Helpt u ons aan 500 donateurs?

27 januari 2018: Het artikel "Curcumine kan geen geneesmiddel" op de website van Medisch Contact is inmiddels door iedereen te lezen. Op verzoek van de redactie van Medisch Contact heb ik mijn reactie, zie hieronder, terug gebracht tot 300 woorden en die staat inmiddels onder het artikel. De enige reactie tot nu toe. Hoe betrokken zijn artsen eigenlijk bij hun patiënten dat ze dit aritkel van Henk Timmerman, notabene Emeritus hoogleraar farmachemie aan de Vrije Universiteit zomaar laten passeren? 

11 januari 2018: Ik heb deze reactie gestuurd aan Medisch Contact die mij hebben beloofd dat deze zal worden geplaatst:

Terneuzen, 10 januari 2018-01-10

Met  het artikel: “Curcumine kan geen geneesmiddel zijn” in Medisch Contact van 14 december 2017 pleit  Henk Timmerman emeritus hoogleraar farmachemie ervoor om een wereldwijd  veel gebruikt plantenextract als kurkuma uit het wetenschappelijk onderzoek te halen,  omdat hij er zelf geen heil meer inziet;  “Het adagium ’genoeg is genoeg’ zou ook door de aanhangers van alternatieve middelen geaccepteerd moeten worden. Altijd geldt immers dat patiënten niet willens en wetens aan ineffectieve onderworpen mogen worden. Goede reden om de hype te stoppen.“ Aldus Timmerman in zijn artikel, en passant de ‘alternatieven’ een sneer meegevend.

Het is maar goed dat Henk Timmerman zelf geen wetenschappelijk onderzoek meer doet, want zijn artikel bewijst dat hij niet meer goed kan onderscheiden waaraan een wetenschappelijke studie moet voldoen.  

Alleen al in de titel en intro van het artikel haalt Timmerman het stofje curcumine en het kruid kurkuma door elkaar heen in 2 zinnen. Boven de titel “Curcumine kan geen geneesmiddel zijn” schrijft hij DE GENEESKRACHTIGE WERKING VAN KURKUMA IS NON EXISTENT.  
En in het artikel zelf gebruikt Timmerman  het kruid kurkuma en het stofje curcumine ook enkele malen bewust door elkaar heen, alsof curcumine en kurkuma hetzelfde zouden zijn.  Weet Timmerman niet dat curcumine een geïsoleerde stof is uit kurkuma? En dat onderzoek naar een geïsoleerd stofje niets zegt over het hele kruid kurkuma? En dat er heel veel studies zijn gedaan en worden gedaan naar kurkuma en  turmeric? Dat alles weet een emeritus hoogleraar farmachemo van de Vrije Universiteit  niet? 

Het klopt dat het heel lastig is om het stofje curcumine te onderzoeken  (ref. 1.) maar het is niet onmogelijk.  Dat oncoloog Casper van Eyck (die door Timmerman als niet competente goed gelovige ‘kwakzalversupporter’ wordt neergezet) zo enthousiast is over curcumine en kurkuma zou wellicht  kunnen komen omdat Casper van Eyck op de hoogte is van  de fase II studie (ref. 2. ) bij zwaar voorbehandelde patiënten met uitgezaaide alvleesklierkanker, waarin curcumine tegenover placebo veelbelovende resultaten liet zien. Zonder de gebruikelijke bijwerkingen van chemo.   

Ik ben geen wetenschapper noch arts, maar als webmaster van kanker-actueel.nl  weet ik wel hoe te zoeken in pubmed. Binnen een half uur kwam ik op een aantal interessante studies met curcumin of kurkuma  / turmeric.  Die Timmerman blijkbaar niet kon vinden? Naast de genoemde studie bij  alvleesklierkanker patiënten vond ik ook een gerandomiseerde placebo gecontroleerde  studie bij patiënten met ernstige depressie (ref  7 en 8), bij atritis (ref 9), bij kanker in het algemeen (ref 3 en 4) en bij prostaatkanker (ref 5) en longkanker  (ref 6) in het bijzonder.

Hieronder de verwijzingen naar deze studies. Wie de referentielijsten van genoemde studies bekijkt (allemaal geven ze een meerwaarde aan van curcumine respectievelijk  kurkuma)  ziet dat er wereldwijd veel onderzoek is en wordt gedaan  naar het stofje curcumine en naar het kruid kurkuma.

Het zou Henk Timmerman sieren als hij in de volgende  Medisch Contact zijn artikel zou corrigeren om daarmee de onrust weg te nemen bij die patiënten die kurkuma gebruiken. 

Kees Braam

Webmaster van www.kanker-actueel.nl
Patient advocate bij www.Inspire2live.org  

 

 

Referenties:

  1. The Essential  Medicinal Chemistry of Curcumin: zie https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5346970/
  2. Phase II trial of curcumin in patients with advanced pancreatic cancer Zie http://clincancerres.aacrjournals.org/content/14/14/4491 
  3. Dietary turmeric potentially reduces the risk of cancer. zie: http://journal.waocp.org/article_26033_1b27ce1966fc5c5d034c7ea0d22f2363.pdf  
  4. The Multifaceted Role of Curcumin in Cancer Prevention and Treatment. Zie: http://www.mdpi.com/1420-3049/20/2/2728/htm  
  5. A Placebo-Controlled Double Blinded Randomized Pilot Study of Combination Phytotherapy in Biochemically Recurrent Prostate Cancer. : Zie: https://www.ncbi.nlm.nih.gov/pubmed/28181675
  6. Delivery of curcumin by directed self-assembled micelles enhances therapeutic treatment of non-small-cell lung cancer. Zie: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5388225
  7. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Zie: https://www.ncbi.nlm.nih.gov/pubmed/23832433 . 
  8. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. Zie: https://www.ncbi.nlm.nih.gov/pubmed/27723543 
  9. Efficacy of Turmeric Extracts and Curcumin for Alleviating the Symptoms of Joint Arthritis: A Systematic Review and Meta-Analysis of Randomized Clinical Trials zie   https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5003001/

 

 

5 januari 2018:

Op dit artikel kreeg ik de volgende reactie en ben ik het wel mee eens. Curcumine is het stofje uit het kruid turmeric / kurkuma en met het hele kruid kurkuma / turmeric zijn wel studies gedaan met goede resultaten. (zie ook in gerelateerde artikelen). Overigens zegt Henk Timmerman dat curcumine geen geneesmiddel kan zijn maar hij zegt dat niet over het hele kruid kurkuma / turmeric, al suggereert hij dat wel met zijn inleidinng en verderop in het artikel nog een keer. Ik denk dat Henk Timmerman, ooit adviserend lid en misschien nog steeds lid van de VtdK - Vereniging tegen de Kwakzalverij dit heel bewust zo heeft gedaan. Als leek maak ik ook de fout als ik het heb over curcumine dat ik dat dan ook wel kurkuma noem. Maar in feite is curcumine een stofje uit het kruid kurkuma. Het kruid zelf is zoals Hugo ook opmerkt niet te patenteren en dus voor de farmaceutische industrie niet interessant om daar onderzoek naar te doen. In dit verband is het goed om het interview met prof. dr. Casper van Eijck te lezen in de Volkskrant. Een goed opgezette gebruikersstudie zou wel interessant zijn maar ja wie betaalt dat? (zie gerelateerde artikelen voor studies met kurkuma en ook met curcumine trouwens, dus het kan wel bljikbaar.

Maar lees deze reactie van Hugo:

Beste Kees,

Dat zijn voor zover ik dat goed begrijp studies naar de Curcumine en geen onderzoeken met het gehele kruid.
Curcumin is the active ingredient of turmeric, and is also found in limited amounts in ginger. It is an anti-inflammatory molecule, and similar to fish oil, it seems to be a metabolic syndrome band-aid.
It has poor bioavailability and black pepper greatly enhances absorption.

