Artikelen over hoge dosis vitamine C bij kanker staan hier op onze website een aantal artikelen: 

https://kanker-actueel.nl/iaa-intraveneuze-injecties-met-vitamine-c-een-overzicht-van-artikelen-en-studies.html

13 februari 2021: Zie ook dit artikel: https://kanker-actueel.nl/NL/hoge-doses-vitamine-c-of-zink-of-beide-supplementen-verminderden-de-sars-cov-2-symptomen-indien-patienten-al-besmet-waren-met-het-coronavirus-covid-19.html

17 oktober 2020: Afgelopen maanden zijn weer enkele studies gepubliceerd die de effectiviteit van hoge dosis vitamine C en quercetin aantonen. Het is echt teveel om de resultaten te vertalen en er allemaal uit te halen.

Maar is wel interessant, zie bv de resultaten uit een studie (zie in gerelateerde artikelen eerdere beschrijving van deze studie) bij uiteindelijk 58 ernstig zieke coronapatienten:

https://assets.researchsquare.com/files/rs-52778/v1/e3812db9-cb32-4a81-b024-76f54c344112.pdf

Samenvattend vonden we dat de toevoeging van Hoge Dosis Intraveneus Vitamine C (HDIVC) een beschermend klinisch effect kan bieden zonder enige bijwerkingen bij ernstig zieke patiënten met COVID-19. HDIVC bood een van de alternatieve behandelingsopties, aangezien er op dit moment geen effectieve medicatie of behandeling was om COVID-19 te genezen. 

maar zie o.a. ook dit studierapport: 

Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19)

(Quercetine en vitamine C: een experimentele, synergetische therapie voor de preventie en behandeling van aan SARS-CoV-2 gerelateerde ziekten (COVID-19))

Het abstract staat onderaan dit artikel met referentielijst.

Een andere studie is deze: Two known therapies could be useful as adjuvant therapy in critical patients infected by COVID-19 waarbij een analyse van vitamine C en ook ozontherapie. Download het PDF studierapport voor details van de studie. 

In dit document bespreken we twee eenvoudige adjuvante therapieën om toe te dienen, zonder bijwerkingen en tegen lage kosten die nuttig kunnen zijn voor de behandeling van acute ernstige coronavirusinfectie geassocieerd met acuut respiratoir syndroom (SARS-CoV-2). Vitamine C, een krachtige antioxidant, is naar voren gekomen als een relevante therapie vanwege de potentiële voordelen ervan bij intraveneuze toediening. Het potentiële effect van vitamine C bij het verminderen van ontstekingen in de longen zou een sleutelrol kunnen spelen bij longbeschadiging veroorzaakt door coronavirusinfectie. Een andere mogelijke effectieve therapie is ozon: het is uitgebreid bestudeerd en al vele jaren gebruikt en de doeltreffendheid ervan is tot dusver in veelvoudige studies aangetoond. 

Verschillende gerandomiseerde gecontroleerde studies gericht op het bevestigen van de gunstige effecten van vitamine C en andere supplementen bij ernstig zieke patiënten met sepsis, zijn momenteel aan de gang, waaronder de VICTAS-, ACTS- en HYVCTTSSS-onderzoeken. Zie  studiereferenties: 242526

18 april 2020: Deze studie bij patiënten besmet met het corona virus (COVID-19) loopt al vanaf 11 februari tot 30 september: Vitamin C Infusion for the Treatment of Severe 2019-nCoV Infected Pneumonia Resultaten worden eind september 2020 verwacht.

Study Description
Brief Summary:

2019 new coronavirus (2019-nCoV) infected pneumonia, namely severe acute respiratory infection (SARI) has caused global concern and emergency. There is a lack of effective targeted antiviral drugs, and symptomatic supportive treatment is still the current main treatment for SARI.

Vitamin C is significant to human body and plays a role in reducing inflammatory response and preventing common cold. In addtion, a few studies have shown that vitamin C deficiency is related to the increased risk and severity of influenza infections.

We hypothize that Vitamin C infusion can help improve the prognosis of patients with SARI. Therefore, it is necessary to study the clinical efficacy and safety of vitamin C for the clinical management of SARI through randomized controlled trials during the current epidemic of SARI.>>>>>>>lees meer

13 april 2020: Lees ook dit artikel: 

https://kanker-actueel.nl/vitamine-c-gegeven-aan-patienten-met-acute-luchtweginfecties-op-de-intensive-care-vermindert-de-duur-van-de-beademing-met-gemiddeld-18-procent-en-verkort-de-duur-op-de-ic-met-mediaan-8-procent.html

Prof. Paul Marik, intensivist en internist in het Sentara Norfolk General Hospital in Norfolk in de Amerikaanse staat Virginia gebruikt dit protocol van Vitamin C, Hydrocortisone en Thiamine (vitamine B1) voor patienten die met sepsis in het ziekenhuis belanden. Klik op deze PDF

3 april 2020: Hoge doses vitamine C helpen het immuunsysteem te versterken en kunnen (long) ontstekingen remmen en minder erg maken. Maar zie het niet als medicijn tegen het corona virus zelf. Zo stelt dr. Alexander Michels, een onderzoeksmedewerker bij het Linus Pauling Institute in de staat Oregon, die al 20 jaar onderzoek doet hoe vitamine C het lichaam beïnvloedt. Klik op de titel van het artikel:

Does Vitamin C Help Protect You Against COVID-19?

29 maart 2020: Zie via deze link video over hoe infusen met hoge dosis vitamine C kunnen worden toegediend bij patiënten besmet met het corona virus (COVID-19 en in het ziekenhuis terecht komen. Met nog meer informatie erbij. Bv.: 

Here is a verified official statement from China’s Xi’an Jiaotong University Second Hospital:

“On the afternoon of February 20, 2020, another 4 patients with severe coronavirus pneumonia recovered from the C10 West Ward of Tongji Hospital. In the past 8 patients have been discharged from hospital. . . [H]igh-dose vitamin C achieved good results in clinical applications. We believe that for patients with severe neonatal pneumonia, and for critically ill patients, vitamin C treatment should be initiated as soon as possible after admission. Numerous studies have shown that the dose of vitamin C has a lot to do with the effect of treatment. High-dose vitamin C can not only improve antiviral levels, but more importantly, can prevent and treat acute lung injury (ALI) and acute respiratory distress (ARDS).”

