30 maart 2023: Bron: Lungcancer: RESEARCH ARTICLE| VOLUME 178P11-19, APRIL 2023

Wetenschappers hebben onderzocht wat de voorspellende waarde kan zijn van het regelmatig meten van circulerend tumor-DNA (ctDNA) bij patiënten met gevorderde uitgezaaide longkanker en deze te combineren met de uitslag van een weefselbiopt. En zij ontdekten een positieve correlatie tussen radiografische tumorbelasting (radiotherapie - bestraling van de kankertumoren) en ctDNA-waarden. De ctDNA-waarden waren consistent met het ziekteverloop.

Door weefselafname te combineren met de uitslag van een analyse van een circulerend tumor-DNA (ctDNA) steeg het detectiepercentage van bruikbare mutaties van 19,4% naar 26,9%. Een circulerend tumor-DNA (ctDNA) detectie op het moment van diagnose was ook onafhankelijk geassocieerd met progressievrije overlevingsresultaten.

Kernpunten uit deze studie:

  • We hebben de volgende generatie sequencing uitgevoerd van 159 plasmamonsters van 69 patiënten met SCLC in een uitgebreid stadium (ES).
  • Combinatie van ctDNA- en weefseltesten verbeterde het algehele detectiepercentage van bruikbare mutaties van 19,4% naar 26,9% vergeleken met dat van alleen weefseldetectie.
  • ctDNA-niveaus veranderden dynamisch tijdens de behandeling en waren significant geassocieerd met verminderde progressievrije overleving.
Het volledige studierapport is tegen betaling in te zien. Hier het abstract van deze studie: 

RESEARCH ARTICLE| VOLUME 178P11-19, APRIL 2023

Prognostic value of circulating tumor DNA using target next-generation sequencing in extensive-stage small-cell lung cancer

Published:February 01, 2023DOI:https://doi.org/10.1016/j.lungcan.2023.01.015 

Highlights

  • We performed next-generation sequencing of 159 plasma samples from 69 patients with extensive-stage (ES)-SCLC.
  • Combination ctDNA and tissue testing improved the overall detection rate of actionable mutations from 19.4% to 26.9% compared with that of tissue detection alone.
  • ctDNA levels changed dynamically during the course of treatment and were significantly associated with decreased progression-free survival.

Abstract

Background

Chemotherapy remains the mainstay of treatment for small-cell lung cancer (SCLC). Liquid biopsies provide a convenient and non-invasive detection method for monitoring disease progression in patients with SCLC.

Methods

We performed next-generation sequencing of 159 plasma samples from 69 patients with extensive-stage (ES)-SCLC. Circulating tumor (ct)DNA levels were quantified in haploid genome equivalents per mL (hGE/mL). MuTect2 was used to detect single nucleotide variants and short insertions/deletions. The “enrichKEGG” function in the “clusterProfiler” R package was used to enrich the mutated genes that only appeared during disease progression.

Results

In our cohort, 66 of 69 (95.7%) plasma samples at the time of diagnosis had detectable somatic mutations; TP53 (89%) and RB1(56%) were the most frequent mutations, as well as copy number variations in some common SCLC-related genes such as RB1. Combination ctDNA and tissue testing improved the overall detection rate of actionable mutations from 19.4% to 26.9% compared with that of tissue detection alone. In addition, ctDNA levels changed dynamically during the course of treatment and were significantly associated with decreased progression-free survival. Notably, actionable mutations were detected at the time of diagnosis and during disease progression.

Conclusions

Our study revealed a dynamic somatic mutation profile through continuous ctDNA detection and confirmed that ctDNA levels can reflect tumor burden and predict PFS in patients with extensive stage-SCLC. Furthermore, we demonstrated that plasma ctDNA assays can provide real-time information on somatic mutations for potential targeted therapies for SCLC.