Dat wordt ook duidelijk als inleiding van de door jou genoemde bron Pains? Solid Gold op jouw website (de 164 studies) 
Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive
investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro
and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the
essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

Dit onderbouwd zelfs mogelijk wat ik in mijn stukken ook steeds aan jou heb geschreven. 
Onderzoek naar of het gebruik van curcumine zou inderdaad wel eens kunnen eindigen in een fiasco.
Maar dat mag niet een op een leiden tot de uitspraak dat dus het gebruik van kurkuma als kruid onzinnig is.
Valstar verwijst naar het gebruik van de kurkuma als zodanig. Dat doe ik ook steeds. Literatuur daaromtrent is voorradig en eveneens promising.
Praktijkervaringen zijn er voldoende (o.a. dr. Van Eijck). Het kruid is echter niet te patenteren. Wel de verschillende manieren om bepaalde bestanddelen versneld op te nemen en of in te kapselen. Daar
is dus geld mee te verdienen. De vraag is echter of deze oplossingen effectiever zijn als het hoog gedoseerde basisextract. Het antwoord zou weleens ondubbelzinnig nee kunnen zijn.

Mijn verontwaardiging over het artikel zit dus vnl. In het feit dat de heer Timmermans curcumine bestanddeel en kurkuma als kruid met elkaar verwisseld en verward, hetgeen niet juist is, en in het feit
dat hij en passant de gehele alternatieve behandelingsopties weer even door het slijk haalt zonder daarbij aan te geven waarover hij het nu eigenlijk heeft. Fytotherapie, homeopathie en acupunctuur zijn
bijvoorbeeld uitstekend onderbouwde alternatieve behandelopties die een dergelijke schoffering niet verdienen.

Met hartelijke groet, Hugo

4 januari 2018: Bron: Journal of Medicinal Chemistry en Medisch Contact

Curcumine kan geen geneesmiddel zijn is de titel van een artikel uit Medisch
Contact geschreven door Henk Timmerman, emeritus hoogleraar farmachemie, Vrije Universiteit Amsterdam.

Zelfs gerenommeerde wetenschappers geven nu hoog op van de genezende kracht van kurkuma - en de daaruit geïsoleerde stof curcumine. Tijd voor een tegengeluid: farmacologisch onderzoek toont aan dat de stof onbruikbaar is in de geneeskunde.

curcumine grafiek samenstelling

Zo begint het artikel in Medisch Contact d.d. 14 december 2018. 

Van dit artikel is echter alleen de eerste zin te lezen. Alleen voor artsen en abonnees op Medisch Contact is het volledige artikel te lezen. Ik heb nog geprobeerd om via de redactie van Medisch Contact het volledige artikel te mogen lezen maar krijg daarvoor geen toestemming. Ik heb ook nog verwezen naar deze studiepublicatie: Regulation of Polyamine Metabolism by Curcumin for Cancer Prevention and Therapy maar ook deze studie is geen studie bij mensen noch placebo gecontroleerd en juist dat is het probleem, curcumine is een interessant stofje in laboratoriumonderzoek en bij dieren maar bij de mens is tot nu toe geen manier gevonden om de curcumine langdurend opneembaar te maken. 6 weken na publicering zal het volledige artikel in Medisch Contact te lezen zijn, dus rond 1 februari 2018. Wij hebben het artikel in PDF en kunnen u dit digitaal toesturen. U kunt het artikel ook opvragen bij Henk Timmerman, wij hebben zijn adresgegevens. (redactie@kanker-actueel.nl )

Maar eigenwijs als ik ben heb ik verder gezocht heb ik via via het artikel toch gekregen. En ook is het studierapport waarop Henk Timmerman dit artikel mede op heeft gebaseerd (en ook op zijn eigen ervaringen in het verleden met onderzoek naar curcumine) vrij te lezen: The Essential Medicinal Chemistry of Curcumin is een reviewstudie van 164 wetenschappelijke publicaties. En ook in dit studierapport schrijven de auteurs als laatste zin van hun conclusie: van curcumine is door de instabiliteit en de slechte opneembaarheid van het middel geen werkend geneesmiddel te maken ("curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead"). Wat mij dan wel verbaasd omdat, zie gerelateerde artikelen, er toch studies zijn gepubliceerd die de meerwaarde van curcumine aantonen. Maar ik kan als leek niet beoordelen of er met de resultaten enz publicaties. is gerommeld. 

Maar de boodschap, curcumine kan geen geneesmiddel zijn, lijkt dus de doodsteek voor verder onderzoek naar curcumine als geneesmiddel bij kanker.

Timmerman schrijft ook letterlijk in zijn artikel en ik citeer: " De uitspraak van Heger dat hij 'erin blijft geloven', is dus tegen beter weten in.Omdat curcumine zeer slecht oplosbaar is in water, verpakken sommigen (waaronder Heger) curcumine in nanodeeltjes om de problemen van slechte opname te ondervangen. Het probleem van de snelle afbraak - bij fysiologische pH een haflwaarde tijd van 5 minuten - blijft evenwel onveranderd. De auteurs van het JMC-artikel: ".......curcumin will ultimaterly degrade upon release into physiologic media". Deze benadering kan dus ook niets opleveren.

In de reviewstudie The Essential Medicinal Chemistry of Curcumin en lees aub het volledige studierapport als u hierin bent geïnteresseerd, wordt gedetailleeerd beschreven en met talloze voorbeelden onderbouwd waarom zij weinig heil zien in verder wetenschappelijk onderzoek naar curcumine. Zij geven wel een aantal aanbevelingen voor verder onderzoek maar afgaande op wat Henk Timmermans schrijft en ook de auteurs van deze studie lijken ook die weinig houvast te bieden om ooit van curcumine een werkend geneesmiddel te maken. Helaas zou ik zeggen, maar deze studie is te goed onderbouwd om hun conclusies te negeren.

Uit: The Essential Medicinal Chemistry of Curcumin

The observations of this Miniperspective offer several key points that can help identify potentially problematic research approaches and/or interpretation of outcomes in publications or preliminary data involving curcumin bioactivity. Notably, many of these strategies have been articulated previously:122,161

  • 1.
    Look for evidence of compound stability in assay buffer/media, including when molecular models are invoked as supporting evidence of target engagement.
  • 2.
    Look for the presence of detergent and thiol-scavenging reagents in biochemical assays to mitigate the impact of chemical aggregation and nonspecific thiol reactivity. Are/were any additional counterscreens performed to rule out these phenomena?
  • 3.
    Examine the selectivity data. What are the magnitudes of any observed selectivity? Are these significant? Can any selectivity be explained by differential target susceptibilities to nonspecific interference modalities like thiol reactivity? Can any apparent selectivity be explained by the assay conditions, such as target or total protein concentration?
  • 4.
    Examine the potency of the compound. At those concentrations, would there be any expected aggregation or off-target effects? And if so, can one make meaningful conclusions about specific pathways and target engagement? Does the stoichiometry make sense?
  • 5.
    Evaluate the methods to confirm target engagement. Look for biophysical orthogonal methods for support of target engagement (e.g., SPR, ITC, CETSA), not solely phenotypic assays.
  • 6.
    Carefully examine the detection method for determining the concentration of 1 present in an assay. What biophysical method is/was used for detection? Can likely degradation products or metabolites have a similar response and/or explain the data/hypothesis?

With respect to curcumin/curcuminoids and in vivo studies and clinical trials, we believe there is rather “much ado about nothing”

Hier het korte abstract van de reviewstudie: The Essential Medicinal Chemistry of Curcumin Daaronder de referentielijst

An external file that holds a picture, illustration, etc.
Object name is jm-2016-009757_0004.jpg

Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

J Med Chem. 2017 Mar 9; 60(5): 1620–1637.
Published online 2017 Jan 11. doi:  10.1021/acs.jmedchem.6b00975
PMCID: PMC5346970

The Essential Medicinal Chemistry of Curcumin

Miniperspective

Abstract

An external file that holds a picture, illustration, etc.
Object name is jm-2016-009757_0004.jpg

Curcumin is a constituent (up to ∼5%) of the traditional medicine known as turmeric. Interest in the therapeutic use of turmeric and the relative ease of isolation of curcuminoids has led to their extensive investigation. Curcumin has recently been classified as both a PAINS (pan-assay interference compounds) and an IMPS (invalid metabolic panaceas) candidate. The likely false activity of curcumin in vitro and in vivo has resulted in >120 clinical trials of curcuminoids against several diseases. No double-blinded, placebo controlled clinical trial of curcumin has been successful. This manuscript reviews the essential medicinal chemistry of curcumin and provides evidence that curcumin is an unstable, reactive, nonbioavailable compound and, therefore, a highly improbable lead. On the basis of this in-depth evaluation, potential new directions for research on curcuminoids are discussed.

