3 juli 2013: Ik heb onderaan een overzichtstudie toegevoegd over huidige situatie van immuuntherapie bij baarmoederhalskanker die ook informatie geeft over onderstaande behandeling. Het volledige studierapport: Immunotherapy for Cervical Cancer: Research Status and Clinical Potential is gratis in te zien. Onderaan artikel staat abstract met referentielijst.

18 juli 2012: Bron: LUMC - Leiden  

Een bezoekster van onze site wees me op een lopende studie in het LUMC met het vaccin tegen het HPV virus bij reeds bestaande en uitgezaaide baarmoederhalskanker. In 2009 schreef de Volkskrant daarover al een artikel, zie onderaan en hier een kort bericht over deze studie in het LUMC. Informatie kunt u verkrijgen over deze studie bij:  Mw. M.J.G. Löwik en Mw. D. Berends-van der Meer
+31715264058 researchgynaecologie@lumc.nl

Immunotherapie van HPV-gerelateerde tumoren van cervix en vulva

In nauwe samenwerking met de afdelingen Klinische Oncologie, Pathologie en Klinische Farmacie en Toxicologie wordt onderzoek gedaan naar immunotherapeutische aspecten van de behandeling van HPV-gerelateerde tumoren van de cervix en vulva.

In vrijwel alle gevallen van baarmoederhalskanker en CIN, maar ook bijvoorbeeld in voorstadia van kanker van de schaamlippen (vulvaire intraepitheliale neoplasie, (VIN)), vagina of anus, wordt het humane papillomavirus (HPV) aangetroffen.  HPV type 16 is het belangrijkste type. In ongeveer 70% van de gezonde mensen zijn bepaalde afweercellen, de zgn. T-cellen, gericht tegen HPV-eiwitten detecteerbaar.  In patiënten met baarmoederhalskanker en andere HPV-geassocieerde aandoeningen zoals (voorstadia van) schaamlip-, vagina- en anuskanker is deze afweer tegen HPV gestoord. In het LUMC is een therapeutisch HPV16 vaccin ontwikkeld voor de behandeling van patiënten met HPV-gerelateerde ziekten van de cervix en vulva. Dit vaccin is in staat een sterke afweerreactie op te wekken in mensen die dat van nature niet kunnen. In een recent uitgevoerde studie is gebleken dat in ongeveer 80% van de vrouwen met HPV16+ VIN de afwijking kleiner werd of verdween na toedienen van dit vaccin.

Op dit moment vinden er verschillende studies plaats naar de werking van dit vaccin in patiënten met VIN en cervixcarcinoom.

Mw. M.J.G. Löwik en Mw. D. Berends-van der Meer
+31715264058
researchgynaecologie@lumc.nl

Behandelvaccin tegen reeds aanwezige baarmoederhalskanker komt steeds dichterbij.

Bron: COAG 

Kanker die door een virus is veroorzaakt, kan met een vaccin worden bestreden. Waar leidt dat toe?

Onderzoekers van het LUMC Leiden hebben een immunotherapie tegen schaamlipkanker ontwikkeld. Patiënten met een voorstadium van deze door een virus veroorzaakte kankersoort kregen een vaccin tegen het Humane Papillomavirus-16. Bij bijna de helft van de negentien behandelde patiënten verdwenen de tumorachtige afwijkingen en het virus volledig. Twee jaar later was dat nog steeds zo. Bij nog eenderde van de vrouwen was er wel duidelijk verbetering, maar ze genazen niet volledig. Vier vrouwen reageerden niet zichtbaar op de therapie.

De resultaten van het onderzoek zijn gepubliceerd in The New England Journal of Medicine. Ze zijn interessant omdat voor het eerst een therapeutisch vaccin goed blijkt te werken bij mensen met een door een virus veroorzaakte tumor. De Leidse onderzoekers hebben gekozen voor een nieuwe aanpak door zogeheten ‘lange synthetische peptiden’ te gebruiken. Peptiden zijn korte eiwitketens, in dit geval 25 tot 35 aminozuren lang. Het onderzoek biedt ook perspectief voor de behandeling van baarmoederhalskanker, omdat deze voor een belangrijk deel door hetzelfde virus, HPV-16, wordt veroorzaakt.