Here is a report from Korea:

“At my hospital in Daegu, South Korea, all inpatients and all staff members have been using vitamin C orally since last week. Some people this week had a mild fever, headaches and coughs, and those who had symptoms got 30,000 mg intravenous vitamin C. Some people got better after about two days, and most had symptoms go away after one injection.” (Hyoungjoo Shin, M.D.)>>>>>>>lees verder

25 maart 2020: In New York geven artsen wel infusen met hoge dosis vitamine C. Zie verslag in de Daily mail o.a.: 

New York hospitals are treating coronavirus patients with high dosages of VITAMIN C after promising results from China

Artsen in de staat New York geven hun ernstig zieke coronaviruspatiënten enorme hoeveelheden vitamine C, een tactiek waarvan wordt gezegd dat ze zelfs de zwaarst getroffen mensen in China hebben geholpen.
Dr.Andrew Weber, een longarts in Long Island en specialist op het gebied van intensive care bij Northwell Health, vertelde dat hij zijn intensive care-patiënten onmiddellijk 1.500 milligram intraveneuze vitamine C heeft gegeven.
Die patiënten krijgen vervolgens drie of vier keer per dag de doses van de krachtige antioxidant opnieuw toegediend, legde de arts uit aan de New York Post.

  • Dr Andrew Weber says he has been immediately giving his intensive-care patients 1,500 milligrams of intravenous vitamin C
  • The Long Island-based pulmonologist and critical-care specialist with Northwell Health says patients are given three to four doses a day 
  • The regimen is based on experimental treatments that were done in China
  • Jason Molinet, a spokesman for Northwell, says Vitamin C is being 'widely used' as a coronavirus treatment throughout the health system 
  • A clinical trial into the effectiveness of intravenous vitamin C patients with coronavirus was conducted on February 14 at Zhongnan Hospital in Wuhan 

24 maart 2020: Iemand stuurde mij deze tip voor liposomale vitamine C welke je zelfs zelf kan maken. Maar lees ook onze disclaimer, want we hebben geen enkele band met deze organisatie en geven deze link alleen omdat die wel past in dit onderwerp, maar wij hebben geen enkel belang bij dit artikel. Dus de verantwoording ligt volledig bij de auteur.

Het artikel is al wel in 2017 geschreven dus nog voor de corona crisis. Klik op de volgende link en onderaan staat een recept hoe je deze vorm van vitamine C je ook zelf kunt maken.

Liposomale vitamine C, best opneembare vorm van vitamine C?

22 maart 2020: Dank aan Marcel die dit ons toestuurde: 

Een videoverslag van een conferentie van de Chinese onderzoekers en Europese orthomoleculaire artsen. In het Nederlands:

Originele Engelse verslag staat hier: Successful High-Dose Vitamin C Treatment of Patients with Serious and Critical COVID-19 Infection

19 maart 2020: Hier een officiële studie met hoge dosis vitamine C en het corona virus: Vitamin C Infusion for the Treatment of Severe 2019-nCoV Infected Pneumonia

18 maart 2020: Bron: Science of Natural Healing

Vitamine-C infusen met hoge dosis vitamine C blijkt uitstekend te werken bij patiënten die door de besmetting met het corona virus (COBID-19) lichte en ook zware longontstekingen hadden opgelopen. 

Een medisch team van de Xi'an Jiaotong University in China heeft in een Chinees persbericht melding gemaakt van de succesvolle behandeling van coronaviruspatiënten met vitamine C infusen. In dit persbericht beschrijft het team hoe de meeste van de ruim 300 patiënten met ernstige, zogeheten coronaire longontsteking, van potentieel fatale complicaties die door het nieuwe coronavirus COVID-19 waren ontstaan, toch zijn hersteld na behandeling met infusen van hoge doses vitamine-C.

Het medisch team adviseert ook om voor zeer ernstig zieke patiënten en patiënten met ernstige neonatale longontsteking zo snel mogelijk na opname in het ziekenhuis een behandeling met vitamine C te starten.

Vroege toediening van vitamine C roept een sterk antioxidanteffect op, vermindert ontstekingsreacties en de endotheelfunctie kan verbeteren. De onderzoekers beschrijven verder ook hoe tal van onderzoeken hebben aangetoond dat de dosis vitamine C die individueel wordt gebruikt veel te maken heeft met het effect van de behandeling.

Het medische team zegt dat hun ervaring uit het verleden aantoont dat hooggedoseerde vitamine C niet alleen de antivirale niveaus kan verbeteren, maar wat nog belangrijker is, acute longbeschadiging en acute ademnood kan voorkomen en behandelen.

In een perspublicatie (helaas in het Chinees) wordt uitgelegd hoe patiënten die door het coronavirus zijn besmet te behandelen met infusen van hoge dosis vitamine-C.

Op basis van de studie met meer dan 300 patiënten en verder ontwikkeld door 30 experts in de behandeling van longontstekingen veroorzaakt door het nieuwe coronavirus, raden de artsen een hoge dosis vitamine C aan, zelfs voor een lichte infectie door het virus. De in de publicatie aanbevolen dosis is 50 tot 100 mg per kilogram lichaamsgewicht per dag. Voor heel ernstig zieke patiënten wordt tot 200 mg per kilogram lichaamsgewicht per dag geadviseerd, intraveneus geïnjecteerd.

Lees hier een Engelstalige samenvatting van het persbericht van de Chinese onderzoekers

Over vitamine-C infusen heeft het National Cancer Institute van de Amerikaanse regering onlangs een lang artikel gepubliceerd heeft over intraveneuze, hooggedoseerde vitamine C bij de behandeling van kanker.

Zie dit artikel: Intravenous High-Dose Vitamin C in Cancer Therapy Lees dat artikel want is de moeite meer dan waard.

Op basis van de geschiedenis en het gebruik van vitamine C bij de behandeling van kanker, concludeerden de schrijvers dat "het, gezien de huidige hoge financiële kosten van nieuwe kankermedicijnen, rationeel lijkt om de effectiviteit van de huidige therapieën te verbeteren door hun klinische interacties met vitamine C te bestuderen". Ze voegden eraan toe dat volgens hen "de implementatie van dit behandelingsparadigma voordelen zou kunnen opleveren voor veel kankerpatiënten".

Hier de conclusie van de onderzoekers naar vitamine-C bij kankerpatienten.

Concluding Remarks

Vitamin C as a cancer therapy has had a controversial past. What has been intriguing are small clinical trials that suggest some responses, but with no clear rationale for why cancers should respond to vitamin C or a path forward for explaining which patients are most likely to respond.  Now a growing number of preclinical studies are showing how high-dose vitamin C might benefit cancer patients. Importantly, these preclinical studies provide a clear rationale and potential biomarkers that may help personalize the therapeutic approach and identify patient populations that are likely to respond to high-dose vitamin C therapy. Since the mechanisms of action of vitamin C are becoming better defined, we can propose vitamin C combinations in a more rational, hypothesis-driven manner. In addition, given the current high financial cost of new cancer drugs, it seems rational to improve the effectiveness of current therapies by studying their clinical interactions with vitamin C. In our view, the implementation of this treatment paradigm could provide benefit to many cancer patients.