Acknowledgments

J.L.D., J.B., J.G., and G.F.P. acknowledge Dr. Brian Shoichet for helpful discussions. J.B. and G.F.P. acknowledge funding from NCCIH and ODS/NIH through Grant U41AT008706. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The opinions or assertions contained herein belong to the authors and are not necessarily the official views of the funders.

References

  • Yuan D.; Yang X.; Guo J. C. A great honor and a huge challenge for China: You-you tu getting the nobel prize in physiology or medicine. J. Zhejiang Univ., Sci., B 2016, 17, 405–40810.1631/jzus.B1600094. [PubMed] [Cross Ref]
  • Hanson M.. Is the 2015 Nobel Prize a turning point for traditional Chinese medicine? https://theconversation.com/is-the-2015-nobel-prize-a-turning-point-for-traditional-chinese-medicine-48643 (accessed June 6, 2016).
  • Baell J.; Walters M. A. Chemistry: Chemical con artists foil drug discovery. Nature (London, U. K.) 2014, 513, 481–48310.1038/513481a. [PubMed] [Cross Ref]
  • Bisson J.; McAlpine J. B.; Friesen J. B.; Chen S.-N.; Graham J.; Pauli G. F. Can invalid bioactives undermine natural product-based drug discovery?. J. Med. Chem. 2016, 59, 1671–169010.1021/acs.jmedchem.5b01009. [PubMed] [Cross Ref]
  • Burgos-Moron E.; Calderon-Montano J. M.; Salvador J.; Robles A.; Lopez-Lazaro M. The dark side of curcumin. Int. J. Cancer 2010, 126, 1771–177510.1002/ijc.24967. [PubMed] [Cross Ref]
  • Baell J. B. Feeling nature’s PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J. Nat. Prod. 2016, 79, 616–62810.1021/acs.jnatprod.5b00947. [PubMed] [Cross Ref]
  • Chin D.; Huebbe P.; Pallauf K.; Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease - merits and limitations. Curr. Med. Chem. 2013, 20, 3955–398510.2174/09298673113209990210. [PubMed] [Cross Ref]
  • Glaser J.; Holzgrabe U. Focus on PAINS: False friends in the quest for selective anti-protozoal lead structures from nature?. MedChemComm 2016, 7, 214–22310.1039/C5MD00481K. [Cross Ref]
  • Heger M.; van Golen R. F.; Broekgaarden M.; Michel M. C. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancers. Pharmacol. Rev. 2014, 66, 222–30710.1124/pr.110.004044. [PubMed] [Cross Ref]
  • Elias G.; Jacob P. J.; Hareeshbabu E.; Mathew V. B.; Krishnan B.; Krishnakumar K. Curcumin: Transforming the spice to a wonder drug. Int. J. Pharm. Sci. Res. 2015, 6, 2671–268010.13040/IJPSR.0975-8232.6(7).2671-80. [Cross Ref]
  • Neckers L.; Trepel J.; Lee S.; Chung E.-J.; Lee M.-J.; Jung Y.-J.; Marcu M. G. Curcumin is an inhibitor of p300 histone acetyltransferase. Med. Chem. (Sharjah, United Arab Emirates) 2006, 2, 169–17410.2174/157340606776056133. [PubMed] [Cross Ref]
  • Rainey-Smith S. R.; Brown B. M.; Sohrabi H. R.; Shah T.; Goozee K. G.; Gupta V. B.; Martins R. N. Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br. J. Nutr. 2016, 115, 2106–211310.1017/S0007114516001203. [PubMed] [Cross Ref]
  • Okamura T.; Kubo K.Turmeric pigment-containing chocolate with excellent flavor, texture, and hangover prevention/treatment properties. JP2009183206A, 2009.
  • Kwon H. N.. Functional noodles for relieving hangover and its manufacturing method. KR1314917B1, 2013.
  • Rezq E.-S. A. M.; Mansour M. T. A.-A.; Kumosani T. A.Long acting conserved natural functional groups curcumin. WO2010057503A2, 2010.
  • Wang A.; An X.; Zhou Y.Application of curcumin to medicinal preparations for treating erectile dysfunction. CN101822656A, 2010.
  • Isaacs E.; Cobbledick T.Complete supplement formulae for maintenance of hair growth and condition. GB2484812A, 2012.
  • Huh S.; Lee J.; Jung E.; Kim S.-C.; Kang J.-I.; Lee J.; Kim Y.-W.; Sung Y. K.; Kang H.-K.; Park D. A cell-based system for screening hair growth-promoting agents. Arch. Dermatol. Res. 2009, 301, 381–38510.1007/s00403-009-0931-0. [PubMed] [Cross Ref]
  • Ahluwalia G. S.; Shander D.; Styczynski P.Inhibition of hair growth with protein kinase C inhibitors. WO9609806A2, 1996.
  • Jana S.; Paul S.; Swarnakar S. Curcumin as anti-endometriotic agent: Implication of MMP-3 and intrinsic apoptotic pathway. Biochem. Pharmacol. (Amsterdam, Neth.) 2012, 83, 797–80410.1016/j.bcp.2011.12.030. [PubMed] [Cross Ref]
  • Naz R. K.; Lough M. L. Curcumin as a potential non-steroidal contraceptive with spermicidal and microbicidal properties. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 176, 142–14810.1016/j.ejogrb.2014.01.024. [PubMed] [Cross Ref]
  • Data pertaining to these claims are easily accessible by any Internet search engine, e.g., https://www.google.com/#q=curcumin+AND+health+benefits
  • Goel A.; Kunnumakkara A. B.; Aggarwal B. B. Curcumin as "curecumin": From kitchen to clinic. Biochem. Pharmacol. (Amsterdam, Neth.) 2008, 75, 787–80910.1016/j.bcp.2007.08.016. [PubMed] [Cross Ref]
  • Kumar A.; Chetia H.; Sharma S.; Kabiraj D.; Talukdar N. C.; Bora U. Curcumin resource database. Database 2015, 2015, bav070.10.1093/database/bav070. [PubMed] [Cross Ref]
  • Wang J.; Zhang C.-J.; Chia W. N.; Loh C. C. Y.; Li Z.; Lee Y. M.; He Y.; Yuan L.-X.; Lim T. K.; Liu M.; Liew C. X.; Lee Y. Q.; Zhang J.; Lu N.; Lim C. T.; Hua Z.-C.; Liu B.; Shen H.-M.; Tan K. S. W.; Lin Q. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 2015, 6, 10111.10.1038/ncomms10111. [PubMed] [Cross Ref]
  • Medhi B.; Patyar S.; Rao R. S.; Byrav D. S. P.; Prakash A. Pharmacokinetic and toxicological profile of artemisinin compounds: An update. Pharmacology 2009, 84, 323–33210.1159/000252658. [PubMed] [Cross Ref]
  • Wang Y.-J.; Pan M.-H.; Cheng A.-L.; Lin L.-I.; Ho Y.-S.; Hsieh C.-Y.; Lin J.-K. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 1997, 15, 1867–187610.1016/S0731-7085(96)02024-9. [PubMed] [Cross Ref]
  • Yang K. Y.; Lin L. C.; Tseng T. Y.; Wang S. C.; Tsai T. H. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2007, 853, 183–18910.1016/j.jchromb.2007.03.010. [PubMed] [Cross Ref]
  • Chow S.-C.; Chiu S.-T. A note on design and analysis of clinical trials. Drug Des.: Open Access 2013, 2, 102.10.4172/2169-0138.1000102. [Cross Ref]
  • National Institutes of Health. NIH RePORTER. Research portfolio online reporting tools. Reports, data, and analysis of NIH research activities. http://projectreporter.nih.gov/reporter.cfm (accessed October 6, 2016).