References

    • Byers L.A.
    • Rudin C.M.
    Small cell lung cancer: where do we go from here?.
    Cancer. 2015 Mar 1; 121 (Epub 2014/10/23 as doi: 10.1002/cncr.29098): 664-672
    • Howlader N.
    • Forjaz G.
    • Mooradian M.J.
    • Meza R.
    • Kong C.Y.
    • Cronin K.A.
    • Mariotto A.B.
    • Lowy D.R.
    • Feuer E.J.
    The Effect of Advances in Lung-Cancer Treatment on Population Mortality.
    N Engl J Med. 2020; 383: 640-649
    • Wu Y.-L.
    • Zhou C.
    • Liam C.-K.
    • Wu G.
    • Liu X.
    • Zhong Z.
    • Lu S.
    • Cheng Y.
    • Han B.
    • Chen L.
    • Huang C.
    • Qin S.
    • Zhu Y.
    • Pan H.
    • Liang H.
    • Li E.
    • Jiang G.
    • How S.H.
    • Fernando M.C.L.
    • Zhang Y.
    • Xia F.
    • Zuo Y.
    First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study.
    Ann Oncol. 2015; 26: 1883-1889
    • Farago A.F.
    • Keane F.K.
    Current standards for clinical management of small cell lung cancer.
    Transl. Lung Cancer Res. 2018; 7: 69-79
    • Rudin C.M.
    • Brambilla E.
    • Faivre-Finn C.
    • Sage J.
    Small-cell lung cancer.
    Nat Rev Dis Primers. 2021 Jan 14; 7 (Epub 2021/01/16 as doi: 10.1038/s41572-020-00235-0): 3
  1. Alix-Panabieres C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021 Apr;11 4:858-73. Epub 2021/04/04 as doi: 10.1158/2159-8290.CD-20-1311.

    • Siravegna G.
    • Mussolin B.
    • Venesio T.
    • Marsoni S.
    • Seoane J.
    • Dive C.
    • Papadopoulos N.
    • Kopetz S.
    • Corcoran R.B.
    • Siu L.L.
    • Bardelli A.
    How liquid biopsies can change clinical practice in oncology.
    Ann Oncol. 2019; 30: 1580-1590
    • Stroun M.
    • Lyautey J.
    • Lederrey C.
    • Olson-Sand A.
    • Anker P.
    About the possible origin and mechanism of circulating DNA apoptosis and active DNA release.
    Clin Chim Acta. 2001 Nov; 313 (Epub 2001/11/06 as): 139-142https://doi.org/10.1016/s0009-8981(01)00665-9
    • Diehl F.
    • Schmidt K.
    • Choti M.A.
    • Romans K.
    • Goodman S.
    • Li M.
    • Thornton K.
    • Agrawal N.
    • Sokoll L.
    • Szabo S.A.
    • Kinzler K.W.
    • Vogelstein B.
    • Diaz Jr L.A.
    Circulating mutant DNA to assess tumor dynamics.
    Nat Med. 2008; 14: 985-990
  2. Underhill HR, Kitzman JO, Hellwig S, Welker NC, Daza R, Baker DN, Gligorich KM, et al. Fragment Length of Circulating Tumor DNA. PLoS Genet 2016 Jul;12 7:e1006162. Epub 2016/07/20 as doi: 10.1371/journal.pgen.1006162.

    • Dawson S.-J.
    • Tsui D.W.Y.
    • Murtaza M.
    • Biggs H.
    • Rueda O.M.
    • Chin S.-F.
    • Dunning M.J.
    • Gale D.
    • Forshew T.
    • Mahler-Araujo B.
    • Rajan S.
    • Humphray S.
    • Becq J.
    • Halsall D.
    • Wallis M.
    • Bentley D.
    • Caldas C.
    • Rosenfeld N.
    Analysis of circulating tumor DNA to monitor metastatic breast cancer.
    N Engl J Med. 2013; 368: 1199-1209
  3. Russo M, Siravegna G, Blaszkowsky LS, Corti G, Crisafulli G, Ahronian LG, Mussolin B, et al. Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer. Cancer Discov 2016 Feb;6 2:147-53. Epub 2015/12/09 as doi: 10.1158/2159-8290.CD-15-1283.