Quercetin displays a broad range of antiviral properties which can interfere at multiple steps of pathogen virulence -virus entry, virus replication, protein assembly- and that these therapeutic effects can be augmented by the co-administration of vitamin C. Furthermore, due to their lack of severe side effects and low-costs, we strongly suggest the combined administration of these two compounds for both the prophylaxis and the early treatment of respiratory tract infections, especially including COVID-19 patients.

. 2020; 11: 1451.
Published online 2020 Jun 19. doi: 10.3389/fimmu.2020.01451
PMCID: PMC7318306
PMID: 32636851

Quercetin and Vitamin C: An Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19)

Abstract

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an emergent global threat which is straining worldwide healthcare capacity. As of May 27th, the disease caused by SARS-CoV-2 (COVID-19) has resulted in more than 340,000 deaths worldwide, with 100,000 deaths in the US alone. It is imperative to study and develop pharmacological treatments suitable for the prevention and treatment of COVID-19. Ascorbic acid is a crucial vitamin necessary for the correct functioning of the immune system. It plays a role in stress response and has shown promising results when administered to the critically ill. Quercetin is a well-known flavonoid whose antiviral properties have been investigated in numerous studies. There is evidence that vitamin C and quercetin co-administration exerts a synergistic antiviral action due to overlapping antiviral and immunomodulatory properties and the capacity of ascorbate to recycle quercetin, increasing its efficacy. Safe, cheap interventions which have a sound biological rationale should be prioritized for experimental use in the current context of a global health pandemic. We present the current evidence for the use of vitamin C and quercetin both for prophylaxis in high-risk populations and for the treatment of COVID-19 patients as an adjunct to promising pharmacological agents such as Remdesivir or convalescent plasma.

There are potential limitations of their use in clinical studies. Both agents are present in varying degrees in individuals' diets and global recommendations for vitamin C intake vary extensively across the globe (). Prophylactic interventions in general populations within the community will therefore be confounded by the quantity present in differing diets. Agents such as vitamin C also have well-characterized beneficial effects apart from the antiviral properties we have highlighted here. Supplementation with these agents may therefore promote general health and indirectly affect the capacity of individuals to combat viral infection. Although this would diminish the ability to identify the direct antiviral properties of vitamin C in clinical studies it may have ancillary benefits of promoting general health, which may be particularly pertinent if administered in communities with greater deprivation or from less economically developed countries.

Conclusion

Quercetin displays a broad range of antiviral properties which can interfere at multiple steps of pathogen virulence -virus entry, virus replication, protein assembly- and that these therapeutic effects can be augmented by the co-administration of vitamin C. Furthermore, due to their lack of severe side effects and low-costs, we strongly suggest the combined administration of these two compounds for both the prophylaxis and the early treatment of respiratory tract infections, especially including COVID-19 patients.

Author Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

Funding. Supported by the CounterACT Program, National Institutes of Health Office of the Director (NIH OD) and the National Institute of Environmental Health Sciences (NIEHS) grant number R21ES030528.

