In een mediane follow-up van 29 maanden bleek de recidiefvrije overleving statistisch significant met 18 procent beter in de vitamine D - calcitriol groep (77.0%, SE = 7.0% vs. 59.0%, SE = 8.0%; P = 0.03).
De overall overleving was wel ook beter , plus 5 procent voor de vitaminegroep maar niet statistisch significant. Maar een overall overleving van 92 procent is wel goed te noemen. (87.0%, SE = 5.0% vs. 92.0%, SE = 4.0%; P = 0.72).
Conclusion
Lineage specification during hematopoiesis is a complex process where stem and progenitor cells integrate external signals from cytokine receptors and surface proteins. Calcitriol plays key roles in immunity and hematopoiesis. Calcitriol 0.25 μg capsule three times daily, from day of transplantation up to one month, is an effective and safe option for early ALC recovery and better RFS after autologous HSCT. However, the OM and OS were not improved by calcitriol in our trial. The impact of different dosage forms and doses of calcitriol on the outcomes needs further exploration. In addition, calcitriol significantly reduces the apoptosis and increases the number and activity of CD34+ cells [50]. One might argue that initiation of calcitriol prior to the collection of CD34+ cells could be a beneficial action to take.
Acknowledgements
We greatly appreciate the participants without whom this investigational study would not be possible. We thank Ms. Ashraf Sadat Mousavi, Ms. Zahra Shahriari, BMT wards staff of Shariati Hospital, and Dr. Hamid Khoee (drug supply and randomization) for their kind assistances.
Funding information
This study was funded through an educational grant to the researchers from the Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Compliance with ethical standards
Conflict of interest
The authors declare no conflict of interest.
Footnotes
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
1.
Relias V. Hematopoietic cell trasplantation. In: Zeind CS, Carvalho MG, editors. Applied therapeutics: the clinical use of drugs. 11. Philadelphia: Lippincott Williams & Wilkins, Wolters Kluwer; 2018. pp. 2102–2106. [Google Scholar]
2.
Porrata LF, Gertz MA, Inwards DJ, Litzow MR, Lacy MQ, Tefferi A, et al. Early lymphocyte recovery predicts superior survival after autologous hematopoietic stem cell transplantation in multiple myeloma or non-Hodgkin lymphoma. Blood. 2001;98(3):579–585. doi: 10.1182/blood.V98.3.579. [PubMed] [CrossRef] [Google Scholar]
3.
Porrata LF, Inwards DJ, Micallef IN, Ansell SM, Geyer SM, Markovic SN. Early lymphocyte recovery post-autologous haematopoietic stem cell transplantation is associated with better survival in Hodgkin's disease. Br J Haematol. 2002;117(3):629–633. doi: 10.1046/j.1365-2141.2002.03478.x. [PubMed] [CrossRef] [Google Scholar]
4.
Gordan LN, Sugrue MW, Lynch JW, Williams KD, Khan SA, Moreb JS. Correlation of early lymphocyte recovery and progression-free survival after autologous stem-cell transplant in patients with Hodgkin's and non-Hodgkin's lymphoma. Bone Marrow Transplant. 2003;31(11):1009–1013. doi: 10.1038/sj.bmt.1704050. [PubMed] [CrossRef] [Google Scholar]
5.
Porrata LF, Inwards DJ, Ansell SM, Micallef IN, Johnston PB, Gastineau DA, et al. Early lymphocyte recovery predicts superior survival after autologous stem cell transplantation in non-Hodgkin lymphoma: a prospective study. Biol Blood Marrow Transplant. 2008;14(7):807–816. doi: 10.1016/j.bbmt.2008.04.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6.
Duggan P, Guo D, Luider J, Auer I, Klassen J, Chaudhry A, et al. Predictive factors for long-term engraftment of autologous blood stem cells. Bone Marrow Transplant. 2000;26(12):1299–1304. doi: 10.1038/sj.bmt.1702708. [PubMed] [CrossRef] [Google Scholar]
7.
Amigo ML, del Cañizo MC, Caballero MD, Vazquez L, Corral M, Vidriales B, et al. Factors that influence long-term hematopoietic function following autologous stem cell transplantation. Bone Marrow Transplant. 1999;24(3):289–293. doi: 10.1038/sj.bmt.1701886. [PubMed] [CrossRef] [Google Scholar]
8.
Studzinski GP, Harrison JS, Wang X, Sarkar S, Kalia V, Danilenko M. Vitamin D control of hematopoietic cell differentiation and leukemia. J Cell Biochem. 2015;116(8):1500–1512. doi: 10.1002/jcb.25104. [PubMed] [CrossRef] [Google Scholar]
9.