    • Parikh A.R.
    • Leshchiner I.
    • Elagina L.
    • Goyal L.
    • Levovitz C.
    • Siravegna G.
    • Livitz D.
    • Rhrissorrakrai K.
    • Martin E.E.
    • Van Seventer E.E.
    • Hanna M.
    • Slowik K.
    • Utro F.
    • Pinto C.J.
    • Wong A.
    • Danysh B.P.
    • de la Cruz F.F.
    • Fetter I.J.
    • Nadres B.
    • Shahzade H.A.
    • Allen J.N.
    • Blaszkowsky L.S.
    • Clark J.W.
    • Giantonio B.
    • Murphy J.E.
    • Nipp R.D.
    • Roeland E.
    • Ryan D.P.
    • Weekes C.D.
    • Kwak E.L.
    • Faris J.E.
    • Wo J.Y.
    • Aguet F.
    • Dey-Guha I.
    • Hazar-Rethinam M.
    • Dias-Santagata D.
    • Ting D.T.
    • Zhu A.X.
    • Hong T.S.
    • Golub T.R.
    • Iafrate A.J.
    • Adalsteinsson V.A.
    • Bardelli A.
    • Parida L.
    • Juric D.
    • Getz G.
    • Corcoran R.B.
    Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers.
    Nat Med. 2019; 25: 1415-1421
    • Yang J.
    • Wang X.
    • Lu J.
    • Chen H.
    • Zhao X.
    • Gao C.
    • Bai Y.
    • Zhang Q.
    • Fu X.
    • Zhang X.
    Genomic Profiling of Circulating Tumor DNA from Patients with Extensive-Stage Small Cell Lung Cancer Identifies Potentially Actionable Alterations.
    J Cancer. 2021; 12: 5099-5105
    • Almodovar K.
    • Iams W.T.
    • Meador C.B.
    • Zhao Z.
    • York S.
    • Horn L.
    • Yan Y.
    • Hernandez J.
    • Chen H.
    • Shyr Y.u.
    • Lim L.P.
    • Raymond C.K.
    • Lovly C.M.
    Longitudinal Cell-Free DNA Analysis in Patients with Small Cell Lung Cancer Reveals Dynamic Insights into Treatment Efficacy and Disease Relapse.
    J Thorac Oncol. 2018; 13: 112-123
    • Nong J.
    • Gong Y.
    • Guan Y.
    • Yi X.
    • Yi Y.
    • Chang L.
    • Yang L.
    • Lv J.
    • Guo Z.
    • Jia H.
    • Chu Y.
    • Liu T.
    • Chen M.
    • Byers L.
    • Roarty E.
    • Lam V.K.
    • Papadimitrakopoulou V.A.
    • Wistuba I.
    • Heymach J.V.
    • Glisson B.
    • Liao Z.
    • Lee J.J.
    • Futreal P.A.
    • Zhang S.
    • Xia X.
    • Zhang J.
    • Wang J.
    Circulating tumor DNA analysis depicts subclonal architecture and genomic evolution of small cell lung cancer.
    Nat Commun. 2018 Aug 6; 9
    • Cibulskis K.
    • Lawrence M.S.
    • Carter S.L.
    • Sivachenko A.
    • Jaffe D.
    • Sougnez C.
    • Gabriel S.
    • Meyerson M.
    • Lander E.S.
    • Getz G.
    Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.
    Nat Biotechnol. 2013; 31: 213-219
  4. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 2010 Sep;38 16:e164. Epub 2010/07/06 as doi: 10.1093/nar/gkq603.

  5. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput Biol 2016 Apr;12 4:e1004873. Epub 2016/04/23 as doi: 10.1371/journal.pcbi.1004873.

  6. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015 Apr 20;43 7:e47. Epub 2015/01/22 as doi: 10.1093/nar/gkv007.

    • Li M.
    • Lin A.
    • Luo P.
    • Shen W.
    • Xiao D.
    • Gou L.
    • Zhang J.
    • Guo L.
    DNAH10 mutation correlates with cisplatin sensitivity and tumor mutation burden in small-cell lung cancer.
    DNAH10 mutation correlates with cisplatin sensitivity and tumor mutation burden in small-cell lung cancer. Aging (Albany NY). 2020; 12: 1285-1303
  7. Chaudhuri AA, Chabon JJ, Lovejoy AF, Newman AM, Stehr H, Azad TD, Khodadoust MS, et al. Early Detection of Molecular Residual Disease in Localized Lung Cancer by Circulating Tumor DNA Profiling. Cancer Discov 2017 Dec;7 12:1394-403. Epub 2017/09/14 as doi: 10.1158/2159-8290.CD-17-0716.