  • Kuttan R.; Bhanumathy P.; Nirmala K.; George M. C. Potential anticancer activity of turmeric (Curcuma longa). Cancer Lett. (N. Y., NY, U. S.) 1985, 29, 197–20210.1016/0304-3835(85)90159-4. [PubMed] [Cross Ref]
  • Niranjan A.; Singh S.; Dhiman M.; Tewari S. K. Biochemical composition of Curcuma longa l. Accessions. Anal. Lett. 2013, 46, 1069–108310.1080/00032719.2012.751541. [Cross Ref]
  • Priyadarsini K. I. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014, 19, 20091–2011210.3390/molecules191220091. [PubMed] [Cross Ref]
  • Food and Drug Administration Office of Food Additive Safety. Agency Response Letter GRAS Notice No. Grn 000460. U.S. Food and Drug Administration, 2013.
  • Majeed S.. The state of the curcumin market. Natural Products Insider; Informa Exhibitions, 2015; http://www.naturalproductsinsider.com/articles/2015/12/the-state-of-the-curcumin-market.aspx.
  • Niranjan A.; Prakash D. Chemical constituents and biological activities of turmeric (Curcuma longa l.) - a review. J. Food Sci. Technol. (New Delhi, India) 2008, 45, 109–116.
  • Panahi Y.; Hosseini M. S.; Khalili N.; Naimi E.; Majeed M.; Sahebkar A. Antioxidant and anti-inflammatory effects of curcuminoid-piperine combination in subjects with metabolic syndrome: A randomized controlled trial and an updated meta-analysis. Clin. Nutr. 2015, 34, 1101–110810.1016/j.clnu.2014.12.019. [PubMed] [Cross Ref]
  • Yue G. G.; Chan B. C.; Hon P. M.; Lee M. Y.; Fung K. P.; Leung P. C.; Lau C. B. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa. Food Chem. Toxicol. 2010, 48, 2011–202010.1016/j.fct.2010.04.039. [PubMed] [Cross Ref]
  • Hu S.; Maiti P.; Ma Q.; Zuo X.; Jones M. R.; Cole G. M.; Frautschy S. A. Clinical development of curcumin in neurodegenerative disease. Expert Rev. Neurother. 2015, 15, 629–63710.1586/14737175.2015.1044981. [PubMed] [Cross Ref]
  • Baell J. B.; Holloway G. A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–274010.1021/jm901137j. [PubMed] [Cross Ref]
  • Fang J.; Lu J.; Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005, 280, 25284–2529010.1074/jbc.M414645200. [PubMed] [Cross Ref]
  • Jurrmann N.; Birgelius-Flohe R.; Boel G.-F. Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J. Nutr. 2005, 135, 1859–1864. [PubMed]
  • Jung Y.; Xu W.; Kim H.; Ha N.; Neckers L. Curcumin-induced degradation of ErbB2: A role for the E3 ubiquitin ligase CHIP and the Michael reaction acceptor activity of curcumin. Biochim. Biophys. Acta, Mol. Cell Res. 2007, 1773, 383–39010.1016/j.bbamcr.2006.11.004. [PubMed] [Cross Ref]
  • Chin D.; Huebbe P.; Frank J.; Rimbach G.; Pallauf K. Curcumin may impair iron status when fed to mice for six months. Redox Biol. 2014, 2, 563–56910.1016/j.redox.2014.01.018. [PubMed] [Cross Ref]
  • Schneider C.; Gordon O. N.; Edwards R. L.; Luis P. B. Degradation of curcumin: From mechanism to biological implications. J. Agric. Food Chem. 2015, 63, 7606–761410.1021/acs.jafc.5b00244. [PubMed] [Cross Ref]
  • Duan D.; Doak A. K.; Nedyalkova L.; Shoichet B. K. Colloidal aggregation and the in vitro activity of traditional Chinese medicines. ACS Chem. Biol. 2015, 10, 978–98810.1021/cb5009487. [PubMed] [Cross Ref]
  • Ingolfsson H. I.; Thakur P.; Herold K. F.; Hobart E. A.; Ramsey N. B.; Periole X.; de Jong D. H.; Zwama M.; Yilmaz D.; Hall K.; Maretzky T.; Hemmings H. C. Jr.; Blobel C.; Marrink S. J.; Kocer A.; Sack J. T.; Andersen O. S. Phytochemicals perturb membranes and promiscuously alter protein function. ACS Chem. Biol. 2014, 9, 1788–179810.1021/cb500086e. [PubMed] [Cross Ref]
  • Priyadarsini K. I. Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. J. Photochem. Photobiol., C 2009, 10, 81–9510.1016/j.jphotochemrev.2009.05.001. [Cross Ref]
  • Esatbeyoglu T.; Ulbrich K.; Rehberg C.; Rohn S.; Rimbach G. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct. 2015, 6, 887–89310.1039/C4FO00790E. [PubMed] [Cross Ref]
  • Avonto C.; Taglialatela-Scafati O.; Pollastro F.; Minassi A.; Di Marzo V.; De Petrocellis L.; Appendino G. An NMR spectroscopic method to identify and classify thiol-trapping agents: Revival of Michael acceptors for drug discovery?. Angew. Chem., Int. Ed. 2011, 50, 467–47110.1002/anie.201005959. [PubMed] [Cross Ref]
  • Pauli G. F.; Chen S. N.; Friesen J. B.; McAlpine J. B.; Jaki B. U. Analysis and purification of bioactive natural products: The AnaPurNa study. J. Nat. Prod. 2012, 75, 1243–125510.1021/np300066q. [PubMed] [Cross Ref]
  • Simmler C.; Hajirahimkhan A.; Lankin D. C.; Bolton J. L.; Jones T.; Soejarto D. D.; Chen S. N.; Pauli G. F. Dynamic residual complexity of the isoliquiritigenin-liquiritigenin interconversion during bioassay. J. Agric. Food Chem. 2013, 61, 2146–215710.1021/jf304445p. [PubMed] [Cross Ref]
  • Gordon O. N.; Luis P. B.; Sintim H. O.; Schneider C. Unraveling curcumin degradation: Autoxidation proceeds through spiroepoxide and vinylether intermediates en route to the main bicyclopentadione. J. Biol. Chem. 2015, 290, 4817–482810.1074/jbc.M114.618785. [PubMed] [Cross Ref]
  • Workman P.; Collins I. Probing the probes: Fitness factors for small molecule tools. Chem. Biol. (Oxford, U. K.) 2010, 17, 561–57710.1016/j.chembiol.2010.05.013. [PMC free article] [PubMed] [Cross Ref]
  • Singh J.; Petter R. C.; Baillie T. A.; Whitty A. The resurgence of covalent drugs. Nat. Rev. Drug Discovery 2011, 10, 307–31710.1038/nrd3410. [PubMed] [Cross Ref]
  • Kalgutkar A. S.; Dalvie D. K. Drug discovery for a new generation of covalent drugs. Expert Opin. Drug Discovery 2012, 7, 561–58110.1517/17460441.2012.688744. [PubMed] [Cross Ref]
  • Schröder J.; Klinger A.; Oellien F.; Marhoefer R. J.; Duszenko M.; Selzer P. M. Docking-based virtual screening of covalently binding ligands: An orthogonal lead discovery approach. J. Med. Chem. 2013, 56, 1478–149010.1021/jm3013932. [PubMed] [Cross Ref]
  • Davids M. S.; Brown J. R. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase. Future Oncol. 2014, 10, 957–96710.2217/fon.14.51. [PubMed] [Cross Ref]
  • Flanagan M. E.; Abramite J. A.; Anderson D. P.; Aulabaugh A.; Dahal U. P.; Gilbert A. M.; Li C.; Montgomery J.; Oppenheimer S. R.; Ryder T.; Schuff B. P.; Uccello D. P.; Walker G. S.; Wu Y.; Brown M. F.; Chen J. M.; Hayward M. M.; Noe M. C.; Obach R. S.; Philippe L.; Shanmugasundaram V.; Shapiro M. J.; Starr J.; Stroh J.; Che Y. Chemical and computational methods for the characterization of covalent reactive groups for the prospective design of irreversible inhibitors. J. Med. Chem. 2014, 57, 10072–1007910.1021/jm501412a. [PubMed] [Cross Ref]