‘We hebben hiermee bewezen dat het principe van de genezende vaccinatie werkt. En dat we het immuunsysteem gericht kunnen activeren om voorstadia van tumoren op te ruimen’, zegt prof. Kees Melief, hoogleraar immunologie in Leiden, wiens groep de therapie heeft ontwikkeld. Melief is er vooral tevreden over dat specifieke cellen van het immuunsysteem zich door het vaccin heel gericht tegen het afwijkende weefsel keren, dat deze reactie beklijft en er geen tolerantie tegen het vaccin optreedt. De resultaten bewijzen ook dat de immuunreactie wezenlijk is voor de therapie. Vrouwen van wie het immuunsysteem slechts weinig door het vaccin geactiveerd wordt, hebben minder kans op genezing. Lees verder>>>>>>>>

Immunotherapy for cervical cancer: Research status and clinical potential

2010 Apr 1;24(2):109-29. doi: 10.2165/11532810-000000000-00000.

Immunotherapy for cervical cancer: Research status and clinical potential.

Source

National Taiwan University, Taipei, Taiwan.

Abstract

The high-risk types of human papillomavirus (HPV) have been found to be associated with most cervical cancers and play an essential role in the pathogenesis of the disease. Despite recent advances in preventive HPV vaccine development, such preventive vaccines are unlikely to reduce the prevalence of HPV infections within the next few years, due to their cost and limited availability in developing countries. Furthermore, preventive HPV vaccines may not be capable of treating established HPV infections and HPV-associated lesions, which account for high morbidity and mortality worldwide. Thus, it is important to develop therapeutic HPV vaccines for the control of existing HPV infection and associated malignancies. Therapeutic vaccines are quite different from preventive vaccines in that they require the generation of cell-mediated immunity, particularly T cell-mediated immunity, instead of the generation of neutralizing antibodies. The HPV-encoded early proteins, the E6 and E7 oncoproteins, form ideal targets for therapeutic HPV vaccines, since they are consistently expressed in HPV-associated cervical cancer and its precursor lesions and thus play crucial roles in the generation and maintenance of HPV-associated disease. Our review covers the various therapeutic HPV vaccines for cervical cancer, including live vector-based, peptide or protein-based, nucleic acid-based, and cell-based vaccines targeting the HPV E6 and/or E7 antigens. Furthermore, we review the studies using therapeutic HPV vaccines in combination with other therapeutic modalities and review the latest clinical trials on therapeutic HPV vaccines.

PMID:
20199126
[PubMed - indexed for MEDLINE]
PMCID:
PMC2913436
 

References:

1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005 Mar-Apr;55(2):74–108. [PubMed]
2. Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003 Feb 6;348(6):518–527. [PubMed]
3. Howley PM, Munger K, Romanczuk H, Scheffner M, Huibregtse JM. Cellular targets of the oncoproteins encoded by the cancer associated human papillomaviruses. Princess Takamatsu Symp. 1991;22:239–248. [PubMed]
4. Romanczuk HHP. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. 1992 [PMC free article] [PubMed]
5. Jabbar SF, Abrams L, Glick A, Lambert PF. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res. 2009 May 15;69(10):4407–4414. [PMC free article] [PubMed]
6. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002 May;2(5):342–350. [PubMed]
7. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic Proc Natl Acad Sci U S A 1992. Dec 15;892412180–12184.12184. [PMC free article] [PubMed]
8. Kirnbauer R, Taub J, Greenstone H, Roden R, Durst M, Gissmann L, et al. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles. J Virol. 1993 Dec;67(12):6929–6936. [PMC free article] [PubMed]
9. Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol. 1993 Jan;67(1):315–322. [PMC free article] [PubMed]
10. Roden RB, Monie A, Wu TC. Opportunities to improve the prevention and treatment of cervical cancer. Curr Mol Med. 2007 Aug;7(5):490–503. [PubMed]
11. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet. 2004 Nov 13–19;364(9447):1757–1765. [PubMed]
12. Villa LL, Costa RL, Petta CA, Andrade RP, Ault KA, Giuliano AR, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 2005 May;6(5):271–278. [PubMed]
13. Harper DM, Franco EL, Wheeler CM, Moscicki AB, Romanowski B, Roteli-Martins CM, et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet. 2006 Apr 15;367(9518):1247–1255. [PubMed]
14. Shank-Retzlaff MLZQ, Anderson C. Evaluation of the thermal stability of Gardasil. 2006 [PubMed]
15. Schiller JT, Castellsague X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine. 2008 Aug 19;26 Suppl 10:K53–K61. [PMC free article] [PubMed]
16. Chang CL, Ma B, Pang X, Wu TC, Hung CF. Treatment with cyclooxygenase-2 inhibitors enables repeated administration of vaccinia virus for control of ovarian cancer. Mol Ther. 2009 Aug;17(8):1365–1372. [PMC free article] [PubMed]
17. Sewell DA, Pan ZK, Paterson Y. Listeria-based HPV-16 E7 vaccines limit autochthonous tumor growth in a transgenic mouse model for HPV-16 transformed tumors. Vaccine. 2008 Aug 1; [PMC free article] [PubMed]
18. Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, Montes de Oca-Luna R, et al. Production of human papillomavirus type 16 E7 protein in Lactococcus lactis. Appl Environ Microbiol. 2002 Feb;68(2):917–922. [PMC free article] [PubMed]
19. Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-Luna RM, et al. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol. 2004 May 53;(Pt5):427–433. [PubMed]
20. Cortes-Perez NG, Azevedo V, Alcocer-Gonzalez JM, Rodriguez-Padilla C, Tamez-Guerra RS, Corthier G, et al. Cell-surface display of E7 antigen from human papillomavirus type-16 in Lactococcus lactis and in Lactobacillus plantarum using a new cell-wall anchor from lactobacilli. J Drug Target. 2005 Feb;13(2):89–98. [PubMed]
21. Schnupf P, Portnoy DA. Listeriolysin O: a phagosome-specific lysin. Microbes Infect. 2007 Aug;9(10):1176–1187. [PubMed]
22. Souders NC, Sewell DA, Pan ZK, Hussain SF, Rodriguez A, Wallecha A, et al. Listeria-based vaccines can overcome tolerance by expanding low avidity CD8+ T cells capable of eradicating a solid tumor in a transgenic mouse model of cancer. Cancer Immun. 2007;7:2 [PMC free article] [PubMed]
23. Sewell DA, Shahabi V, Gunn GR, 3rd, Pan ZK, Dominiecki ME, Paterson Y. Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res. 2004 Dec 15;64(24):8821–8825. [PubMed]