References

1. Formica JV, Regelson W. Review of the biology of Quercetin and related bioflavonoidsFood Chem Toxicol. (1995) 33:1061–80. 10.1016/0278-6915(95)00077-1 [PubMed] [CrossRef[]
2. Colunga Biancatelli RML, Berrill M, Marik PE. The antiviral properties of vitamin CExpert Rev Anti Infect Ther. (2019) 18:99–101. 10.1080/14787210.2020.1706483 [PubMed] [CrossRef[]
3. Marik PE. Vitamin C: an essential “stress hormone” during sepsisJ Thorac Dis. (2020) 12(Suppl. 1):S84–8. 10.21037/jtd.2019.12.64 [PMC free article] [PubMed] [CrossRef[]
4. Carr AC, Maggini S. Vitamin C and Immune FunctionNutrients. (2017) 9:1211. 10.3390/nu9111211 [PMC free article] [PubMed] [CrossRef[]
5. Leibovitz B, Siegel BV. Ascorbic acid and the immune responseAdv Exp Med Biol. (1981) 135:1–25. 10.1007/978-1-4615-9200-6_1 [PubMed] [CrossRef[]
6. Dey S, Bishayi B. Killing of S. aureus in murine peritoneal macrophages by Ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: correlation with inflammationMicrob Pathog. (2018) 115:239–50. 10.1016/j.micpath.2017.12.048 [PubMed] [CrossRef[]
7. Furuya A, Uozaki M, Yamasaki H, Arakawa T, Arita Koyama MAH. Antiviral effects of ascorbic and dehydroascorbic acids in vitroInt J Mol Med. (2008) 22:541–5. 10.3892/ijmm_00000053 [PubMed] [CrossRef[]
8. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, et al. . Quercetin, inflammation and immunityNutrients. (2016) 8:167. 10.3390/nu8030167 [PMC free article] [PubMed] [CrossRef[]
9. Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cellsCell Biol Int. (2007) 31:1245–50. 10.1016/j.cellbi.2007.04.009 [PubMed] [CrossRef[]
10. Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complicationsMolecules. (2011) 16:2032–52. 10.3390/molecules16032032 [PMC free article] [PubMed] [CrossRef[]
11. Nair MP, Kandaswami C, Mahajan S, Chadha KC, Chawda R, NairandSchwartz SAH. The flavonoid, quercetin, differentially regulates Th-1 (IFNgamma) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cellsBiochim Biophys Acta. (2002) 1593:29–36. 10.1016/S0167-4889(02)00328-2 [PubMed] [CrossRef[]
12. Shinozuka K, Kikuchi Y, Nishino C, Mori A, Tawata S. Inhibitory effect of flavonoids on DNA-dependent DNA and RNA polymerasesExperientia. (1988) 44:882–5. 10.1007/BF01941188 [PubMed] [CrossRef[]
13. Bachmetov L, Gal-Tanamy M, Shapira A, Vorobeychik M, Giterman-Galam T, Sathiyamoorthy P, et al. . Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activityJ Viral Hepat. (2012) 19:e81–8. 10.1111/j.1365-2893.2011.01507.x [PubMed] [CrossRef[]
14. Spedding G, Ratty A, Middleton E, Jr. Inhibition of reverse transcriptases by flavonoidsAntiviral Res. (1989) 12:99–110. 10.1016/0166-3542(89)90073-9 [PubMed] [CrossRef[]
15. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoidsInt J Antimicrob Agents. (2005) 26:343–56. 10.1016/j.ijantimicag.2005.09.002 [PMC free article] [PubMed] [CrossRef[]
16. Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infectivity and replicationMicrobiologica. (1990) 13:207–13. [PubMed[]
17. Winkel-Shirley B, Flavonoid Biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnologyPlant Physiol. (2001) 126:485. 10.1104/pp.126.2.485 [PMC free article] [PubMed] [CrossRef[]
18. Burger MC. ChemDoodle web components: HTML5 toolkit for chemical graphics, interfaces, and informaticsJ Cheminform. (2015) 7:35. 10.1186/s13321-015-0085-3 [PMC free article] [PubMed] [CrossRef[]
19. Gábor M. Szent-Györgyi and the bioflavonoids: new results and perspectives of pharmacological research into benzo-pyrone derivatives. Commemoration on the 50th anniversary of the award of the Nobel PrizeProg Clin Biol Res. (1988) 280:1–15. [PubMed[]
20. Khoo NK, White CR, Pozzo-Miller L, Zhou F, Constance C, InoueandParks DAT. Dietary flavonoid quercetin stimulates vasorelaxation in aortic vesselsFree Radic Biol Med. (2010) 49:339–47. 10.1016/j.freeradbiomed.2010.04.022 [PMC free article] [PubMed] [CrossRef[]
21. Andres S, Pevny S, Ziegenhagen R, Bakhiya N, Schäfer B, Hirsch-Ernst KI, et al. . Safety aspects of the use of quercetin as a dietary supplementMol Nutr Food Res. (2018) 62:1700447. 10.1002/mnfr.201700447 [PubMed] [CrossRef[]
22. Brown JP. A review of the genetic effects of naturally occurring flavonoids, anthraquinones and related compoundsMutat Res. (1980) 75:243–77. 10.1016/0165-1110(80)90029-9 [PubMed] [CrossRef[]
23. Awad HM, Boersma MG, Vervoort Rietjens JIM. Peroxidase-catalyzed formation of quercetin quinone methide-glutathione adductsArch Biochem Biophys. (2000) 378:224–33. 10.1006/abbi.2000.1832 [PubMed] [CrossRef[]
24. Terao J. Dietary flavonoids as antioxidants in vivo: conjugated metabolites of (-)-epicatechin and quercetin participate in antioxidative defense in blood plasmaJ Med Invest. (1999) 46:159–68. [PubMed[]
25. Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in ratsIndian J Clin Biochem. (2010) 25:188–92. 10.1007/s12291-010-0034-x [PMC free article] [PubMed] [CrossRef[]
26. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissueFood Chem. (2012) 132:931–5. 10.1016/j.foodchem.2011.11.070 [CrossRef[]
27. Gormaz JG, Quintremil S, Rodrigo R. Cardiovascular disease: a target for the pharmacological effects of quercetinCurr Top Med Chem. (2015) 15:1735–42. 10.2174/1568026615666150427124357 [PubMed] [CrossRef[]
28. Pace-Asciak CR, Hahn S, Diamandis EP, Soleas G, Goldberg DM. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart diseaseClin Chim Acta. (1995) 235:207–19. 10.1016/0009-8981(95)06045-1 [PubMed] [CrossRef[]
29. Cai Q, Rahn RO, Zhang R. Dietary flavonoids, quercetin, luteolin and genistein, reduce oxidative DNA damage and lipid peroxidation and quench free radicalsCancer Lett. (1997) 119:99–107. 10.1016/S0304-3835(97)00261-9 [PubMed] [CrossRef[]
30. Erden Inal M, Kahraman A. The protective effect of flavonol quercetin against ultraviolet a induced oxidative stress in ratsToxicology. (2000) 154:21–9. 10.1016/S0300-483X(00)00268-7 [PubMed] [CrossRef[]