Bunce CM, Brown G, Hewison M. Vitamin D and hematopoiesis. Trends Endocrinol Metab. 1997;8(6):245–251. doi: 10.1016/S1043-2760(97)00066-0. [PubMed] [CrossRef] [Google Scholar]
10.
Ros-Soto Jose, Anthias Chloe, Madrigal Alejandro, Snowden John A. Vitamin D: is it important in haematopoietic stem cell transplantation? A review. Bone Marrow Transplantation. 2018;54(6):810–820. doi: 10.1038/s41409-018-0377-0. [PubMed] [CrossRef] [Google Scholar]
13.
Borella E, Nesher G, Israeli E, Shoenfeld Y. Vitamin D: a new anti-infective agent? Ann N Y Acad Sci. 2014;1317(1):76–83. doi: 10.1111/nyas.12321. [PubMed] [CrossRef] [Google Scholar]
14.
Trump DL, Deeb KK, Johnson CS. Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. Cancer J. 2010;16(1):1–9. doi: 10.1097/PPO.0b013e3181c51ee6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
15.
Damoiseaux J, Smolders J. The engagement between vitamin D and the immune system: is consolidation by a marriage to be expected? EBioMedicine. 2018;31:9–10. doi: 10.1016/j.ebiom.2018.04.013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16.
Hansson ME, Norlin A-C, Omazic B, Wikström A-C, Bergman P, Winiarski J, et al. Vitamin D levels affect outcome in pediatric hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(10):1537–1543. doi: 10.1016/j.bbmt.2014.05.030. [PubMed] [CrossRef] [Google Scholar]
17.
von Bahr L, Blennow O, Alm J, Björklund A, Malmberg KJ, Mougiakakos D, et al. Increased incidence of chronic GvHD and CMV disease in patients with vitamin D deficiency before allogeneic stem cell transplantation. Bone Marrow Transplant. 2015;50(9):1217–1223. doi: 10.1038/bmt.2015.123. [PubMed] [CrossRef] [Google Scholar]
18.
Beebe K, Magee K, McNulty A, Stahlecker J, Salzberg D, Miller H, et al. Vitamin D deficiency and outcomes in pediatric hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2018;65(2):e26817. doi: 10.1002/pbc.26817. [PubMed] [CrossRef] [Google Scholar]
19.
Wallace G, Jodele S, Howell J, Myers KC, Teusink A, Zhao X, et al. Vitamin D deficiency and survival in children after hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2015;21(9):1627–1631. doi: 10.1016/j.bbmt.2015.06.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
20.
Joseph RW, Alousi A, Konda B, Komanduri K, Neumann J, Trevino C, et al. High incidence of vitamin D deficiency in patients undergoing allogeneic stem cell transplantation. Am J Hematol. 2011;86(11):954–956. doi: 10.1002/ajh.22143. [PubMed] [CrossRef] [Google Scholar]
22.
Urbain P, Ihorst G, Biesalski H-K, Bertz H. Course of serum 25-hydroxyvitamin D3 status and its influencing factors in adults undergoing allogeneic hematopoietic cell transplantation. Ann Hematol. 2012;91(5):759–766. doi: 10.1007/s00277-011-1365-2. [PubMed] [CrossRef] [Google Scholar]
23.
Wallace G, Jodele S, Myers KC, Dandoy CE, El-Bietar J, Nelson A, et al. Vitamin D deficiency in pediatric hematopoietic stem cell transplantation patients despite both standard and aggressive supplementation. Biol Blood Marrow Transplant. 2016;22(7):1271–1274. doi: 10.1016/j.bbmt.2016.03.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
24.
Rosenblatt J, Bissonnette A, Ahmad R, Wu Z, Vasir B, Stevenson K, et al. Immunomodulatory effects of vitamin D: implications for GvHD. Bone Marrow Transplant. 2010;45(9):1463–1468. doi: 10.1038/bmt.2009.366. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
25.
Glotzbecker B, Ho VT, Aldridge J, Kim HT, Horowitz G, Ritz J, et al. Low levels of 25-hydroxyvitamin D before allogeneic hematopoietic SCT correlate with the development of chronic GvHD. Bone Marrow Transplant. 2013;48(4):593–597. doi: 10.1038/bmt.2012.177. [PubMed] [CrossRef] [Google Scholar]
26.