24. Sewell DA, Douven D, Pan ZK, Rodriguez A, Paterson Y. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg. 2004 Jan;130(1):92–97. [PubMed]
25. Maciag PC, Radulovic S, Rothman J. The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a Phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine. 2009 Jun 19;27(30):3975–3983. [PubMed]
26. Bermudez-Humaran LG, Cortes-Perez NG, Lefevre F, Guimaraes V, Rabot S, Alcocer-Gonzalez JM, et al. A novel mucosal vaccine based on live Lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. J Immunol. 2005 Dec 1;175(11):7297–7302. [PubMed]
27. Cortes-Perez NG, Lefevre F, Corthier G, Adel-Patient K, Langella P, Bermudez-Humaran LG. Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine. 2007 Sep 4;25(36):6581–6588. [PubMed]
28. Poo H, Pyo HM, Lee TY, Yoon SW, Lee JS, Kim CJ, et al. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice. Int J Cancer. 2006 Oct 1;119(7):1702–1709. [PubMed]
29. Hung CF, Ma B, Monie A, Tsen SW, Wu TC. Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opin Biol Ther. 2008 Apr;8(4):421–439. [PMC free article] [PubMed]
30. Gomez-Gutierrez JG, Elpek KG, Montes de Oca-Luna R, Shirwan H, Sam Zhou H, McMasters KM. Vaccination with an adenoviral vector expressing calreticulin-human papillomavirus 16 E7 fusion protein eradicates E7 expressing established tumors in mice. Cancer Immunol Immunother. 2007 Jul;56(7):997–1007. [PubMed]
31. Baez-Astua A, Herraez-Hernandez E, Garbi N, Pasolli HA, Juarez V, Zur Hausen H, et al. Low-dose adenovirus vaccine encoding chimeric hepatitis B virus surface antigen-human papillomavirus type 16 E7 proteins induces enhanced E7-specific antibody and cytotoxic T-cell responses. J Virol. 2005 Oct;79(20):12807–12817. [PMC free article] [PubMed]
32. Jin HS, Park EK, Lee JM, NamKoong SE, Kim DG, Lee YJ, et al. Immunization with adenoviral vectors carrying recombinant IL-12 and E7 enhanced the antitumor immunity to human papillomavirus 16-associated tumor. Gynecol Oncol. 2005 May;97(2):559–567. [PubMed]
33. Liu DW, Tsao YP, Kung JT, Ding YA, Sytwu HK, Xiao X, et al. Recombinant adeno-associated virus expressing human papillomavirus type 16 E7 peptide DNA fused with heat shock protein DNA as a potential vaccine for cervical cancer. J Virol. 2000 Mar;74(6):2888–2894. [PMC free article] [PubMed]
34. Pozzi E, Basavecchia V, Zanotto C, Pacchioni S, Morghen Cde G, Radaelli A. Construction and characterization of recombinant fowlpox viruses expressing human papilloma virus E6 and E7 oncoproteins. J Virol Methods. 2009 Jun;158(1–2):184–189. [PubMed]
35. Hsieh CJ, Kim TW, Hung CF, Juang J, Moniz M, Boyd DA, et al. Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine. 2004 Sep 28;22(29–30):3993–4001. [PubMed]
36. Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y. Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J Virol. 2001 Oct;75(20):9654–9664. [PMC free article] [PubMed]
37. Borysiewicz LK, Fiander A, Nimako M, Man S, Wilkinson GW, Westmoreland D, et al. A recombinant vaccinia virus encoding human papillomavirus types 16 and 18, E6 and E7 proteins as immunotherapy for cervical cancer. Lancet. 1996 Jun 1;347(9014):1523–1527. [PubMed]
38. Kaufmann AM, Stern PL, Rankin EM, Sommer H, Nuessler V, Schneider A, et al. Safety and immunogenicity of TA-HPV, a recombinant vaccinia virus expressing modified human papillomavirus (HPV)-16 and HPV-18 E6 and E7 genes, in women with progressive cervical cancer. Clin Cancer Res. 2002 Dec;8(12):3676–3685. [PubMed]
39. Davidson EJ, Boswell CM, Sehr P, Pawlita M, Tomlinson AE, McVey RJ, et al. Immunological and clinical responses in women with vulval intraepithelial neoplasia vaccinated with a vaccinia virus encoding human papillomavirus 16/18 oncoproteins. Cancer Res. 2003 Sep 15;63(18):6032–6041. [PubMed]
