30 oktober 2017: Bron: European Urology: August 2015 Volume 68, Issue 2, Pages 267–279

Bij nagenoeg alle vormen van kanker lijkt immuuntherapie de sleutel tot langdurige overleving. Bijna elke week wordt wel ergens een studie gepubliceerd, meestal met anti-PD medicijnen / check pointremmers maar ook andere vormen van immuuntherapie met targeted medicine,, medicijnen die zich richten op 1 of enkele mutaties of ook vormen van dendritische celtherapie met aanvullende immuunstimulerende middelen waaronder gemoduleerde virussen. Ik probeer dit bij te houden maar is onmogelijk door de veelheid alle belangrijke studies ook te publiceren met commentaar. 

Omdat ik naast de website bijhouden ook nog enkele patiënten begeleid kwam ik op deze studie: A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-G Inline Image eulogo1

die opgemaakt eind 2014 en gepubliceerd in 2015 een overzicht geeft van immuuntherape bij urologische vormen van kanker, zoals blaaskanker,prostaatkanker en nierkanker. 

De studie is dus al weer 2 jaar oud en er zijn al weer veel aanvullingen te maken, maar voor de meeste studies moet betaald worden voor een volledig studierapport. En deze studie geeft wel een goed overzicht van hoe immuuntherapie precies werkt, welke bepaalde mutaties een rol daarbij spelen en welke ontwikkelingen er plaatsvinden bij urologische vormen van kanker. En is uitgeplitst in de verschillende vormen van immuuntherapie en beschrijft het tot nu toe gedaan onderzoek bij respectievelijk blaaskanker, prostaatkanker en nierkanker.

immuuntherapie bij urologische vormen van kanker

Hier enkele citatn uit de conclusie van deze reviewstudie:

An improved understanding of the molecular mechanisms that govern interactions between a tumor and the host immune response has led to major advances in targeted immunotherapy and cancer treatments. Our systematic review demonstrates that immune checkpoint inhibitors offer interesting and long-lasting response rates in heavily pretreated patients with advanced urologic cancers.

In prostate cancer, a growing body of data supports the oncologic role of anti–CTLA-4 antibodies, alone or in combination with other immune therapies. ........

In renal cancer, the most encouraging findings have been observed for PD-1/PD-L1 inhibitors given their safety and antitumor activity. .......

The field of immunotherapy in urologic cancer treatment is evolving. Oncologic efficacy, including prolongation of overall survival, has already been observed for immune checkpoint inhibitors in various malignancies, mainly in breast cancer and melanomas. Several ongoing trials are studying immune therapy combinations and immune monotherapy combined with conventional anticancer drugs (Table 4). An anti–CTLA-4 antibody and vaccine combination has already been tested with interesting outcomes. Preclinical studies also support the synergistic role of CTLA-4 and PD-1 blockade [, ].

Table 4 laat lopende studies zien, maar voor recente studies kunt u het beste kijken in clinicaltrials. :

Table 4Ongoing clinical trials
Clinical trialDrugPhaseCancerEstimated

enrollment
PopulationPrimary endpointArmsEstimated completion

date
CTLA-4
NCT01057810 Ipilimumab 3 Prostate 60 CT-naïve mCRPC OS Versus placebo February 2016
NCT01530984 Ipilimumab 2 Prostate 54 CT-naïve mCRPC PSA decline Versus ipilimumab + GM-CSF December 2018
NCT01688492 Ipilimumab 1/2 Prostate 25 CT-naïve mCRPC PSA decline With abiraterone September 2015
NCT01498978 Ipilimumab 2 Prostate 30 mCRPC PSA decline April 2018
NCT01194271 Ipilimumab 2a Prostate 20 Localized Immune response Neoadjuvant September 2015
NCT01804465 Ipilimumab 2 Prostate 66 CT-naïve mCRPC Immune response With sipuleucel-T December 2016
NCT02231749 Ipilimumab 3 RCC 1070 mRCC OS, PFS With nivolumab versus sunitinib October 2019
NCT01524991 Ipilimumab 2 Bladder 36 M OS With GC June 2016
PD-1
NCT01354431 Nivolumab 2 RCC 150 mRCC RECIST April 2015
NCT01668784 Nivolumab 3 RCC 822 mRCC RECIST Versus everolimus September 2016
NCT01441765 Pidilizumab 2 RCC 44 mRCC RECIST ± dendritic cell vaccine November 2015
NCT01420965 Pidilizumab 2 Prostate 57 mCRPC Immune response With sipuleucel ± cyclophosphamide December 2018
NCT02210117 Nivolumab 2 RCC 45 mCRPC Safety ± sunitinib versus ± ipilimumab January 2019
NCT01928394 Nivolumab 1/2 Bladder 410 M Response rate ± ipilimumab March 2017
PD-L1
NCT01984242 MPDL3280A 2 RCC 150 mRCC RECIST ± sunitinib versus bevacizumab January 2016
NCT02108652 MPDL3280A 2 Bladder 330 M Response rate March 2016
B7-H3
NCT01391143 MGA271 1 Prostate Bladder