  • Jost C.; Nitsche C.; Scholz T.; Roux L.; Klein C. D. Promiscuity and selectivity in covalent enzyme inhibition: A systematic study of electrophilic fragments. J. Med. Chem. 2014, 57, 7590–759910.1021/jm5006918. [PubMed] [Cross Ref]
  • Mah R.; Thomas J. R.; Shafer C. M. Drug discovery considerations in the development of covalent inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 33–3910.1016/j.bmcl.2013.10.003. [PubMed] [Cross Ref]
  • Moghaddam M. F.; Tang Y.; O’Brien Z.; Richardson S. J.; Bacolod M.; Chaturedi P.; Apuy J.; Kulkarni A. A proposed screening paradigm for discovery of covalent inhibitor drugs. Drug Metab. Lett. 2014, 8, 19–3010.2174/1872312808666140317151735. [PubMed] [Cross Ref]
  • Payton F.; Sandusky P.; Alworth W. L. NMR study of the solution structure of curcumin. J. Nat. Prod. 2007, 70, 143–14610.1021/np060263s. [PubMed] [Cross Ref]
  • Jagannathan R.; Abraham P. M.; Poddar P. Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: A mechanistic study of its solubility and stability. J. Phys. Chem. B 2012, 116, 14533–1454010.1021/jp3050516. [PubMed] [Cross Ref]
  • Takagi T.; Ramachandran C.; Bermejo M.; Yamashita S.; Yu L. X.; Amidon G. L. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharmaceutics 2006, 3, 631–64310.1021/mp0600182. [PubMed] [Cross Ref]
  • Griesser M.; Pistis V.; Suzuki T.; Tejera N.; Pratt D. A.; Schneider C. Autoxidative and cyclooxygenase-2 catalyzed transformation of the dietary chemopreventive agent curcumin. J. Biol. Chem. 2011, 286, 1114–112410.1074/jbc.M110.178806. [PubMed] [Cross Ref]
  • Gordon O. N.; Schneider C. Vanillin and ferulic acid: Not the major degradation products of curcumin. Trends Mol. Med. 2012, 18, 361–363(author reply, pp 363–364)10.1016/j.molmed.2012.04.011. [PubMed] [Cross Ref]
  • Khurana A.; Ho C. T. High-performance liquid-chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in Curcuma longa l. J. Liq. Chromatogr. 1988, 11, 2295–230410.1080/01483918808067200. [Cross Ref]
  • Tønnesen H. H.; Karlsen J.; van Henegouwen G. B. Studies on curcumin and curcuminoids. VIII. Photochemical stability of curcumin. Z. Lebensm.-Unters. Forsch. 1986, 183, 116–12210.1007/BF01041928. [PubMed] [Cross Ref]
  • Ghosh M.; Singh A. T.; Xu W.; Sulchek T.; Gordon L. I.; Ryan R. O. Curcumin nanodisks: Formulation and characterization. Nanomedicine 2011, 7, 162–16710.1016/j.nano.2010.08.002. [PubMed] [Cross Ref]
  • Sun M.; Su X.; Ding B.; He X.; Liu X.; Yu A.; Lou H.; Zhai G. Advances in nantoechnology-based delivery systems for curcumin. Nanomedicine (London, U. K.) 2012, 7, 1085–110010.2217/nnm.12.80. [PubMed] [Cross Ref]
  • Tamvakopoulos C.; Dimas K.; Sofianos Z. D.; Hatziantoniou S.; Han Z.; Liu Z. L.; Wyche J. H.; Pantazis P. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin. Cancer Res. 2007, 13, 1269–127710.1158/1078-0432.CCR-06-1839. [PubMed] [Cross Ref]
  • Robinson T. P.; Hubbard R. B. t.; Ehlers T. J.; Arbiser J. L.; Goldsmith D. J.; Bowen J. P. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem. 2005, 13, 4007–401310.1016/j.bmc.2005.03.054. [PubMed] [Cross Ref]
  • Liang G.; Shao L.; Wang Y.; Zhao C.; Chu Y.; Xiao J.; Zhao Y.; Li X.; Yang S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem. 2009, 17, 2623–263110.1016/j.bmc.2008.10.044. [PubMed] [Cross Ref]
  • Lim T.-G.; Lee S.-Y.; Huang Z.; Lim D. Y.; Chen H.; Jung S. K.; Bode A. M.; Lee K. W.; Dong Z. Curcumin suppresses proliferation of colon cancer cells by targeting CDK2. Cancer Prev. Res. 2014, 7, 466–47410.1158/1940-6207.CAPR-13-0387. [PMC free article] [PubMed] [Cross Ref]
  • Balasubramanian K. Molecular orbital basis for yellow curry spice curcumin’s prevention of Alzheimer’s disease. J. Agric. Food Chem. 2006, 54, 3512–352010.1021/jf0603533. [PubMed] [Cross Ref]
  • Ciccone L.; Tepshi L.; Nencetti S.; Stura E. A. Transthyretin complexes with curcumin and bromo-estradiol: Evaluation of solubilizing multicomponent mixtures. New Biotechnol. 2015, 32, 54–6410.1016/j.nbt.2014.09.002. [PubMed] [Cross Ref]
  • Irwin J. J.; Duan D.; Torosyan H.; Doak A. K.; Ziebart K. T.; Sterling T.; Tumanian G.; Shoichet B. K. An aggregation advisor for ligand discovery. J. Med. Chem. 2015, 58, 7076–708710.1021/acs.jmedchem.5b01105. [PubMed] [Cross Ref]
  • Coan K. E.; Shoichet B. K. Stoichiometry and physical chemistry of promiscuous aggregate-based inhibitors. J. Am. Chem. Soc. 2008, 130, 9606–961210.1021/ja802977h. [PubMed] [Cross Ref]
  • Coan K. E. D.; Maltby D. A.; Burlingame A. L.; Shoichet B. K. Promiscuous aggregate-based inhibitors promote enzyme unfolding. J. Med. Chem. 2009, 52, 2067–207510.1021/jm801605r. [PubMed] [Cross Ref]
  • Winter S.; Tortik N.; Kubin A.; Krammer B.; Plaetzer K. Back to the roots: Photodynamic inactivation of bacteria based on water-soluble curcumin bound to polyvinylpyrrolidone as a photosensitizer. Photochem. Photobiol. Sci. 2013, 12, 1795–180210.1039/c3pp50095k. [PubMed] [Cross Ref]
  • Siviero A.; Gallo E.; Maggini V.; Gori L.; Mugelli A.; Firenzuoli F.; Vannacci A. Curcumin, a golden spice with a low bioavailability. Journal of Herbal Medicine 2015, 5, 57–7010.1016/j.hermed.2015.03.001. [Cross Ref]
  • Lao C. D.; Ruffin M. T. I. V.; Normolle D.; Heath D. D.; Murray S. I.; Bailey J. M.; Boggs M. E.; Crowell J.; Rock C. L.; Brenner D. E. Dose escalation of a curcuminoid formulation. BMC Complementary Altern. Med. 2006, 6, 10.10.1186/1472-6882-6-10. [PMC free article] [PubMed] [Cross Ref]
  • Wahlang B.; Pawar Y. B.; Bansal A. K. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur. J. Pharm. Biopharm. 2011, 77, 275–28210.1016/j.ejpb.2010.12.006. [PubMed] [Cross Ref]
  • Volpe D. A.; Faustino P. J.; Ciavarella A. B.; Asafu-Adjaye E. B.; Ellison C. D.; Yu L. X.; Hussain A. S. Classification of drug permeability with a Caco-2 cell monolayer assay. Clin. Res. Regul. Aff. 2007, 24, 39–4710.1080/10601330701273669. [Cross Ref]
  • Suresh D.; Srinivasan K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J. Med. Res. 2010, 131, 682–691. [PubMed]
  • Ravindranath V.; Chandrasekhara N. Absorption and tissue distribution of curcumin in rats. Toxicology 1980, 16, 259–26510.1016/0300-483X(80)90122-5. [PubMed] [Cross Ref]