40. Baldwin PJ, van der Burg SH, Boswell CM, Offringa R, Hickling JK, Dobson J, et al. Vaccinia-expressed human papillomavirus 16 and 18 e6 and e7 as a therapeutic vaccination for vulval and vaginal intraepithelial neoplasia. Clin Cancer Res. 2003 Nov 1;9(14):5205–5213. [PubMed]
41. European Organization for Research and Treatment of Cancer. Surgery and Vaccine Therapy in Treating Patients With Early Cervical Cancer. [Accessed 2009 June 26]. [ClinicalTrials.gov identifier NCT00002916]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
42. Liao JB, Publicover J, Rose JK, DiMaio D. Single-dose, therapeutic vaccination of mice with vesicular stomatitis virus expressing human papillomavirus type 16 E7 protein. Clin Vaccine Immunol. 2008 May;15(5):817–824. [PMC free article] [PubMed]
43. Riezebos-Brilman A, Regts J, Freyschmidt EJ, Dontje B, Wilschut J, Daemen T. Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant, E6/E7-transgenic mice. Gene Ther. 2005 Sep;12(18):1410–1414. [PubMed]
44. Daemen T, Riezebos-Brilman A, Regts J, Dontje B, van der Zee A, Wilschut J. Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type 16 antigens in a murine tumour model: effects of the route of immunization. Antivir Ther. 2004 Oct;9(5):733–742. [PubMed]
45. Riezebos-Brilman A, Regts J, Chen M, Wilschut J, Daemen T. Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12. Vaccine. 2009 Jan 29;27(5):701–707. [PubMed]
46. Riezebos-Brilman A, Walczak M, Regts J, Rots MG, Kamps G, Dontje B, et al. A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene Ther. 2007 Dec;14(24):1695–1704. [PubMed]
47. Velders MP, McElhiney S, Cassetti MC, Eiben GL, Higgins T, Kovacs GR, et al. Eradication of established tumors by vaccination with Venezuelan equine encephalitis virus replicon particles delivering human papillomavirus 16 E7 RNA. Cancer Res. 2001 Nov 1;61(21):7861–7867. [PubMed]
48. Cassetti MC, McElhiney SP, Shahabi V, Pullen JK, Le Poole IC, Eiben GL, et al. Antitumor efficacy of Venezuelan equine encephalitis virus replicon particles encoding mutated HPV16 E6 and E7 genes. Vaccine. 2004 Jan 2;22(3–4):520–527. [PubMed]
49. Cheng WF, Lee CN, Su YN, Chai CY, Chang MC, Polo JM, et al. Sindbis virus replicon particles encoding calreticulin linked to a tumor antigen generate long-term tumor-specific immunity. Cancer Gene Ther. 2006 Sep;13(9):873–885. [PubMed]
50. Corona Gutierrez CM, Tinoco A, Navarro T, Contreras ML, Cortes RR, Calzado P, et al. Therapeutic vaccination with MVA E2 can eliminate precancerous lesions (CIN 1, CIN 2, and CIN 3) associated with infection by oncogenic human papillomavirus. Hum Gene Ther. 2004 May;15(5):421–431. [PubMed]
51. Garcia-Hernandez E, Gonzalez-Sanchez JL, Andrade-Manzano A, Contreras ML, Padilla S, Guzman CC, et al. Regression of papilloma high-grade lesions (CIN 2 and CIN 3) is stimulated by therapeutic vaccination with MVA E2 recombinant vaccine Cancer Gene Ther 2006. Jun;136592–597.597. [PubMed]
52. Albarran YCA, de laGarza A, Cruz Quiroz BJ, Vazquez Zea E, Diaz Estrada I, Mendez Fuentez E, et al. MVA E2 recombinant vaccine in the treatment of human papillomavirus infection in men presenting intraurethral flat condyloma: a phase I/II study. BioDrugs. 2007;21(1):47–59. [PubMed]
53. Transgene. Transgene and Roche Modify the Clinical Development Programme for Their HPV Targeted Immunotherapy TG4001/R3484. 2008. Aug 28, Available from: http://www.transgene.fr/us/pdf/communique_presse/communiques_divers_2008/PR-US-Roche-Transgene-28-08-2008.pdf.
54. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol. 2002 Jul 1;169(1):350–358. [PubMed]