RCC
151 M Safety February 2016

Data from studies support the activity and safety of immune checkpoint inhibitors in urologic cancers, alone or in combination with conventional cancer therapies. Encouraging data in other oncologic fields could translate into interesting responses in urological cancers.

A Systematic Review of Immunotherapy in Urologic Cancer: Evolving Roles for Targeting of CTLA-4, PD-1/PD-L1, and HLA-GInline Image eulogo1

Edgardo D. Carosella'Correspondence information about the author Edgardo D. Carosella
,
Guillaume Ploussard
,
Joel LeMaoult
,
Francois Desgrandechamps

DOI: http://dx.doi.org/10.1016/j.eururo.2015.02.032

Abstract

Context

Overexpression of immune checkpoint molecules affects tumor-specific T-cell immunity in the cancer microenvironment, and can reshape tumor progression and metastasis. Antibodies targeting checkpoints could restore antitumor immunity by blocking the inhibitory receptor-ligand interaction.

Objective

To analyze data and current trends in immune checkpoint targeting therapy for urologic cancers.

Evidence acquisition

Systematic literature search for clinical trials in the PubMed and Cochrane databases up to August 2014 according to Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Endpoints included oncologic results, tumor response rates, safety, and tolerability.

Evidence synthesis

Anti-CTLA-4 monotherapy has demonstrated biochemical responses in prostate cancer. One phase 3 trial assessing ipilimumab efficacy in castration-resistant disease was negative overall. Nevertheless, ipilimumab may significantly improve overall survival compared with placebo in subgroups of patients with favorable prognostic features. In renal cancer, phase 1 trials showed interesting stabilization or long-lasting objective response rates approaching 50% using anti-PD-1/PD-L1 drugs in heavily pretreated metastatic patients. In bladder cancer, one phase 2 trial indicated a good safety profile for ipilimumab as a neoadjuvant drug before radical cystectomy. Overall, immune-related effects such as colitis and dermatitis were common and well tolerated.

Conclusions

Our systematic review shows that antibodies blocking immune checkpoints offer interesting and long-lasting response rates in heavily pretreated patients with advanced urologic cancers. More promising results are currently provided by anti-CTLA-4 antibodies in prostate cancer and by PD-1/PD-L1 inhibitors in renal cancer. These should encourage new clinical trials of immune therapy combinations and immunotherapy monotherapy combined with conventional anticancer drugs. In bladder cancer, the use of targeted immunotherapy still remains underevaluated; however, preliminary results reported at recent conferences seem encouraging.

Patient summary

Data from studies support the activity and safety of immune checkpoint inhibitors in urologic cancers, alone or in combination with conventional cancer therapies. Encouraging data in other oncologic fields could translate into interesting responses in urological cancers.