31. Morikawa K, Nonaka M, Narahara M, Torii I, Kawaguchi K, Yoshikawa T, et al. . Inhibitory effect of quercetin on carrageenan-induced inflammation in ratsLife Sci. (2003) 74:709–21. 10.1016/j.lfs.2003.06.036 [PubMed] [CrossRef[]
32. Dimova S, Mugabowindekwe R, Willems T, Brewster ME, Noppe M, Ludwig A, et al. . Safety-assessment of 3-methoxyquercetin as an antirhinoviral compound for nasal application: effect on ciliary beat frequencyInt J Pharm. (2003) 263:95–103. 10.1016/S0378-5173(03)00363-6 [PubMed] [CrossRef[]
33. Davies SP, Reddy H, Caivano M, Cohen P. Specificity and mechanism of action of some commonly used protein kinase inhibitorsBiochem J. (2000) 351(Pt. 1):95–105. 10.1042/bj3510095 [PMC free article] [PubMed] [CrossRef[]
34. Huang YT, Hwang JJ, Lee PP, Ke FC, Huang JH, Huang CJ, et al. . Effects of luteolin and quercetin, inhibitors of tyrosine kinase, on cell growth and metastasis-associated properties in A431 cells overexpressing epidermal growth factor receptorBr J Pharmacol. (1999) 128:999–1010. 10.1038/sj.bjp.0702879 [PMC free article] [PubMed] [CrossRef[]
35. Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Rémésy C, Chap H, et al. . Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibitionBiochem Pharmacol. (1997) 53:1649–57. 10.1016/S0006-2952(97)82453-7 [PubMed] [CrossRef[]
36. Peet GW, Li J. IkappaB kinases alpha and beta show a random sequential kinetic mechanism and are inhibited by staurosporine and quercetinJ Biol Chem. (1999) 274:32655–61. 10.1074/jbc.274.46.32655 [PubMed] [CrossRef[]
37. De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replicationMed Res Rev. (2008) 28:823–84. 10.1002/med.20125 [PubMed] [CrossRef[]
38. Itsuka H, Ohsawa C, Ohiwa T, Umeda I, Suhara Y. Antipicornavirus flavone Ro 09-0179Antimicrob Agents Chemother. (1982) 22:611–16. 10.1128/AAC.22.4.611 [PMC free article] [PubMed] [CrossRef[]
39. Kaul TN, Middleton E, Jr. Ogra PL. Antiviral effect of flavonoids on human virusesJ Med Virol. (1985) 15:71–9. 10.1002/jmv.1890150110 [PubMed] [CrossRef[]
40. Evers DL, Chao CF, Wang X, Zhang Z, Huong SM, Huang ES. Human cytomegalovirus-inhibitory flavonoids: studies on antiviral activity and mechanism of actionAntiviral Res. (2005) 68:124–34. 10.1016/j.antiviral.2005.08.002 [PMC free article] [PubMed] [CrossRef[]
41. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S. Antiviral activity of four types of bioflavonoid against dengue virus type-2Virol J. (2011) 8:560. 10.1186/1743-422X-8-560 [PMC free article] [PubMed] [CrossRef[]
42. Veckenstedt A, Béládi I, Mucsi I. Effect of treatment with certain flavonoids on Mengo virus-induced encephalitis in miceArch Virol. (1978) 57:255–60. 10.1007/BF01315089 [PubMed] [CrossRef[]
43. Güttner J, Veckenstedt A, Heinecke H, Pusztai R. Effect of quercetin on the course of mengo virus infection in immunodeficient and normal mice. A histologic studyActa Virol. (1982) 26:148–55. [PubMed[]
44. Nieman DC, Henson DA, Gross SJ, Jenkins DP, Davis JM, Murphy EA, et al. . Quercetin reduces illness but not immune perturbations after intensive exerciseMed Sci Sports Exerc. (2007) 39:1561–9. 10.1249/mss.0b013e318076b566 [PubMed] [CrossRef[]
45. Nieman DC, Henson DA, Davis JM, Angela Murphy E, Jenkins DP, Gross SJ, et al. . Quercetin's influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNAJ Appl Physiol. (2007) 103:1728–35. 10.1152/japplphysiol.00707.2007 [PubMed] [CrossRef[]
46. Nieman DC, Henson DA, Davis JM, Dumke CL, Gross SJ, Jenkins DP, et al. . Quercetin ingestion does not alter cytokine changes in athletes competing in the Western States Endurance RunJ Interferon Cytokine Res. (2007) 27:1003–11. 10.1089/jir.2007.0050 [PubMed] [CrossRef[]
47. Chen JY, Chang C-Y, Feng P-H, Chu C-C, So EC, Hu M-L. Plasma vitamin C is lower in postherpetic neuralgia patients and administration of vitamin C reduces spontaneous pain but not brush-evoked painClin J Pain. (2009) 25:562–9. 10.1097/AJP.0b013e318193cf32 [PubMed] [CrossRef[]
48. Marik PE, Hooper MH. Doctor-your septic patients have scurvy! Crit Care. (2018) 22:23. 10.1186/s13054-018-1950-z [PMC free article] [PubMed] [CrossRef[]
49. Fowler AA, III, Truwit JD, Hite RD, Morris PE, DeWilde C, Priday A, et al. . Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: the CITRIS-ALI randomized clinical trialJAMA. (2019) 322:1261–70. 10.1001/jama.2019.11825 [PMC free article] [PubMed] [CrossRef[]
50. Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakesCrit Care. (2017) 21:300. 10.1186/s13054-017-1891-y [PMC free article] [PubMed] [CrossRef[]
51. Anderson R, Smit MJ, Joone GK, Van Staden AM. Vitamin C and cellular immune functions. Protection against hypochlorous acid-mediated inactivation of glyceraldehyde-3-phosphate dehydrogenase and ATP generation in human leukocytes as a possible mechanism of ascorbate-mediated immunostimulationAnn N Y Acad Sci. (1990) 587:34–48. 10.1111/j.1749-6632.1990.tb00131.x [PubMed] [CrossRef[]
52. Lahiri S, Lloyd BB. The effect of stress and corticotrophin on the concentrations of vitamin C in blood and tissues of the ratBiochem. J. (1962) 84:478–83. 10.1042/bj0840478 [PMC free article] [PubMed] [CrossRef[]
53. Manning J, Mitchell B, Appadurai DA, Shakya A, Pierce LJ, Wang H, et al. . Vitamin C promotes maturation of T-cellsAntioxid Redox Signal. (2013) 19:2054–67. 10.1089/ars.2012.4988 [PMC free article] [PubMed] [CrossRef[]
54. Valero N, Mosquera J, Alcocer S, Bonilla E, Salazar J, Álvarez-Mon M. Melatonin, minocycline and ascorbic acid reduce oxidative stress and viral titers and increase survival rate in experimental Venezuelan equine encephalitisBrain Res. (2015) 1622:368–76. 10.1016/j.brainres.2015.06.034 [PubMed] [CrossRef[]
55. Li W, Maeda N, Beck MA. Vitamin C deficiency increases the lung pathology of influenza virus-infected gulo-/- miceJ Nutr. (2006) 136:2611–16. 10.1093/jn/136.10.2611 [PubMed] [CrossRef[]
56. Cai Y, Li Y-F, Tang L-P, Tsoi B, Chen M, Chen H, et al. . A new mechanism of vitamin C effects on A/FM/1/47(H1N1) virus-induced pneumonia in restraint-stressed miceBioMed Res Int. (2015) 2015:675149. 10.1155/2015/675149 [PMC free article] [PubMed] [CrossRef[]