    • George J.
    • Lim J.S.
    • Jang S.J.
    • Cun Y.
    • Ozretić L.
    • Kong G.u.
    • Leenders F.
    • Lu X.
    • Fernández-Cuesta L.
    • Bosco G.
    • Müller C.
    • Dahmen I.
    • Jahchan N.S.
    • Park K.-S.
    • Yang D.
    • Karnezis A.N.
    • Vaka D.
    • Torres A.
    • Wang M.S.
    • Korbel J.O.
    • Menon R.
    • Chun S.-M.
    • Kim D.
    • Wilkerson M.
    • Hayes N.
    • Engelmann D.
    • Pützer B.
    • Bos M.
    • Michels S.
    • Vlasic I.
    • Seidel D.
    • Pinther B.
    • Schaub P.
    • Becker C.
    • Altmüller J.
    • Yokota J.
    • Kohno T.
    • Iwakawa R.
    • Tsuta K.
    • Noguchi M.
    • Muley T.
    • Hoffmann H.
    • Schnabel P.A.
    • Petersen I.
    • Chen Y.
    • Soltermann A.
    • Tischler V.
    • Choi C.-M.
    • Kim Y.-H.
    • Massion P.P.
    • Zou Y.
    • Jovanovic D.
    • Kontic M.
    • Wright G.M.
    • Russell P.A.
    • Solomon B.
    • Koch I.
    • Lindner M.
    • Muscarella L.A.
    • la Torre A.
    • Field J.K.
    • Jakopovic M.
    • Knezevic J.
    • Castaños-Vélez E.
    • Roz L.
    • Pastorino U.
    • Brustugun O.-T.
    • Lund-Iversen M.
    • Thunnissen E.
    • Köhler J.
    • Schuler M.
    • Botling J.
    • Sandelin M.
    • Sanchez-Cespedes M.
    • Salvesen H.B.
    • Achter V.
    • Lang U.
    • Bogus M.
    • Schneider P.M.
    • Zander T.
    • Ansén S.
    • Hallek M.
    • Wolf J.
    • Vingron M.
    • Yatabe Y.
    • Travis W.D.
    • Nürnberg P.
    • Reinhardt C.
    • Perner S.
    • Heukamp L.
    • Büttner R.
    • Haas S.A.
    • Brambilla E.
    • Peifer M.
    • Sage J.
    • Thomas R.K.
    Comprehensive genomic profiles of small cell lung cancer.
    Nature. 2015; 524: 47-53
    • Umemura S.
    • Mimaki S.
    • Makinoshima H.
    • Tada S.
    • Ishii G.
    • Ohmatsu H.
    • Niho S.
    • Yoh K.
    • Matsumoto S.
    • Takahashi A.
    • Morise M.
    • Nakamura Y.
    • Ochiai A.
    • Nagai K.
    • Iwakawa R.
    • Kohno T.
    • Yokota J.
    • Ohe Y.
    • Esumi H.
    • Tsuchihara K.
    • Goto K.
    Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis.
    J Thorac Oncol. 2014; 9: 1324-1331
    • Lam V.K.
    • Zhang J.
    • Wu C.C.
    • Tran H.T.
    • Li L.
    • Diao L.
    • Wang J.
    • Rinsurongkawong W.
    • Raymond V.M.
    • Lanman R.B.
    • Lewis J.
    • Roarty E.B.
    • Roth J.
    • Swisher S.
    • Lee J.J.
    • Gibbons D.L.
    • Papadimitrakopoulou V.A.
    • Heymach J.V.
    Genotype-Specific Differences in Circulating Tumor DNA Levels in Advanced NSCLC.
    Journal of Thoracic Oncology. 2021; 16: 601-609
    • Abbosh C.
    • Birkbak N.J.
    • Wilson G.A.
    • Jamal-Hanjani M.
    • Constantin T.
    • Salari R.
    • Le Quesne J.
    • et al.
    Corrigendum: Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.
    Nature. 2018 Feb 8; 554 (Epub 2017/12/21 as doi: 10.1038/nature25161): 264
    • Yang J.
    • Gong Y.
    • Lam V.K.
    • Shi Y.
    • Guan Y.
    • Zhang Y.
    • Ji L.
    • Chen Y.
    • Zhao Y.
    • Qian F.
    • Chen J.
    • Li P.
    • Zhang F.
    • Wang J.
    • Zhang X.
    • Yang L.
    • Kopetz S.
    • Futreal P.A.
    • Zhang J.
    • Yi X.
    • Xia X.
    • Yu P.
    Deep sequencing of circulating tumor DNA detects molecular residual disease and predicts recurrence in gastric cancer.
    Cell Death Dis. 2020 May 11; 11
  8. Cullinane C, Fleming C, O'Leary DP, Hassan F, Kelly L, O'Sullivan MJ, Corrigan MA, et al. Association of Circulating Tumor DNA With Disease-Free Survival in Breast Cancer: A Systematic Review and Meta-analysis. JAMA Netw Open 2020 Nov 2;3 11:e2026921. Epub 2020/11/20 as doi: 10.1001/jamanetworkopen.2020.26921.