Arain Abeer, Matthiesen Chance. Vitamin D deficiency and graft-versus-host disease in hematopoietic stem cell transplant population. Hematology/Oncology and Stem Cell Therapy. 2019;12(3):133–139. doi: 10.1016/j.hemonc.2018.08.001. [PubMed] [CrossRef] [Google Scholar]
27.
Hamidieh AA, Sherafatmand M, Mansouri A, Hadjibabaie M, Ashouri A, Jahangard-Rafsanjani Z, et al. Calcitriol for oral mucositis prevention in patients with Fanconi anemia undergoing hematopoietic SCT: a double-blind, randomized, placebo-controlled trial. Am J Ther. 2016;23(6):e1700–e17e8. doi: 10.1097/MJT.0000000000000269. [PubMed] [CrossRef] [Google Scholar]
28.
Caballero-Velazquez T., Montero I., Sanchez-Guijo F., Parody R., Saldana R., Valcarcel D., Lopez-Godino O., Ferra i Coll C., Cuesta M., Carrillo-Vico A., Sanchez-Abarca L. I., Lopez-Corral L., Marquez-Malaver F. J., Perez-Simon J. A. Immunomodulatory Effect of Vitamin D after Allogeneic Stem Cell Transplantation: Results of a Prospective Multicenter Clinical Trial. Clinical Cancer Research. 2016;22(23):5673–5681. doi: 10.1158/1078-0432.CCR-16-0238. [PubMed] [CrossRef] [Google Scholar]
29.
Lips P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res. 2007;22(11):1668–1671. doi: 10.1359/jbmr.070716. [PubMed] [CrossRef] [Google Scholar]
30.
Kreutz M, Eissner G, Hahn J, Andreesen R, Drobnik W, Holler E. Variations in 1α,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3 serum levels during allogeneic bone marrow transplantation. Bone Marrow Transplant. 2004;33(8):871–873. doi: 10.1038/sj.bmt.1704448. [PubMed] [CrossRef] [Google Scholar]
31.
Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–1930. doi: 10.1210/jc.2011-0385. [PubMed] [CrossRef] [Google Scholar]
33.
Hamadani M, Craig M, Awan FT, Devine SM. How we approach patient evaluation for hematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45:1259. doi: 10.1038/bmt.2010.94. [PubMed] [CrossRef] [Google Scholar]
35. Calcitriol (systemic): drug information. In: Post T, editor. UpToDate. Waltham, MA, USA: UpToDate Inc., Wolters Kluwer; 2018.
37.
Hartwig SC, Siegel J, Schneider PJ. Preventability and severity assessment in reporting adverse drug reactions. Am J Hosp Pharm. 1992;49(9):2229–2232. [PubMed] [Google Scholar]
39.
Bensinger W, Schubert M, Ang K, Brizel D, Brown E, Eilers J, et al. NCCN task force report: prevention and management of mucositis in cancer care. J Natl Compr Canc Netw. 2008;6:S1–21. doi: 10.6004/jnccn.2008.0001. [PubMed] [CrossRef] [Google Scholar]
41.
Dudakov JA, Perales MA, van den Brink MRM. Immune reconstitution following hematopoietic cell transplantation. In: Forman SJ, Negrin RS, Antin JH, Appelbaum FR, editors. Thomas’ hematopoietic cell transplantation. 5. UK: Wiley; 2016. pp. 161–162. [Google Scholar]
42. Skrobot A, Demkow U, Wachowska M. Immunomodulatory role of vitamin D: a review. Current Trends in Immunity and Respiratory Infections. Springer; 2018. p. 13–23.
43.
Balogh G, de Boland AR, Boland R, Barja P. Effect of 1,25(OH)(2)-vitamin D(3) on the activation of natural killer cells: role of protein kinase C and extracellular calcium. Exp Mol Pathol. 1999;67(2):63–74. doi: 10.1006/exmp.1999.2264. [PubMed] [CrossRef] [Google Scholar]
44.
Ravid A, Koren R, Maron L, Liberman UA. 1,25(OH)2D3 increases cytotoxicity and exocytosis in lymphokine-activated killer cells. Mol Cell Endocrinol. 1993;96(1–2):133–139. doi: 10.1016/0303-7207(93)90103-q. [PubMed] [CrossRef] [Google Scholar]
45.
Ota K, Dambaeva S, Kim MW, Han AR, Fukui A, Gilman-Sachs A, et al. 1,25-Dihydroxy-vitamin D3 regulates NK-cell cytotoxicity, cytokine secretion, and degranulation in women with recurrent pregnancy losses. Eur J Immunol. 2015;45(11):3188–3199. doi: 10.1002/eji.201545541. [PubMed] [CrossRef] [Google Scholar]
46.