  • Ravindranath V.; Chandrasekhara N. Metabolism of curcumin - studies with curcumin. Toxicology 1982, 22, 337–34410.1016/0300-483X(81)90027-5. [PubMed] [Cross Ref]
  • Mathews S.; Rao M. N. A. Interaction of curcumin with glutathione. Int. J. Pharm. (Amsterdam, Neth.) 1991, 76, 257–25910.1016/0378-5173(91)90278-V. [Cross Ref]
  • Asai A.; Miyazawa T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci. 2000, 67, 2785–279310.1016/S0024-3205(00)00868-7. [PubMed] [Cross Ref]
  • Sharma R. A.; McLelland H. R.; Hill K. A.; Ireson C. R.; Euden S. A.; Manson M. M.; Pirmohamed M.; Marnett L. J.; Gescher A. J.; Steward W. P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res. 2001, 7, 1894–1900. [PubMed]
  • Garcea G.; Berry D. P.; Jones D. J. L.; Singh R.; Dennison A. R.; Farmer P. B.; Sharma R. A.; Steward W. P.; Gescher A. J. Consumption of the putative chemopreventative agent curcumin by cancer patients: Assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol., Biomarkers Prev. 2005, 14, 120–125. [PubMed]
  • Johnson J. J.; Mukhtar H. Curcumin for chemoprevention of colon cancer. Cancer Lett. (N. Y., NY, U. S.) 2007, 255, 170–18110.1016/j.canlet.2007.03.005. [PubMed] [Cross Ref]
  • Vareed S. K.; Kakarala M.; Ruffin M. T.; Crowell J. A.; Normolle D. P.; Djuric Z.; Brenner D. E. Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiol., Biomarkers Prev. 2008, 17, 1411–141710.1158/1055-9965.EPI-07-2693. [PubMed] [Cross Ref]
  • Chan E.; Tan M.; Xin J.; Sudarsanam S.; Johnson D. E. Interactions between traditional Chinese medicines and western therapeutics. Curr. Opin. Drug Discovery Dev. 2010, 13, 50–65. [PubMed]
  • Hong D. H.; Son Y. K.; Choi I.-W.; Park W. S. The inhibitory effect of curcumin on voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Biochem. Biophys. Res. Commun. 2013, 430, 307–31210.1016/j.bbrc.2012.10.132. [PubMed] [Cross Ref]
  • Bamba Y.; Yun Y. S.; Kunugi A.; Inoue H. Compounds isolated from Curcuma aromatica Salisb. inhibit human P450 enzymes. J. Nat. Med. 2011, 65, 583–58710.1007/s11418-011-0507-0. [PubMed] [Cross Ref]
  • Gupta S. C.; Kismali G.; Aggarwal B. B. Curcumin, a component of turmeric: From farm to pharmacy. BioFactors 2013, 39, 2–1310.1002/biof.1079. [PubMed] [Cross Ref]
  • Schramm A.; Jahne E. A.; Baburin I.; Hering S.; Hamburger M. Natural products as potential human ether-a-go-go-related gene channel inhibitors - outcomes from a screening of widely used herbal medicines and edible plants. Planta Med. 2014, 80, 1045–105010.1055/s-0034-1382907. [PubMed] [Cross Ref]
  • Xia M.; Shahane S. A.; Huang R.; Titus S. A.; Shum E.; Zhao Y.; Southall N.; Zheng W.; Witt K. L.; Tice R. R.; Austin C. P. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol. Appl. Pharmacol. 2011, 252, 250–25810.1016/j.taap.2011.02.016. [PubMed] [Cross Ref]
  • Hu C.-W.; Sheng Y.; Zhang Q.; Liu H.-B.; Xie X.; Ma W.-C.; Huo R.; Dong D.-L. Curcumin inhibits hERG potassium channels in vitro. Toxicol. Lett. 2012, 208, 192–19610.1016/j.toxlet.2011.11.005. [PubMed] [Cross Ref]
  • Zhang G.; Nitteranon V.; Chan L. Y.; Parkin K. L. Glutathione conjugation attenuates biological activities of 6-dehydroshogaol from ginger. Food Chem. 2013, 140, 1–810.1016/j.foodchem.2013.02.073. [PubMed] [Cross Ref]
  • McFadden R.-M. T.; Larmonier C. B.; Shehab K. W.; Midura-Kiela M.; Ramalingam R.; Harrison C. A.; Besselsen D. G.; Chase J. H.; Caporaso J. G.; Jobin C.; Ghishan F. K.; Kiela P. R. The role of curcumin in modulating colonic microbiota during colitis and colon cancer prevention. Inflamm Bowel Dis. 2015, 21, 2483–249410.1097/MIB.0000000000000522. [PubMed] [Cross Ref]
  • Gupta S. C.; Prasad S.; Kim J. H.; Patchva S.; Webb L. J.; Priyadarsini I. K.; Aggarwal B. B. Multitargeting by curcumin as revealed by molecular interaction studies. Nat. Prod. Rep. 2011, 28, 1937–195510.1039/c1np00051a. [PubMed] [Cross Ref]
  • Ghosh S.; Banerjee S.; Sil P. C. The beneficial role of curcumin on inflammation, diabetes and neurodegenerative disease: A recent update. Food Chem. Toxicol. 2015, 83, 111–12410.1016/j.fct.2015.05.022. [PubMed] [Cross Ref]
  • Oliveira A. S.; Sousa E.; Vasconcelos M. H.; Pinto M. Curcumin: A natural lead for potential new drug candidates. Curr. Med. Chem. 2015, 22, 4196–423210.2174/0929867322666151029104611. [PubMed] [Cross Ref]
  • Kundu P.; Mohanty C.; Sahoo S. K. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater. 2012, 8, 2670–268710.1016/j.actbio.2012.03.048. [PubMed] [Cross Ref]
  • Dilnawaz F.; Singh A.; Sahoo S. K. Transferrin-conjugated curcumin-loaded superparamagnetic iron oxide nanoparticles induce augmented cellular uptake and apoptosis in K562 cells. Acta Biomater. 2012, 8, 704–71910.1016/j.actbio.2011.10.022. [PubMed] [Cross Ref]
  • Ni Z.; Xing F.; Wang P.; Cao G. Retracted: Synthesis, characterization and release of curcumin-intercalated Mg–Al-layered double hydroxides. Appl. Clay Sci. 2008, 40, 72–8010.1016/j.clay.2007.07.008. [Cross Ref]
  • Tomita M.; Kawakami H.; Uchihara J. N.; Okudaira T.; Masuda M.; Takasu N.; Matsuda T.; Ohta T.; Tanaka Y.; Mori N. Curcumin suppresses constitutive activation of AP-1 by downregulation of Jund protein in HTLV-1-infected T-cell lines. Leuk. Res. 2006, 30, 313–32110.1016/j.leukres.2005.08.004. [PubMed] [Cross Ref]
  • Mishra A.; Kumar R.; Tyagi A.; Kohaar I.; Hedau S.; Bharti A. C.; Sarker S.; Dey D.; Saluja D.; Das B. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. ecancer 2015, 9, 525.10.3332/ecancer.2015.525. [PMC free article] [PubMed] [Cross Ref]
  • Tomita M.; et al. Retraction: Curcumin targets Akt cell survival signaling pathway in HTLV-I-infected T-cell lines. Cancer Sci. 2011, 102, 499.10.1111/j.1349-7006.2010.01831.x. [PubMed] [Cross Ref]
  • Balasubramanyam K.; Varier R. A.; Altaf M.; Swaminathan V.; Siddappa N. B.; Ranga U.; Kundu T. K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 2004, 279, 51163–5117110.1074/jbc.M409024200. [PubMed] [Cross Ref]
  • Simon R. P.; Robaa D.; Alhalabi Z.; Sippl W.; Jung M. Katching-up on small molecule modulators of lysine acetyltransferases. J. Med. Chem. 2016, 59, 1249–127010.1021/acs.jmedchem.5b01502. [PubMed] [Cross Ref]