References

  1. Collins, A.V., Brodie, D.W., Gilbert, R.J.C. et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002; 17: 201–210
  2. Rudd, C.E., Taylor, A., and Schneider, H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev. 2009; 229: 12–26
  3. Teft, W.A., Kirchhof, M.G., and Madrenas, J. A molecular perspective of CTLA-4 function. Annu Rev Immunol. 2006; 24: 65–97
  4. Lenschow, D.J., Walunas, T.L., and Bluestone, J.A. CD28/B7 system of T cell costimulation. Annu Rev Immunol. 1996; 14: 233–258
  5. Wing, K., Onishi, Y., Prieto-Martin, P. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008; 322: 271–275
  6. Hurwitz, A.A., Foster, B.A., Kwon, E.D. et al. Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res. 2000; 60: 2444–2448
  7. Demaria, S., Kawashima, N., Yang, A.M. et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005; 11: 728–734
  8. Wada, S., Jackson, C.M., Yoshimura, K. et al. Sequencing CTLA-4 blockade with cell-based immunotherapy for prostate cancer. J Transl Med. 2013; 11: 89
  9. Slovin, S.F., Higano, C.S., Hamid, O. et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013; 24: 1813–1821
  10. Small, E.J., Tchekmedyian, N.S., Rini, B.I., Fong, L., Lowy, I., and Allison, J.P. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin Cancer Res. 2007; 13: 1810–1815
  11. Fong, L., Kwek, S.S., O’Brien, S. et al. Potentiating endogenous antitumor immunity to prostate cancer through combination immunotherapy with CTLA4 blockade and GM-CSF. Cancer Res. 2009; 69: 609–615
  12. Madan, R.A., Mohebtash, M., Arlen, P.M. et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012; 13: 501–508
  13. Jochems, C., Tucker, J.A., Tsang, K.Y. et al. A combination trial of vaccine plus ipilimumab in metastatic castration-resistant prostate cancer patients: immune correlates. Cancer Immunol Immunother. 2014; 63: 407–418
  14. van den Eertwegh, A.J.M., Versluis, J., van den Berg, H.P. et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012; 13: 509–517
  15. Santegoets, S.A.M., Stam, A.M., Lougheed, S. et al. T cell profiling reveals high CD4+CTLA-4+ T cell frequency as dominant predictor for survival after prostate GVAX/ipilimumab treatment. Cancer Immunol Immunother. 2013; 62: 245–256
  16. Kwon, E.D., Drake, C.G., Scher, H.I. et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014; 15: 700–712
  17. McNeel, D.G., Smith, H.A., Eickhoff, J.C. et al. Phase I trial of tremelimumab in combination with short-term androgen deprivation in patients with PSA-recurrent prostate cancer. Cancer Immunol Immunother. 2012; 61: 1137–1147
  18. Yang, J.C., Hughes, M., Kammula, U. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007; 30: 825–830
  19. Blansfield, J.A., Beck, K.E., Tran, K. et al. Cytotoxic T-lymphocyte-associated antigen-4 blockage can induce autoimmune hypophysitis in patients with metastatic melanoma and renal cancer. J Immunother. 2005; 28: 593–598
  20. Rini, B.I., Stein, M., Shannon, P. et al. Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer. 2011; 117: 758–767
  21. Wang, L., Su, G., Zhao, X. et al. Association between the cytotoxic T-lymphocyte antigen 4 +49A/G polymorphism and bladder cancer risk. Tumour Biol. 2014; 35: 1139–1142
  22. Carthon, B.C., Wolchok, J.D., Yuan, J. et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res. 2010; 16: 2861–2871
  23. Freeman, G.J., Long, A.J., Iwai, Y. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000; 192: 1027–1034
  24. Tseng, S.-Y., Otsuji, M., Gorski, K. et al. B7-Dc, a New dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001; 193: 839–846
  25. Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992; 11: 3887–3895
  26. Keir, M.E., Butte, M.J., Freeman, G.J., and Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008; 26: 677–704
  27. Dong, H., Strome, S.E., Salomao, D.R. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002; 8: 793–800
  28. Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S., and Honjo, T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol. 2013; 14: 1212–1218