Bochen F, Balensiefer B, Körner S, Bittenbring JT, Neumann F, Koch A, et al. Vitamin D deficiency in head and neck cancer patients–prevalence, prognostic value and impact on immune function. Oncoimmunology. 2018;7(9):e1476817. doi: 10.1080/2162402X.2018.1476817. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47.
Lemire JM, Adams J, Sakai R, Jordan S. 1 alpha, 25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J Clin Invest. 1984;74(2):657–661. doi: 10.1172/JCI111465. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48.
Quesada JM, Serrano I, Borrego F, Martin A, Pena J, Solana R. Calcitriol effect on natural killer cells from hemodialyzed and normal subjects. Calcif Tissue Int. 1995;56(2):113–117. doi: 10.1007/BF00296341. [PubMed] [CrossRef] [Google Scholar]
49.
Dogan M, Erol M, Cesur Y, Yuca SA, Doğan Ş. The effect of 25-hydroxyvitamin D3 on the immune system. J Pediatr Endocrinol Metab. 2009;22(10):929–936. doi: 10.1515/JPEM.2009.22.10.929. [PubMed] [CrossRef] [Google Scholar]
50.
Cortes M, Chen Michael J, Stachura David L, Liu Sarah Y, Kwan W, Wright F, et al. Developmental vitamin D availability impacts hematopoietic stem cell production. Cell Rep. 2016;17(2):458–468. doi: 10.1016/j.celrep.2016.09.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51.
Weeres MA, Robien K, Ahn Y-O, Neulen M-L, Bergerson R, Miller JS, et al. The effects of 1, 25-dihydroxyvitamin D3 on in vitro human NK cell development from hematopoietic stem cells. J Immunol. 2014;193(7):3456–3462. doi: 10.4049/jimmunol.1400698. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52.
Hiwase DK, Hiwase S, Bailey M, Bollard G, Schwarer AP. Higher infused lymphocyte dose predicts higher lymphocyte recovery, which in turn, predicts superior overall survival following autologous hematopoietic stem cell transplantation for multiple myeloma. Biol Blood Marrow Transplant. 2008;14(1):116–124. doi: 10.1016/j.bbmt.2007.08.051. [PubMed] [CrossRef] [Google Scholar]
53.
Kim H, Sohn H, Kim S, Kang H, Park S, Kim S, et al. Lymphocyte recovery as a positive predictor of prolonged survival after autologous peripheral blood stem cell transplantation in T-cell non-Hodgkin's lymphoma. Bone Marrow Transplant. 2004;34(1):43–49. doi: 10.1038/sj.bmt.1704530. [PubMed] [CrossRef] [Google Scholar]
54.
Kim H, Sohn H, Kim S, Lee J, Kim W, Suh C. Early lymphocyte recovery predicts longer survival after autologous peripheral blood stem cell transplantation in multiple myeloma. Bone Marrow Transplant. 2006;37(11):1037–1042. doi: 10.1038/sj.bmt.1705373. [PubMed] [CrossRef] [Google Scholar]
55.
Porrata LF, Litzow MR, Markovic SN. Immune reconstitution after autologous hematopoietic stem cell transplantation. Mayo Clin Proc. 2001;76(4):407–412. doi: 10.4065/76.4.407. [PubMed] [CrossRef] [Google Scholar]
56.
Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA. Vitamin D: effect on haematopoiesis and immune system and clinical applications. Int J Mol Sci. 2018;19(9):2663. doi: 10.3390/ijms19092663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57.
Zhou K, Chen D, Jin H, Wu K, Wang X, Xu H, et al. Effects of calcitriol on experimental spinal cord injury in rats. Spinal Cord. 2016;54(7):510–516. doi: 10.1038/sc.2015.217. [PubMed] [CrossRef] [Google Scholar]
58.
Stiff P. Mucositis associated with stem cell transplantation: current status and innovative approaches to management. Bone Marrow Transplant. 2001;27(S2):S3–S11. doi: 10.1038/sj.bmt.1702863. [PubMed] [CrossRef] [Google Scholar]
Plaats een reactie ...
Reageer op "Vitamine D (calcitrol 3x daags) vanaf stamceltransplantatie verbeterde twee jaar recidiefvrije overleving bij autologe stamceltransplantatie in vergelijking met placebo"