57. Banic S. Prevention of rabies by vitamin CNature. (1975) 258:153–4. 10.1038/258153a0 [PubMed] [CrossRef[]
58. Kimbarowski JA, Mokrow NJ. Colored precipitation reaction of the urine according to Kimbarowski (FARK) as an index of the effect of ascorbic acid during treatment of viral influenzaDas Deutsche Gesundheitswesen. (1967) 22:2413–18. [PubMed[]
59. Kim MS, Kim DJ, Na CH, Shin BS. A study of intravenous administration of vitamin c in the treatment of acute herpetic pain and postherpetic neuralgiaAnn Dermatol. (2016) 28:677–83. 10.5021/ad.2016.28.6.677 [PMC free article] [PubMed] [CrossRef[]
60. Kim GN, Yoo WS, Park MH, Chung JK, Han YS, Chung IY, et al. . Clinical features of herpes simplex keratitis in a Korean tertiary referral center: efficacy of oral antiviral and ascorbic acid on recurrenceKor J Ophthalmol. (2018) 32:353–60. 10.3341/kjo.2017.0131 [PMC free article] [PubMed] [CrossRef[]
61. Hah YS, Chung HJ, Sontakke SB, Chung I-Y, Ju S. Ascorbic acid concentrations in aqueous humor after systemic vitamin C supplementation in patients with cataract: pilot studyBMC Ophthalmol. (2017) 17:121. 10.1186/s12886-017-0515-2 [PMC free article] [PubMed] [CrossRef[]
62. Gonzalez MJ, Berdiel MJ, Duconge J, Levy T, Alfaro I, Morales R, et al. High dose intravenous vitamin C and influenza: a case reportJ Orthomol Med. (2018) 33:1–3. []
63. Fowler Iii AA, Kim C, Lepler L, Malhotra R, Debesa O, Natarajan R., et al. . Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndromeWorld J Crit Care Med. (2017) 6:85–90. 10.5492/wjccm.v6.i1.85 [PMC free article] [PubMed] [CrossRef[]
64. Davis JM, Murphy EA, McClellan JL, Carmichael MD, Gangemi JD. Quercetin reduces susceptibility to influenza infection following stressful exerciseAm J Physiol Regul Integr Comp Physiol. (2008) 295:R505–9. 10.1152/ajpregu.90319.2008 [PubMed] [CrossRef[]
65. Biskind MS, Martin WC. The use of citrus flavonoids in respiratory infectionsAm J Dig Dis. (1954) 21:177. 10.1007/BF02886384 [PubMed] [CrossRef[]
66. Liu S, Wu S, Jiang S. HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compoundsCurr Pharm Des. (2007) 13:143–62. 10.2174/138161207779313722 [PubMed] [CrossRef[]
67. Yang J, Li M, Shen X, Liu S. Influenza A virus entry inhibitors targeting the hemagglutininViruses. (2013) 5:352–73. 10.3390/v5010352 [PMC free article] [PubMed] [CrossRef[]
68. Xia S, Liu Q, Wang Q, Sun Z, Su S, Duand L, et al. . Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike proteinVirus Res. (2014) 194:200–10. 10.1016/j.virusres.2014.10.007 [PMC free article] [PubMed] [CrossRef[]
69. Wu W, Li R, Li X, He J, Jiang S, Liu S, et al. . Quercetin as an antiviral agent inhibits Influenza A Virus (IAV) entryViruses. (2015) 8:6. 10.3390/v8010006 [PMC free article] [PubMed] [CrossRef[]
70. Ganesan S, Faris AN, Comstock AT, Wang Q, Nanua S, Hershenson MB, et al. . Quercetin inhibits rhinovirus replication in vitro and in vivoAntiviral Res. (2012) 94:258–71. 10.1016/j.antiviral.2012.03.005 [PMC free article] [PubMed] [CrossRef[]
71. Ganesan S, Faris AN, Comstock AT, Chattoraj SS, Chattoraj A, Burgess JR, et al. . Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expressionRespir Res. (2010) 11:131. 10.1186/1465-9921-11-131 [PMC free article] [PubMed] [CrossRef[]
72. Nanua S, Zick SM, Andrade JE, Sajjan US, Burgess JR, Lukacs NW, et al. . Quercetin blocks airway epithelial cell chemokine expressionAm J Respir Cell Mol Biol. (2006) 35:602–10. 10.1165/rcmb.2006-0149OC [PMC free article] [PubMed] [CrossRef[]
73. Rogerio AP, Kanashiro A, Fontanari C, da Silva EV, Lucisano-Valim YM, Soares EG, et al. . Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthmaInflamm Res. (2007) 56:402–8. 10.1007/s00011-007-7005-6 [PubMed] [CrossRef[]
74. Chiang LC, Chiang W, Liu MC, Lin CC. In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoidsJ Antimicrob Chemother. (2003) 52:194–8. 10.1093/jac/dkg291 [PubMed] [CrossRef[]
75. Ono K, Nakane H. Mechanisms of inhibition of various cellular DNA and RNA polymerases by several flavonoidsJ Biochem. (1990) 108:609–13. 10.1093/oxfordjournals.jbchem.a123251 [PubMed] [CrossRef[]
76. Ono K, Nakane H, Fukushima M, Chermann JC, Barré-Sinoussi F. Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerasesEur J Biochem. (1990) 190:469–76. 10.1111/j.1432-1033.1990.tb15597.x [PubMed] [CrossRef[]
77. Vrijsen R, Everaert L, Boeyé A. Antiviral activity of flavones and potentiation by ascorbateJ Gen Virol. (1988) 69:1749–51. 10.1099/0022-1317-69-7-1749 [PubMed] [CrossRef[]
78. Vrijsen R, Everaert L, Van Hoof LM, Vlietinck AJ, Vanden Berghe DA, Boeyé A., et al. . The poliovirus-induced shut-off of cellular protein synthesis persists in the presence of 3-methylquercetin, a flavonoid which blocks viral protein and RNA synthesisAntiviral Res. (1987) 7:35–42. 10.1016/0166-3542(87)90037-4 [PubMed] [CrossRef[]
79. Castrillo JL, Carrasco L. Action of 3-methylquercetin on poliovirus RNA replicationJ Virol. (1987) 61:3319–21. 10.1128/JVI.61.10.3319-3321.1987 [PMC free article] [PubMed] [CrossRef[]
80. Li BW, Zhang FH, Serrao E, Chen H, Sanchez TW, Yang LM, et al. . Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75Bioorg Med Chem. (2014) 22:3146–58. 10.1016/j.bmc.2014.04.016 [PubMed] [CrossRef[]
81. Áy É, Hunyadi A, Mezei M, Minárovits J, Hohmann J. Flavonol 7-O-glucoside herbacitrin inhibits HIV-1 replication through simultaneous integrase and reverse transcriptase inhibitionEvid Based Complement Alternat Med. (2019) 2019:1064793. 10.1155/2019/1064793 [PMC free article] [PubMed] [CrossRef[]
82. Harakeh S, Jariwalla RJ, Pauling L. Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cellsProc Natl Acad Sci USA. (1990) 87:7245–9. 10.1073/pnas.87.18.7245 [PMC free article] [PubMed] [CrossRef[]
83. Xu HX, Wan M, Dong H, But PP, Foo LY. Inhibitory activity of flavonoids and tannins against HIV-1 proteaseBiol Pharm Bull. (2000) 23:1072–6. 10.1248/bpb.23.1072 [PubMed] [CrossRef[]