55. Vambutas A, DeVoti J, Nouri M, Drijfhout JW, Lipford GB, Bonagura VR, et al. Therapeutic vaccination with papillomavirus E6 and E7 long peptides results in the control of both established virus-induced lesions and latently infected sites in a pre-clinical cottontail rabbit papillomavirus model. Vaccine. 2005 Nov 1;23(45):5271–5280. [PubMed]
56. Sharma RK, Elpek KG, Yolcu ES, Schabowsky RH, Zhao H, Bandura-Morgan L, et al. Costimulation as a platform for the development of vaccines: a peptide-based vaccine containing a novel form of 4-1BB ligand eradicates established tumors. Cancer Res. 2009 May 15;69(10):4319–4326. [PMC free article] [PubMed]
57. Manuri PR, Nehete B, Nehete PN, Reisenauer R, Wardell S, Courtney AN, et al. Intranasal immunization with synthetic peptides corresponding to the E6 and E7 oncoproteins of human papillomavirus type 16 induces systemic and mucosal cellular immune responses and tumor protection. Vaccine. 2007 Apr 30;25(17):3302–3310. [PMC free article] [PubMed]
58. Chen YF, Lin CW, Tsao YP, Chen SL. Cytotoxic-T-lymphocyte human papillomavirus type 16 E5 peptide with CpG-oligodeoxynucleotide can eliminate tumor growth in C57BL/6 mice. J Virol. 2004 Feb;78(3):1333–1343. [PMC free article] [PubMed]
59. Daftarian P, Mansour M, Benoit AC, Pohajdak B, Hoskin DW, Brown RG, et al. Eradication of established HPV 16-expressing tumors by a single administration of a vaccine composed of a liposome-encapsulated CTL-T helper fusion peptide in a water-in-oil emulsion. Vaccine. 2006 Jun 12;24(24):5235–5244. [PubMed]
60. Steller MA, Gurski KJ, Murakami M, Daniel RW, Shah KV, Celis E, et al. Cell-mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res. 1998 Sep;4(9):2103–2109. [PubMed]
61. van Driel WJ, Ressing ME, Kenter GG, Brandt RM, Krul EJ, van Rossum AB, et al. Vaccination with HPV16 peptides of patients with advanced cervical carcinoma: clinical evaluation of a phase I-II trial. Eur J Cancer. 1999 Jun;35(6):946–952. [PubMed]
62. Ressing ME, van Driel WJ, Brandt RM, Kenter GG, de Jong JH, Bauknecht T, et al. Detection of T helper responses, but not of human papillomavirus-specific cytotoxic T lymphocyte responses, after peptide vaccination of patients with cervical carcinoma J Immunother 2000. Mar-Apr;232255–266.266. [PubMed]
63. Muderspach L, Wilczynski S, Roman L, Bade L, Felix J, Small LA, et al. A phase I trial of a human papillomavirus (HPV) peptide vaccine for women with high-grade cervical and vulvar intraepithelial neoplasia who are HPV 16 positive. Clin Cancer Res. 2000 Sep;6(9):3406–3416. [PubMed]
64. Kenter GG, Welters MJ, Valentijn AR, Lowik MJ, Berends-van der Meer DM, Vloon AP, et al. Phase I immunotherapeutic trial with long peptides spanning the E6 and E7 sequences of high-risk human papillomavirus 16 in end-stage cervical cancer patients shows low toxicity and robust immunogenicity. Clin Cancer Res. 2008 Jan 1;14(1):169–177. [PubMed]
65. Melief CJ, Welters MJ, Lowik MJ, Vloon AP, Kenter GG. Long peptide vaccine-induced migration of HPV16-specific type 1 and 2 T cells into the lesions of VIN III patients associated with complete clinical responses. Cancer Immun. 2007;7 Suppl.1
66. Welters MJ, Kenter GG, Piersma SJ, Vloon AP, Lowik MJ, Berends-van der Meer DM, et al. Induction of tumor-specific CD4+ and CD8+ T-cell immunity in cervical cancer patients by a human papillomavirus type 16 E6 and E7 long peptides vaccine. Clin Cancer Res. 2008 Jan 1;14(1):178–187. [PubMed]
67. NCI. Vaccine Therapy in Treating Patients With Advanced or Recurrent Cancer. [Accessed 2009 June 28]. [ClinicalTrials.gov identifier NCT00019110]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