  29. Topalian, S.L., Hodi, F.S., Brahmer, J.R. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012; 366: 2443–2454
  30. Sfanos, K.S., Bruno, T.C., Meeker, A.K., De Marzo, A.M., Isaacs, W.B., and Drake, C.G. Human prostate-infiltrating CD8+ T lymphocytes are oligoclonal and PD-1+. Prostate. 2009; 69: 1694–1703
  31. Roth, I., Corry, D.B., Locksley, R.M., Abrams, J.S., Litton, M.J., and Fisher, S.J. Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med. 1996; 184: 539–548
  32. Tang, P.A. and Heng, D.Y. Programmed death 1 pathway inhibition in metastatic renal cell cancer and prostate cancer. Curr Oncol Rep. 2013; 15: 98–104
  33. Thompson, R.H., Dong, H., and Kwon, E.D. Implications of B7-H1 expression in clear cell carcinoma of the kidney for prognostication and therapy. (709s–15s)Clin Cancer Res. 2007; 13
  34. Krambeck, A.E., Dong, H., Thompson, R.H. et al. Survivin and B7-H1 are collaborative predictors of survival and represent potential therapeutic targets for patients with renal cell carcinoma. Clin Cancer Res. 2007; 13: 1749–1756
  35. Brahmer, J.R., Drake, C.G., Wollner, I. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010; 28: 3167–3175
  36. Brahmer, J.R., Tykodi, S.S., Chow, L.Q. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012; 366: 2455–2465
  37. Cho, D.C., Sosman, J.A., Sznol, M. et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with metastatic renal cell carcinoma (mRCC). ASCO Meeting Abstr. 2013; 31: 4505
  38. Motzer, R.J., Rini, B.I., McDermott, D.F. et al. Randomized, dose-ranging phase II trial of nivolumab for metastatic renal cell carcinoma. Ann Oncol. 2014; 25: iv281
  39. Amin, A., Plimack, E.R., Infante, J.R. et al. Nivolumab in combination with sunitinib or pazopanib in patients with metastatic renal cell carcinoma. (iv362–3)Ann Oncol. 2014; 25
  40. Choueiri, T.K., Figueroa, D.J., Fay, A.P. et al. Correlation of PD-L1 tumor expression and treatment outcomes in patients with renal cell carcinoma receiving sunitinib or pazopanib: results from COMPARZ, a randomized controlled trial. Clin Cancer Res. 2015; 21: 1071–1077
  41. Herbst, R.S., Soria, J.-C., Kowanetz, M. et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014; 515: 563–567
  42. Nakanishi, J., Wada, Y., Matsumoto, K., Azuma, M., Kikuchi, K., and Ueda, S. Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother. 2007; 56: 1173–1182
  43. Inman, B.A., Sebo, T.J., Frigola, X. et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer. 2007; 109: 1499–1505
  44. Xylinas, E., Robinson, B.D., Kluth, L.A. et al. Association of T-cell co-regulatory protein expression with clinical outcomes following radical cystectomy for urothelial carcinoma of the bladder. Eur J Surg Oncol. 2014; 40: 121–127
  45. Boorjian, S.A., Sheinin, Y., Crispen, P.L. et al. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res. 2008; 14: 4800–4808
  46. Plimack, E.R., Gupta, S., Bellmunt, J. et al. A phase Ib study of pembrolizumab in patients with advanced urothelial tract cancer. Ann Oncol. 2014; 25: mdu438.24
  47. Bellmunt, J., Petrylak, D.P., Powles, T. et al. Inhibition of PD-L1 by MPDL3208a leads to clinical activity in patients with metastatic urothelial bladder cancer. Ann Oncol. 2014; 25: iv280
  48. Powles, T., Eder, J.P., Fine, G.D. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014; 515: 558–562
  49. Carosella, E.D., Favier, B., Rouas-Freiss, N., Moreau, P., and Lemaoult, J. Beyond the increasing complexity of the immunomodulatory HLA-G molecule. Blood. 2008; 111: 4862–4870
  50. Carosella, E.D., Gregori, S., and LeMaoult, J. The tolerogenic interplay(s) among HLA-G, myeloid APCs, and regulatory cells. Blood. 2011; 118: 6499–6505
  51. Carosella, E.D., Moreau, P., Lemaoult, J., and Rouas-Freiss, N. HLA-G: from biology to clinical benefits. Trends Immunol. 2008; 29: 125–132
  52. Rouas-Freiss, N., Moreau, P., LeMaoult, J., and Carosella, E.D. The dual role of HLA-G in cancer. J Immunol Res. 2014; : 359748