84. Gonzalez O, Fontanes V, Raychaudhuri S, Loo R, Loo J, Arumugaswami V, et al. . The heat shock protein inhibitor Quercetin attenuates hepatitis C virus productionHepatology. (2009) 50:1756–64. 10.1002/hep.23232 [PMC free article] [PubMed] [CrossRef[]
85. Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, et al. . Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoidsMol Cell Biol. (1992) 12:3490–8. 10.1128/MCB.12.8.3490 [PMC free article] [PubMed] [CrossRef[]
86. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshidaand M, et al. . Flavonoids inhibit the expression of heat shock proteinsCell Struct Funct. (1990) 15:393–401. 10.1247/csf.15.393 [PubMed] [CrossRef[]
87. Alvarez P, Alvarado C, Puerto M, Schlumberger A, Jiménez L, De la Fuente M., et al. . Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cerealsNutrition. (2006) 22:913–21. 10.1016/j.nut.2005.12.012 [PubMed] [CrossRef[]
88. Exon JH, Magnuson BA, South EH, Hendrix K. Effect of dietary chlorogenic acid on multiple immune functions and formation of aberrant crypt foci in ratsJ Toxicol Environ Health A. (1998) 53:375–84. 10.1080/009841098159231 [PubMed] [CrossRef[]
89. Cinatl J, Cinatl J, Weber B, Rabenau H, Gumbel H, Chenot J, et al. . In vitro inhibition of human cytomegalovirus replication in human foreskin fibroblasts and endothelial cells by ascorbic acid 2-phosphateAntiviral Res. (1995) 27:405–18. 10.1016/0166-3542(95)00024-G [PubMed] [CrossRef[]
90. Kim Y, Kim H, Bae S, Choi J, Lim SY, Lee N, et al. . Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of influenza A virus (H3N2) infectionImmune Netw. (2013) 13:70–74. 10.4110/in.2013.13.2.70 [PMC free article] [PubMed] [CrossRef[]
91. Mikirova N. Hunninghake R. Effect of high dose vitamin C on Epstein-Barr viral infectionMed Sci Monit. (2014) 20:725–32. 10.12659/MSM.890423 [PMC free article] [PubMed] [CrossRef[]
92. Kataoka A, Imai H, Inayoshi S, Tsuda T. Intermittent high-dose vitamin C therapy in patients with HTLV-I associated myelopathyJ Neurol Neurosurg Psychiatry. (1993) 56:1213–16. 10.1136/jnnp.56.11.1213 [PMC free article] [PubMed] [CrossRef[]
93. Nakagawa M, Nakahara K, Maruyama Y, Kawabata M, Higuchi I, Kubota H, et al. . Therapeutic trials in 200 patients with HTLV-I-associated myelopathy/ tropical spastic paraparesisJ Neurovirol. (1996) 2:345–55. 10.3109/13550289609146899 [PubMed] [CrossRef[]
94. Stantic-Pavlinic M, Banic S, Marin J, Klemenc P. Vitamin C–a challenge in management of rabiesSwiss Med Weekly. (2004) 134:326–7. [PubMed[]
95. Siegel BV. Enhanced interferon response to murine leukemia virus by ascorbic acidInfect Immun. (1974) 10:409–10. 10.1128/IAI.10.2.409-410.1974 [PMC free article] [PubMed] [CrossRef[]
96. Siegel BV. Enhancement of interferon production by poly(rI)-poly(rC) in mouse cell cultures by ascorbic acidNature. (1975) 254:531–2. 10.1038/254531a0 [PubMed] [CrossRef[]
97. Horvath CM. The Jak-STAT pathway stimulated by interferon gammaSci STKE. (2004) 2004:tr8. 10.1126/stke.2602004tr8 [PubMed] [CrossRef[]
98. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. . Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cellsJ Virol. (2004) 78:11334. 10.1128/JVI.78.20.11334-11339.2004 [PMC free article] [PubMed] [CrossRef[]
99. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. . Characterization of a novel coronavirus associated with severe acute respiratory syndromeScience. (2003) 300:1394–9. 10.1126/science.1085952 [PubMed] [CrossRef[]
100. Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, Butterfield YS, et al. . The genome sequence of the SARS-associated coronavirusScience. (2003) 300:1399–404. 10.1126/science.1085953 [PubMed] [CrossRef[]
101. Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LLM, et al. . Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineageJ Mol Biol. (2003) 331:991–1004. 10.1016/S0022-2836(03)00865-9 [PMC free article] [PubMed] [CrossRef[]
102. Chen L, Li J, Luo C, Liu H, Xu W, Chen G, et al. . Binding interaction of quercetin-3-beta-galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore featuresBioorg Med Chem. (2006) 14:8295–306. 10.1016/j.bmc.2006.09.014 [PMC free article] [PubMed] [CrossRef[]
103. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. . A pneumonia outbreak associated with a new coronavirus of probable bat originNature. (2020) 579:270–3. 10.1038/s41586-020-2012-7 [PMC free article] [PubMed] [CrossRef[]
104. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. . Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor bindingLancet. (2020) 395:565–74. 10.1016/S0140-6736(20)30251-8 [PMC free article] [PubMed] [CrossRef[]
105. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, et al. . Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitorsScience. (2020) 368:409–12. 10.3410/f.737592020.793572879 [PMC free article] [PubMed] [CrossRef[]
106. Atherton JG, Kratzing CC, Fisher A. The effect of ascorbic acid on infection chick-embryo ciliated tracheal organ cultures by coronavirusArch Virol. (1978) 56:195–9. 10.1007/BF01317848 [PMC free article] [PubMed] [CrossRef[]
107. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceuticalEur J Pharmacol. (2008) 585:325–37. 10.1016/j.ejphar.2008.03.008 [PubMed] [CrossRef[]
108. Guo Y, Bruno RS. Endogenous and exogenous mediators of quercetin bioavailabilityJ Nutr Biochem. (2015) 26:201–10. 10.1016/j.jnutbio.2014.10.008 [PubMed] [CrossRef[]
109. Murota K, Terao J. Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolismArch Biochem Biophys. (2003) 417:12–7. 10.1016/S0003-9861(03)00284-4 [PubMed] [CrossRef[]
110. Graefe EU, Derendorf H, Veit M. Pharmacokinetics and bioavailability of the flavonol quercetin in humansInt J Clin Pharmacol Ther. (1999) 37:219–33. [PubMed[]
111. Harwood M, Danielewska-Nikiel B, Borzelleca JF, Flamm GW, Williams GM, Lines TC. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic propertiesFood Chem Toxicol. (2007) 45:2179–205. 10.1016/j.fct.2007.05.015 [PubMed] [CrossRef[]