  • Lu X.; Deng Y.; Yu D.; Cao H.; Wang L.; Liu L.; Yu C.; Zhang Y.; Guo X.; Yu G. Histone acetyltransferase p300 mediates histone acetylation of PS1 and BACE1 in a cellular model of Alzheimer’s disease. PLoS One 2014, 9, e103067.10.1371/journal.pone.0103067. [PubMed] [Cross Ref]
  • Cui L.; Miao J.; Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: Inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob. Agents Chemother. 2007, 51, 488–49410.1128/AAC.01238-06. [PubMed] [Cross Ref]
  • Kutluay S. B.; Doroghazi J.; Roemer M. E.; Triezenberg S. J. Curcumin inhibits herpes simplex virus immediate-early gene expression by a mechanism independent of p300/CBP histone acetyltransferase activity. Virology 2008, 373, 239–24710.1016/j.virol.2007.11.028. [PubMed] [Cross Ref]
  • Kang S.-K.; Cha S.-H.; Jeon H.-G. Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev. 2006, 15, 165–17410.1089/scd.2006.15.165. [PubMed] [Cross Ref]
  • Chen W.; Bacanamwo M.; Harrison D. G. Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitric-oxide synthase mRNA transcription. J. Biol. Chem. 2008, 283, 16293–1629810.1074/jbc.M801803200. [PubMed] [Cross Ref]
  • Chiu J.; Khan Z. A.; Farhangkhoee H.; Chakrabarti S. Curcumin prevents diabetes-associated abnormalities in the kidneys by inhibiting p300 and nuclear factor-kappaB. Nutrition 2009, 25, 964–97210.1016/j.nut.2008.12.007. [PubMed] [Cross Ref]
  • Collins H. M.; Abdelghany M. K.; Messmer M.; Yue B.; Deeves S. E.; Kindle K. B.; Mantelingu K.; Aslam A.; Winkler G. S.; Kundu T. K.; Heery D. M. Differential effects of garcinol and curcumin on histone and p53 modifications in tumour cells. BMC Cancer 2013, 13, 37.10.1186/1471-2407-13-37. [PubMed] [Cross Ref]
  • Dahlin J. L.; Nissink J. W. M.; Strasser J. M.; Francis S.; Higgins L.; Zhou H.; Zhang Z.; Walters M. A. PAINS in the assay: Chemical mechanisms of assay interference and promiscuous enzymatic inhibition observed during a sulfhydryl-scavenging HTS. J. Med. Chem. 2015, 58, 2091–211310.1021/jm5019093. [PubMed] [Cross Ref]
  • Bora-Tatar G.; Dayangac-Erden D.; Demir A. S.; Dalkara S.; Yelekci K.; Erdem-Yurter H. Molecular modifications on carboxylic acid derivatives as potent histone deacetylase inhibitors: Activity and docking studies. Bioorg. Med. Chem. 2009, 17, 5219–522810.1016/j.bmc.2009.05.042. [PubMed] [Cross Ref]
  • Wang S.-H.; Lin P.-Y.; Chiu Y.-C.; Huang J.-S.; Kuo Y.-T.; Wu J.-C.; Chen C.-C. Curcumin-mediated HDAC inhibition suppresses the DNA damage response and contributes to increased DNA damage sensitivity. PLoS One 2015, 10, e0134110/0134111–e0134110/013411910.1371/journal.pone.0134110. [PubMed] [Cross Ref]
  • Link A.; Balaguer F.; Goel A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. (Amsterdam, Neth.) 2010, 80, 1771–179210.1016/j.bcp.2010.06.036. [PMC free article] [PubMed] [Cross Ref]
  • Rajendran P.; Ho E.; Williams D. E.; Dashwood R. H. Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells. Clin. Epigenet. 2011, 3, 4.10.1186/1868-7083-3-4. [PMC free article] [PubMed] [Cross Ref]
  • Bustanji Y.; Taha M. O.; Almasri I. M.; Al-Ghussein M. A. S.; Mohammad M. K.; Alkhatib H. S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J. Enzyme Inhib. Med. Chem. 2009, 24, 771–77810.1080/14756360802364377. [PubMed] [Cross Ref]
  • Di Martino R. M.; De Simone A.; Andrisano V.; Bisignano P.; Bisi A.; Gobbi S.; Rampa A.; Fato R.; Bergamini C.; Perez D. I.; Martinez A.; Bottegoni G.; Cavalli A.; Belluti F. Versatility of the curcumin scaffold: Discovery of potent and balanced dual BACE-1 and GSK-3beta inhibitors. J. Med. Chem. 2016, 59, 531–54410.1021/acs.jmedchem.5b00894. [PubMed] [Cross Ref]
  • Zhang X.; Yin W. K.; Shi X. D.; Li Y. Curcumin activates Wnt/beta-catenin signaling pathway through inhibiting the activity of GSK-3beta in APPswe transfected SY5Y cells. Eur. J. Pharm. Sci. 2011, 42, 540–54610.1016/j.ejps.2011.02.009. [PubMed] [Cross Ref]
  • Yun J. H.; Park Y. G.; Lee K. M.; Kim J.; Nho C. W. Curcumin induces apoptotic cell death via Oct4 inhibition and GSK-3beta activation in NCCIT cells. Mol. Nutr. Food Res. 2015, 59, 1053–106210.1002/mnfr.201400739. [PubMed] [Cross Ref]
  • Xiong Z.; Hongmei Z.; Lu S.; Yu L. Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol. Rep. 2011, 63, 1101–110810.1016/S1734-1140(11)70629-6. [PubMed] [Cross Ref]
  • Dahlin J. L.; Inglese J.; Walters M. A. Mitigating risk in academic preclinical drug discovery. Nat. Rev. Drug Discovery 2015, 14, 279–29410.1038/nrd4578. [PubMed] [Cross Ref]
  • Yang F.; Lim G. P.; Begum A. N.; Ubeda O. J.; Simmons M. R.; Ambegaokar S. S.; Chen P. P.; Kayed R.; Glabe C. G.; Frautschy S. A.; Cole G. M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005, 280, 5892–590110.1074/jbc.M404751200. [PubMed] [Cross Ref]
  • Hudson S. A.; Ecroyd H.; Kee T. W.; Carver J. A. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J. 2009, 276, 5960–597210.1111/j.1742-4658.2009.07307.x. [PubMed] [Cross Ref]
  • Thapa A.; Jett S. D.; Chi E. Y. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation pathway. ACS Chem. Neurosci. 2016, 7, 56–6810.1021/acschemneuro.5b00214. [PubMed] [Cross Ref]
  • Kayed R.; Head E.; Thompson J. L.; McIntire T. M.; Milton S. C.; Cotman C. W.; Glabe C. G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science (Washington, DC, U. S.) 2003, 300, 486–48910.1126/science.1079469. [PubMed] [Cross Ref]
  • Feng B. Y.; Shoichet B. K. A detergent-based assay for the detection of promiscuous inhibitors. Nat. Protoc. 2006, 1, 550–55310.1038/nprot.2006.77. [PubMed] [Cross Ref]
  • Egan M. E.; Pearson M.; Weiner S. A.; Rajendran V.; Rubin D.; Gloeckner-Pagel J.; Canny S.; Du K.; Lukacs G. L.; Caplan M. J. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science (Washington, DC, U. S.) 2004, 304, 600–60210.1126/science.1093941. [PubMed] [Cross Ref]
  • Song Y.; Sonawane N. D.; Salinas D.; Qian L.; Pedemonte N.; Galietta L. J. V.; Verkman A. S. Evidence against the rescue of defective ΔF508-CFTR cellular processing by curcumin in cell culture and mouse models. J. Biol. Chem. 2004, 279, 40629–4063310.1074/jbc.M407308200. [PubMed] [Cross Ref]
  • Dey I.; Shah K.; Bradbury N. A. Natural compounds as therapeutic agents in the treatment cystic fibrosis. J. Genet. Syndr. Gene Ther. 2016, 7, 284.10.4172/2157-7412.1000284. [PubMed] [Cross Ref]