  53. Lin, A., Zhang, X., Xu, H.H., Xu, D.P., Ruan, Y.Y., and Yan, W.H. HLA-G expression is associated with metastasis and poor survival in the Balb/c nu/nu murine tumor model with ovarian cancer. Int J Cancer. 2012; 131: 150–157
  54. Li, B.L., Lin, A., Zhang, X.J. et al. Characterization of HLA-G expression in renal cell carcinoma. Tissue Antigens. 2009; 74: 213–221
  55. Bukur, J., Rebmann, V., Grosse-Wilde, H. et al. Functional role of human leukocyte antigen-G up-regulation in renal cell carcinoma. Cancer Res. 2003; 63: 4107–4111
  56. El-Chennawi, F.A., Auf, F.A., El-Diasty, A.M. et al. Expression of HLA-G in cancer bladder. Egypt J Immunol. 2005; 12: 57–64
  57. Gan, L.H., Huang, L.F., Zhang, X. et al. Tumor-specific upregulation of human leukocyte antigen-G expression in bladder transitional cell carcinoma. Hum Immunol. 2010; 71: 899–904
  58. Wang, L., Kang, F.-B., and Shan, B.-E. B7-H3-mediated tumor immunology: friend or foe?. Int J Cancer. 2014; 134: 2764–2771
  59. Ceeraz, S., Nowak, E.C., and Noelle, R.J. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol. 2013; 34: 556–563
  60. Jiang, J., Zhu, Y., Wu, C. et al. Tumor expression of B7-H4 predicts poor survival of patients suffering from gastric cancer. Cancer Immunol Immunother. 2010; 59: 1707–1714
  61. Krambeck, A.E., Thompson, R.H., Dong, H. et al. B7-H4 expression in renal cell carcinoma and tumor vasculature: associations with cancer progression and survival. Proc Natl Acad Sci U S A. 2006; 103: 10391–10396
  62. Tringler, B., Zhuo, S., Pilkington, G. et al. B7-H4 is highly expressed in ductal and lobular breast cancer. Clin Cancer Res. 2005; 11: 1842–1848
  63. Norde, W.J., Hobo, W., van der Voort, R., and Dolstra, H. Coinhibitory molecules in hematologic malignancies: targets for therapeutic intervention. Blood. 2012; 120: 728–736
  64. Ngiow, S.F., Teng, M.W.L., and Smyth, M.J. Prospects for TIM3-targeted antitumor immunotherapy. Cancer Res. 2011; 71: 6567–6571
  65. Liu, Y., Vlatkovic, L., Saeter, T. et al. Is the clinical malignant phenotype of prostate cancer a result of a highly proliferative immune-evasive B7-H3-expressing cell population?. Int J Urol. 2012; 19: 749–756
  66. Yuan, H., Wei, X., Zhang, G., Li, C., Zhang, X., and Hou, J. B7-H3 over expression in prostate cancer promotes tumor cell progression. J Urol. 2011; 186: 1093–1099
  67. Parker, A.S., Heckman, M.G., Sheinin, Y. et al. Evaluation of B7-H3 expression as a biomarker of biochemical recurrence after salvage radiation therapy for recurrent prostate cancer. Int J Radiat Oncol Biol Phys. 2011; 79: 1343–1349
  68. Roth, T.J., Sheinin, Y., Lohse, C.M. et al. B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 2007; 67: 7893–7900
  69. Brignone, C., Escudier, B., Grygar, C., Marcu, M., and Triebel, F. A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res. 2009; 15: 6225–6231
  70. Qin, X., Zhang, H., Ye, D., Dai, B., Zhu, Y., and Shi, G. B7-H3 is a new cancer-specific endothelial marker in clear cell renal cell carcinoma. Onco Targets Ther. 2013; 6: 1667–1673
  71. Crispen, P.L., Sheinin, Y., Roth, T.J. et al. Tumor cell and tumor vasculature expression of B7-H3 predict survival in clear cell renal cell carcinoma. Clin Cancer Res. 2008; 14: 5150–5157
  72. Beck, K.E., Blansfield, J.A., Tran, K.Q. et al. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol. 2006; 24: 2283–2289
  73. Dolan, D.E. and Gupta, S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control. 2014; 21: 231–237
  74. Wolchok, J.D., Kluger, H., Callahan, M.K. et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013; 369: 122–133
  75. Curran, M.A., Montalvo, W., Yagita, H., and Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010; 107: 4275–4280

Plaats een reactie ...

Reageer op "Solide tumoren: Immuuntherapie bij urologische vormen van kanker, blaaskanker, prostaatkanker en nierkanker is veelbelovend. Recente studies bewijzen langdurige remissies"


Gerelateerde artikelen