    • Song Y.
    • Hu C.
    • Xie Z.
    • Wu L.
    • Zhu Z.
    • Rao C.
    • Liu L.i.
    • Chen Y.
    • Liang N.
    • Chen J.
    • Hu C.
    • Yang N.
    • Hu J.
    • Zhao W.
    • Tong G.
    • Dong X.
    • Zheng D.i.
    • Jin M.
    • Chen J.
    • Huang M.
    • He Y.
    • Rosell R.
    • Lippi G.
    • Mino-Kenudson M.
    • Han-Zhang H.
    • Mao X.
    • Zhang L.u.
    • Liu H.
    • Field J.K.
    • Chuai S.
    • Ye J.
    • Han Y.
    • Lu S.
    Circulating tumor DNA clearance predicts prognosis across treatment regimen in a large real-world longitudinally monitored advanced non-small cell lung cancer cohort.
    Transl Lung Cancer Res. 2020; 9: 269-279
    • Wagner A.H.
    • Devarakonda S.
    • Skidmore Z.L.
    • Krysiak K.
    • Ramu A.
    • Trani L.
    • Kunisaki J.
    • Masood A.
    • Waqar S.N.
    • Spies N.C.
    • Morgensztern D.
    • Waligorski J.
    • Ponce J.
    • Fulton R.S.
    • Maggi L.B.
    • Weber J.D.
    • Watson M.A.
    • O’Conor C.J.
    • Ritter J.H.
    • Olsen R.R.
    • Cheng H.
    • Mukhopadhyay A.
    • Can I.
    • Cessna M.H.
    • Oliver T.G.
    • Mardis E.R.
    • Wilson R.K.
    • Griffith M.
    • Griffith O.L.
    • Govindan R.
    Recurrent WNT pathway alterations are frequent in relapsed small cell lung cancer.
    Nat Commun. 2018 Sep 17; 9
    • Stambolic V.
    • Suzuki A.
    • de la Pompa J.L.
    • Brothers G.M.
    • Mirtsos C.
    • Sasaki T.
    • Ruland J.
    • Penninger J.M.
    • Siderovski D.P.
    • Mak T.W.
    Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN.
    Cell. 1998; 95: 29-39
    • Lee Y.R.
    • Chen M.
    • Pandolfi pp.
    The functions and regulation of the PTEN tumour suppressor: new modes and prospects.
    Nat Rev Mol Cell Biol. 2018 Sep; 19 (Epub 2018/06/03 as doi: 10.1038/s41580-018-0015-0): 547-562
  9. Jin Y, Chen Y, Tang H, Hu X, Hubert SM, Li Q, Su D, et al. Activation of PI3K/AKT Pathway Is a Potential Mechanism of Treatment Resistance in Small Cell Lung Cancer. Clin Cancer Res 2022 Feb 1;28 3:526-39. Epub 2021/12/19 as doi: 10.1158/1078-0432.CCR-21-1943.

