.Learning (JMLR, 2017).
-
Klein, A. P. et al. An absolute risk model to identify individuals at elevated risk for pancreatic cancer in the general population. PLoS ONE 8, e72311 (2013).
CAS PubMed PubMed Central Google Scholar
-
Hjaltelin, J. X. et al. Pancreatic cancer symptom trajectories from Danish registry data and free text in electronic health records. Preprint at medRxiv https://doi.org/10.1101/2023.02.13.23285861 (2023).
-
Alkhushaym, N. et al. Exposure to proton pump inhibitors and risk of pancreatic cancer: a meta-analysis. Expert Opin. Drug Saf. 19, 327–334 (2020).
CAS PubMed Google Scholar
-
Konečný, J. et al. Federated learning: strategies for improving communication efficiency. Preprint at arXiv https://doi.org/10.48550/arXiv.1610.05492 (2016).
-
Kenner, B. et al. Artificial intelligence and early detection of pancreatic cancer: 2020 summative review. Pancreas 50, 251–279 (2021).
PubMed PubMed Central Google Scholar
-
Lemanska, A. et al. BMI and HbA1c are metabolic markers for pancreatic cancer: matched case–control study using a UK primary care database. PLoS ONE 17, e0275369 (2022).
CAS PubMed PubMed Central Google Scholar
-
Norgeot, B. et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat. Med. 26, 1320–1324 (2020).
CAS PubMed PubMed Central Google Scholar
-
Thygesen, S. K., Christiansen, C. F., Christensen, S., Lash, T. L. & Sørensen, H. T. The predictive value of ICD-10 diagnostic coding used to assess Charlson comorbidity index conditions in the population-based Danish National Registry of Patients. BMC Med. Res. Methodol. 11, 83 (2011).
PubMed PubMed Central Google Scholar
-
Gjerstorff, M. L. The Danish Cancer Registry. Scand. J. Public Health 39, 42–45 (2011).
PubMed Google Scholar
-
Sundhedsstyrelsen. Det moderniserede Cancerregister—metode og kvalitet. https://sundhedsdatastyrelsen.dk/-/media/sds/filer/registre-og-services/nationale-sundhedsregistre/sygdomme-laegemidler-og-behandlinger/cancerregisteret/det-moderniserede-cancerregister.pdf?la=da#:~:text=Et%20af%20de%20overordnede%20form%C3%A5l,%2C%20komplethed%2C%20rettidighed%20og%20sammenlignelighed. (2009).
-
Price, L. E., Shea, K. & Gephart, S. The Veterans Affairs’s Corporate Data Warehouse: uses and implications for nursing research and practice. Nurs. Adm. Q. 39, 311–318 (2015).
PubMed PubMed Central Google Scholar
-
Elbers, D. C. et al. The Veterans Affairs Precision Oncology Data Repository, a clinical, genomic, and imaging research database. Patterns (N Y) 1, 100083 (2020).
PubMed Google Scholar
-
Chang, M. S. et al. Increased relative proportions of advanced melanoma among veterans: a comparative analysis with the Surveillance, Epidemiology, and End Results registry. J. Am. Acad. Dermatol. 87, 72–79 (2022).
PubMed Google Scholar
-
Wu, J. T.-Y. et al. Association of COVID-19 vaccination with SARS-CoV-2 infection in patients with cancer: a US nationwide Veterans Affairs study. JAMA Oncol. 8, 281–286 (2022).
PubMed Google Scholar
-
Zullig, L. L. et al. Cancer incidence among patients of the U.S. Veterans Affairs Health Care System. Mil. Med. 177, 693–701 (2012).
PubMed Google Scholar
-
Standards for Cancer Registries Volume II: Data Standards and Data Dictionary. 24th edn, Ver. 23 (ed Thornton, M.) https://datadictionary.naaccr.org/default.aspx?c=1&Version=23 (North American Association of Central Cancer Registries, 2022).
-
Zullig, L. L. et al. Summary of Veterans Health Administration cancer data sources. J. Registry Manag. 46, 76–83 (2019).
PubMed Google Scholar
-
Earles, A. et al. Structured approach for evaluating strategies for cancer ascertainment using large-scale electronic health record data. JCO Clin. Cancer Inform. 2, 1–12 (2018).
PubMed Google Scholar
-
Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at arXiv https://doi.org/10.48550/arXiv.1301.3781 (2013).
-
Gehring, J., Auli, M., Grangier, D., Yarats, D. & Dauphin, Y. N. Convolutional sequence to sequence learning. In Proc. of the 34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 1243–1252 (PMLR, 2017).
-
Sasaki, Y (The truth of the F-measure. https://www.cs.odu.edu/~mukka/cs795sum11dm/Lecturenotes/Day3/F-measure-YS-26Oct07.pdf (School of Computer Science, Univ. of Manchester: 2007.
Plaats een reactie ...
Reageer op "AI - Kunstmatige intelligentie kan op basis van medische dossiers tot drie jaar van tevoren voorspellen of iemand alvleesklierkanker zal krijgen blijkt uit grootschalig bevolkingsonderzoek"