  • Seely K. A.; Levi M. S.; Prather P. L. The dietary polyphenols trans-resveratrol and curcumin selectively bind human CB1 cannabinoid receptors with nanomolar affinities and function as antagonists/inverse agonists. J. Pharmacol. Exp. Ther. 2009, 330, 31–3910.1124/jpet.109.151654. [PubMed] [Cross Ref]
  • Prather P. L.; Seely K. A.; Levi M. S. Notice of retraction. J. Pharmacol. Exp. Ther. 2009, 331, 1147. [PubMed]
  • Sharma C.; Sadek B.; Goyal S. N.; Sinha S.; Kamal M. A.; Ojha S. Small molecules from nature targeting G-protein coupled cannabinoid receptors: Potential leads for drug discovery and development. Evidence-Based Complementary Altern. Med. 2015, 2015, 238482.10.1155/2015/238482. [PMC free article] [PubMed] [Cross Ref]
  • Code of Federal Regulations Title 21. Part 182: Substances Generally Recognized as Safe. Section 182.20 Essential oils, oleoresins (solvent-free), and natural extractives (including distillates). U.S. Food and Drug Administration, 2016.
  • Ringman J. M.; Bardens J.; Apostolova L. G.; Frautschy S. A.; Teng E.; Cole G. M.; Begum A. N.; Beigi M.; Gylys K. H.; Badmaev V.; Heath D. D.; Porter V.; Vanek Z.; Marshall G. A.; Hellemann G.; Sugar C.; Masterman D. L.; Montine T. J.; Cummings J. L. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer's Res. Ther. 2012, 4, 43.10.1186/alzrt146. [PubMed] [Cross Ref]
  • Pfizer . Bioequivalence study comparing a new 10 mg atorvastatin tablet to a 10 mg atorvastatin commercial tablet. https://clinicaltrials.gov/ct2/show/NCT00917579, 2009
  • Sharma R. A.; Euden S. A.; Platton S. L.; Cooke D. N.; Shafayat A.; Hewitt H. R.; Marczylo T. H.; Morgan B.; Hemingway D.; Plummer S. M.; Pirmohamed M.; Gescher A. J.; Steward W. P. Phase I clinical trial of oral curcumin: Biomarkers of systemic activity and compliance. Clin. Cancer Res. 2004, 10, 6847–685410.1158/1078-0432.CCR-04-0744. [PubMed] [Cross Ref]
  • Dhillon N.; Aggarwal B. B.; Newman R. A.; Wolff R. A.; Kunnumakkara A. B.; Abbruzzese J. L.; Ng C. S.; Badmaev V.; Kurzrock R. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin. Cancer Res. 2008, 14, 4491–449910.1158/1078-0432.CCR-08-0024. [PubMed] [Cross Ref]
  • Asher G. N.; Spelman K. Clinical utility of curcumin extract. Altern. Ther. Health Med. 2013, 19, 20–22. [PubMed]
  • Gupta S. C.; Patchva S.; Aggarwal B. B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013, 15, 195–21810.1208/s12248-012-9432-8. [PubMed] [Cross Ref]
  • Hsu C.-H.; Cheng A.-L. Clinical studies with curcumin. Adv. Exp. Med. Biol. 2007, 595, 471–48010.1007/978-0-387-46401-5_21. [PubMed] [Cross Ref]
  • Oppenheimer A. Turmeric (curcumin) in biliary diseases. Lancet 1937, 229, 619–62110.1016/S0140-6736(00)98193-5. [Cross Ref]
  • National Institutes of Health. "ClinicalTrials.gov." Registry and results database of clinical studies of human participants. http://clinicaltrials.gov (accessed October 6, 2016).
  • Hurlstone D. P.; Karajeh M.; Sanders D. S.; Drew S. K.; Cross S. S. Rectal aberrant crypt foci identified using high-magnification-chromoscopic colonoscopy: Biomarkers for flat and depressed neoplasia. Am. J. Gastroenterol. 2005, 100, 1283–128910.1111/j.1572-0241.2005.40891.x. [PubMed] [Cross Ref]
  • Mattson M. P.; Cheng A. Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci. 2006, 29, 632–63910.1016/j.tins.2006.09.001. [PubMed] [Cross Ref]
  • Brondino N.; Re S.; Boldrini A.; Cuccomarino A.; Lanati N.; Barale F.; Politi P. Curcumin as a therapeutic agent in dementia: A mini systematic review of human studies. Sci. World J. 2014, 2014, 174282.10.1155/2014/174282. [PMC free article] [PubMed] [Cross Ref]
  • Chandra V.; Pandav R.; Dodge H. H.; Johnston J. M.; Belle S. H.; DeKosky S. T.; Ganguli M. Incidence of Alzheimer’s disease in a rural community in India: The Indo-US study. Neurology 2001, 57, 985–98910.1212/WNL.57.6.985. [PubMed] [Cross Ref]
  • Ng T.-P.; Chiam P.-C.; Lee T.; Chua H.-C.; Lim L.; Kua E.-H. Curry consumption and cognitive function in the elderly. Am. J. Epidemiol. 2006, 164, 898–90610.1093/aje/kwj267. [PubMed] [Cross Ref]
  • Li S.; Yuan W.; Deng G.; Wang P.; Yang P.; Aggarwal B. B. Chemical composition and product quality control of turmeric (Curcuma longa l.). Pharm. Crops 2011, 2, 28–5410.2174/2210290601102010028. [Cross Ref]
  • Clark C. M.; Sheppard L.; Fillinbaum G. G.; Galasko D.; Morris J. C.; Koss E.; Mohs R.; Heyman A. Variability in annual mini-mental state examination score in patients with probable Alzheimer’s disease. Arch. Neurol. (Chicago) 1999, 56, 857–86210.1001/archneur.56.7.857. [PubMed] [Cross Ref]
  • Dahlin J. L.; Walters M. A. The essential roles of chemistry in high-throughput screening triage. Future Med. Chem. 2014, 6, 1265–129010.4155/fmc.14.60. [PubMed] [Cross Ref]
  • Atanasov A. G.; Waltenberger B.; Pferschy-Wenzig E. M.; Linder T.; Wawrosch C.; Uhrin P.; Temml V.; Wang L.; Schwaiger S.; Heiss E. H.; Rollinger J. M.; Schuster D.; Breuss J. M.; Bochkov V.; Mihovilovic M. D.; Kopp B.; Bauer R.; Dirsch V. M.; Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–161410.1016/j.biotechadv.2015.08.001. [PubMed] [Cross Ref]
  • Wagner H. Synergy research: Approaching a new generation of phytopharmaceuticals. Fitoterapia 2011, 82, 34–3710.1016/j.fitote.2010.11.016. [PubMed] [Cross Ref]
  • Gertsch J. The metabolic plant feedback hypothesis: How plant secondary metabolites nonspecifically impact human health. Planta Med. 2016, 82, 920–92910.1055/s-0042-108340. [PubMed] [Cross Ref]

Plaats een reactie ...

1 Reactie op "Curcumine kan geen geneesmiddel zijn schrijft Henk Timmerman emeritus hoogleraar farmachemie in Medisch Contact n.a.v. reviewstudie The Essential Medicinal Chemistry of Curcumin"

  • Adam Van Hoof :
    Leerrijk artikel. Ik begrijp dat alleen Curcumine nemen geen geneesmiddel kan zijn, maar het kan wel een positieve werking hebben op de gezondheid en het mentale gevoel van een patiënt. Mijn lichaam was echt zwak in het verleden en dankzij het nemen van Curcumine-supplementen voel ik mij veel beter. Commerciële link weggehaald

Gerelateerde artikelen
 

Gerelateerde artikelen

Curcumine gecombineerd met >> Curcuma extract geeft veel >> Curcumine toegevoegd aan FOLFOX >> Intraveneus curcumine in combinatie >> Een half jaar dagelijks curcumine >> Is kurkuma - curcumine gevaarlijk >> Curcumine kan geen geneesmiddel >> Welke curcuma extracten zijn >> Is beter opneembare curcuma >> Curcumine extract voorkomt >>