    • Li M.
    • Shan W.
    • Hua Y.
    • Chao F.
    • Cui Y.
    • Lv L.
    • Dou X.
    • Bian X.
    • Zou J.
    • Li H.
    • Lin W.
    Exosomal miR-92b-3p Promotes Chemoresistance of Small Cell Lung Cancer Through the PTEN/AKT Pathway. Front Cell.
    Dev Biol. 2021; 9661602
    • Chakravarty D.
    • Gao J.
    • Phillips S.
    • Kundra R.
    • Zhang H.
    • Wang J.
    • Rudolph J.E.
    • Yaeger R.
    • Soumerai T.
    • Nissan M.H.
    • Chang M.T.
    • Chandarlapaty S.
    • Traina T.A.
    • Paik P.K.
    • Ho A.L.
    • Hantash F.M.
    • Grupe A.
    • Baxi S.S.
    • Callahan M.K.
    • Snyder A.
    • Chi P.
    • Danila D.C.
    • Gounder M.
    • Harding J.J.
    • Hellmann M.D.
    • Iyer G.
    • Janjigian Y.Y.
    • Kaley T.
    • Levine D.A.
    • Lowery M.
    • Omuro A.
    • Postow M.A.
    • Rathkopf D.
    • Shoushtari A.N.
    • Shukla N.
    • Voss M.H.
    • Paraiso E.
    • Zehir A.
    • Berger M.F.
    • Taylor B.S.
    • Saltz L.B.
    • Riely G.J.
    • Ladanyi M.
    • Hyman D.M.
    • Baselga J.
    • Sabbatini P.
    • Solit D.B.
    • Schultz N.
    OncoKB: A Precision Oncology Knowledge Base. JCO Precis.
    Oncol. 2017; : 1-16
  10. Farago AF, Yeap BY, Stanzione M, Hung YP, Heist RS, Marcoux JP, Zhong J, et al. Combination Olaparib and Temozolomide in Relapsed Small-Cell Lung Cancer. Cancer Discov 2019 Oct;9 10:1372-87. Epub 2019/08/17 as doi: 10.1158/2159-8290.CD-19-0582.

    • Hochmair M.J.
    • Illini O.
    • Prosch H.
    • Krenbek D.
    • Valipour A.
    Complete Remission to Afatinib in a Patient Harboring a Novel Epidermal Growth Factor Mutation in De Novo Small-Cell Lung Cancer: A Case Report: Clinical Lung Cancer.
    Clin Lung Cancer. 2022 Jun; 23 (Epub 2021/12/07 as doi: 10.1016/j.cllc.2021.11.002): e289-e292
    • Pishvaian M.J.
    • Blais E.M.
    • Brody J.R.
    • Lyons E.
    • DeArbeloa P.
    • Hendifar A.
    • Mikhail S.
    • Chung V.
    • Sahai V.
    • Sohal D.P.S.
    • Bellakbira S.
    • Thach D.
    • Rahib L.
    • Madhavan S.
    • Matrisian L.M.
    • Petricoin E.F.
    Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial.
    The Lancet Oncology. 2020; 21: 508-518
    • Cheng M.L.
    • Pectasides E.
    • Hanna G.J.
    • Parsons H.A.
    • Choudhury A.D.
    • Oxnard G.R.
    Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions.
    CA Cancer J Clin. 2021 Mar; 71 (Epub 2020/11/10 as doi: 10.3322/caac.21650): 176-190

Plaats een reactie ...

Reageer op "Longkanker: Circulerend tumor-DNA (ctDNA) regelmatig meten en combineren met een weefselanalyse (biopt) geeft beduidend meer informatie over veranderde mutaties bij patiënten met uitgezaaide gevorderde kleincellige longkanker"


Gerelateerde artikelen
 

Gerelateerde artikelen

Longkanker: Circulerend tumor-DNA >> Longkanker: Genetisch onderzoek: >> Repotrectinib, een TRK remmer, >> Sotorasib (AMG 510) geeft >> Longkanker: Combinatiebehandeling >> Longkanker: Selpercatinib >> Longkanker: Biomarker test >> Longkanker: EORTC opent grote >> Longkanker: Crizotinib is >> Longkanker: Crizotinib en >>