112. Andrea J, Day JAR, Morgan RA. Characterization of polyphenols metabolites. In: Bao Y, Fenwick R. editors. Phytochemicals in Health and Disease. New York, NY: Marcel Dekker, Inc; (2005). p. 50. []
113. de Boer VC, Dihal AA, van der Woude H, Arts IC, Wolffram S. Tissue distribution of quercetin in rats and pigsJ Nutr. (2005) 135:1718–25. 10.1093/jn/135.7.1718 [PubMed] [CrossRef[]
114. Moon YJ, Wang L, DiCenzo R, Morris ME. Quercetin pharmacokinetics in humansBiopharm Drug Dispos. (2008) 29:205–17. 10.1002/bdd.605 [PubMed] [CrossRef[]
115. Shoskes DA, Zeitlin SI, Shahed A, Rajfer J. Quercetin in men with category III chronic prostatitis: a preliminary prospective, double-blind, placebo-controlled trialUrology. (1999) 54:960–3. 10.1016/S0090-4295(99)00358-1 [PubMed] [CrossRef[]
116. Ferry DR, Smith A, Malkhandi J, Fyfe DW, deTakats PG, Anderson D, et al. . Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibitionClin Cancer Res. (1996) 2:659–68. [PubMed[]
117. Marik PE. Vitamin C for the treatment of sepsis: the scientific rationalePharmacol Ther. (2018) 189:63–70. 10.1016/j.pharmthera.2018.04.007 [PubMed] [CrossRef[]
118. Awad HM, Boersma MG, Boeren S, van der Woude H, van Zanden J, van Bladeren PJ, et al. . Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro systemFEBS Lett. (2002) 520:30–34. 10.1016/S0014-5793(02)02754-0 [PubMed] [CrossRef[]
119. Boots AW, Li H, Schins RP, Duffin R, Heemskerk JW, Bast A, et al. . The quercetin paradoxToxicol Appl Pharmacol. (2007) 222:89–96. 10.1016/j.taap.2007.04.004 [PubMed] [CrossRef[]
120. Askari G, Ghiasvand R, Feizi A, Ghanadian SM, Karimian J. The effect of quercetin supplementation on selected markers of inflammation and oxidative stressJ Res Med Sci. (2012) 17:637–41. [PMC free article] [PubMed[]
121. Boots AW, Kubben N, Haenen GR, Bast A. Oxidized quercetin reacts with thiols rather than with ascorbate: implication for quercetin supplementationBiochem Biophys Res Commun. (2003) 308:560–5. 10.1016/S0006-291X(03)01438-4 [PubMed] [CrossRef[]
122. Bors W, Michel C, Schikora S. Interaction of flavonoids with ascorbate and determination of their univalent redox potentials: a pulse radiolysis studyFree Radic Biol Med. (1995) 19:45–52. 10.1016/0891-5849(95)00011-L [PubMed] [CrossRef[]
123. Moalin M, van Strijdonck GPF, Bast A, Haenen GRMM. Competition between ascorbate and glutathione for the oxidized form of methylated quercetin metabolites and analogues: tamarixetin, 4′o-methylquercetin, has the lowest thiol reactivityJ Agric Food Chem. (2012) 60:9292–7. 10.1021/jf302068v [PubMed] [CrossRef[]
124. Boots AW, Balk JM, Bast A, Haenen GR. The reversibility of the glutathionyl-quercetin adduct spreads oxidized quercetin-induced toxicityBiochem Biophys Res Commun. (2005) 338:923–9. 10.1016/j.bbrc.2005.10.031 [PubMed] [CrossRef[]
125. Awad HM, Boersma MG, Boeren S, Van Bladeren PJ, Vervoort J, Rietjens IM. Quenching of quercetin quinone/quinone methides by different thiolate scavengers: stability and reversibility of conjugate formationChem Res Toxicol. (2003) 16:822–31. 10.1021/tx020079g [PubMed] [CrossRef[]
126. Roubalová L, Purchartová K, Papoušková B, Vacek J, Kren V, Ulrichová J, et al. . Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: an examination of quercetin, isoquercitrin and taxifolinBioorg Med Chem. (2015) 23:5402–9. 10.1016/j.bmc.2015.07.055 [PubMed] [CrossRef[]
127. Ruotolo R, Calani L, Brighenti F, Crozier A, Ottonello S, Del Rio D. Glucuronidation does not suppress the estrogenic activity of quercetin in yeast and human breast cancer cell model systemsArch Biochem Biophys. (2014) 559:62–7. 10.1016/j.abb.2014.03.003 [PubMed] [CrossRef[]
128. Terao J, Murota K, Kawai Y. Conjugated quercetin glucuronides as bioactive metabolites and precursors of aglycone in vivoFood Funct. (2011) 2:11–7. 10.1039/C0FO00106F [PubMed] [CrossRef[]
129. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, et al. . Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategiesJ Biol Regul Homeost Agents. (2020) 34:1. 10.23812/CONTI-E [PubMed] [CrossRef[]
130. Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA, et al. Neutrophil extracellular traps in COVID-19JCI Insight. (2020) 5 10.1172/jci.insight.138999 [PMC free article] [PubMed] [CrossRef[]
131. Wang F, Nie J, Wang H, Zhao Q, Xiong Y, Deng L, et al. . Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumoniaJ Infect Dis. (2020) 221:1762–9. 10.1093/infdis/jiaa150 [PMC free article] [PubMed] [CrossRef[]
132. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. . Remdesivir for the treatment of Covid-19 — preliminary reportN Engl J Med. (2020) 10.1056/NEJMoa2007764 [PMC free article] [PubMed] [CrossRef[]
133. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. . Treatment of 5 critically Ill patients with COVID-19 with convalescent plasmaJAMA. (2020) 323:1582–9. 10.1001/jama.2020.4783 [PMC free article] [PubMed] [CrossRef[]
134. Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, et al. . Treatment with convalescent plasma for COVID-19 patients in Wuhan, ChinaJ Med Virol. (2020). [Epub ahead of print]. 10.1002/jmv.25882 [PMC free article] [PubMed] [CrossRef[]
135. Carr AC, Lykkesfeldt J. Discrepancies in global vitamin C recommendations: a review of RDA criteria and underlying health perspectivesCrit Rev Food Sci Nutr. (2020) 1–14. 10.1080/10408398.2020.1744513 [PubMed] [CrossRef[]

Articles from Frontiers in Immunology are provided here courtesy of Frontiers Media SA


Plaats een reactie ...

4 Reacties op "Vitamine-C infusen met hoge dosis vitamine-C blijkt uitstekend medicijn bij patienten besmet met het corona virus (COVID-19) en al met longontstekingen, blijkt uit Chinese Studie."


Gerelateerde artikelen
 

Gerelateerde artikelen

Intraveneus hoge dosis vitamine >> Intraveneuze hoge dosis vitamine >> Vitamine C bevordert het herstel >> Hoge doses vitamine C of zink >> Vitamine C gegeven aan patienten >> Infusen met (hoge dosis) vitamine >> Corona virus: Artikelen over >>