68. Cui Z, Huang L. Liposome-polycation-DNA (LPD) particle as a carrier and adjuvant for protein-based vaccines: therapeutic effect against cervical cancer. Cancer Immunol Immunother. 2005 Dec;54(12):1180–1190. [PubMed]
69. Stewart TJ, Drane D, Malliaros J, Elmer H, Malcolm KM, Cox JC, et al. ISCOMATRIX adjuvant: an adjuvant suitable for use in anticancer vaccines. Vaccine. 2004 Sep 9;22(27–28):3738–3743. [PubMed]
70. Preville X, Ladant D, Timmerman B, Leclerc C. Eradication of established tumors by vaccination with recombinant Bordetella pertussis adenylate cyclase carrying the human papillomavirus 16 E7 oncoprotein. Cancer Res. 2005 Jan 15;65(2):641–649. [PubMed]
71. Liao CW, Chen CA, Lee CN, Su YN, Chang MC, Syu MH, et al. Fusion protein vaccine by domains of bacterial exotoxin linked with a tumor antigen generates potent immunologic responses and antitumor effects. Cancer Res. 2005 Oct 1;65(19):9089–9098. [PubMed]
72. Chu NR, Wu HB, Wu T, Boux LJ, Siegel MI, Mizzen LA. Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guerin (BCG) hsp65 and HPV16 E7. Clin Exp Immunol. 2000 Aug;121(2):216–225. [PMC free article] [PubMed]
73. Liu B, Ye D, Song X, Zhao X, Yi L, Song J, et al. A novel therapeutic fusion protein vaccine by two different families of heat shock proteins linked with HPV16 E7 generates potent antitumor immunity and antiangiogenesis. Vaccine. 2008 Mar 4;26(10):1387–1396. [PubMed]
74. Thompson HS, Davies ML, Holding FP, Fallon RE, Mann AE, O'Neill T, et al. Phase I safety and antigenicity of TA-GW: a recombinant HPV6 L2E7 vaccine for the treatment of genital warts. Vaccine. 1999 Jan;17(1):40–49. [PubMed]
75. Lacey CJ, Thompson HS, Monteiro EF, O'Neill T, Davies ML, Holding FP, et al. Phase IIa safety and immunogenicity of a therapeutic vaccine, TA-GW, in persons with genital warts. J Infect Dis. 1999 Mar;179(3):612–618. [PubMed]
76. de Jong A, O'Neill T, Khan AY, Kwappenberg KM, Chisholm SE, Whittle NR, et al. Enhancement of human papillomavirus (HPV) type 16 E6 and E7-specific T-cell immunity in healthy volunteers through vaccination with TA-CIN, an HPV16 L2E7E6 fusion protein vaccine. Vaccine. 2002 Oct 4;20(29–30):3456–3464. [PubMed]
77. Hallez S, Simon P, Maudoux F, Doyen J, Noel JC, Beliard A, et al. Phase I/II trial of immunogenicity of a human papillomavirus (HPV) type 16 E7 protein-based vaccine in women with oncogenic HPV-positive cervical intraepithelial neoplasia. Cancer Immunol Immunother. 2004 Jul;53(7):642–650. [PubMed]
78. Frazer IH, Quinn M, Nicklin JL, Tan J, Perrin LC, Ng P, et al. Phase 1 study of HPV16-specific immunotherapy with E6E7 fusion protein and ISCOMATRIX adjuvant in women with cervical intraepithelial neoplasia. Vaccine. 2004 Nov 25;23(2):172–181. [PubMed]
79. Palefsky JM, Berry JM, Jay N, Krogstad M, Da Costa M, Darragh TM, et al. A trial of SGN-00101 (HspE7) to treat high-grade anal intraepithelial neoplasia in HIV-positive individuals. AIDS. 2006 May 12;20(8):1151–1155. [PubMed]
80. Einstein MH, Kadish AS, Burk RD, Kim MY, Wadler S, Streicher H, et al. Heat shock fusion protein-based immunotherapy for treatment of cervical intraepithelial neoplasia III. Gynecol Oncol. 2007 Sep;106(3):453–460. [PMC free article] [PubMed]
81. Roman LD, Wilczynski S, Muderspach LI, Burnett AF, O'Meara A, Brinkman JA, et al. A phase II study of Hsp-7 (SGN-00101) in women with high-grade cervical intraepithelial neoplasia. Gynecol Oncol. 2007 Sep;106(3):558–566. [PubMed]
82. Gynecologic Oncology Group. Vaccine Therapy in Preventing Cervical Cancer in Patients with Cervical Intraepithelial Neoplasia. [Accessed 2009 June 8]. [ClinicalTrials.gov identifier NCT00054041]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
83. Chao Family Comprehensive Cancer Center. SGN-00101 Vaccine in Treating Human Papillomavirus in Patients Who Have Abnormal Cervical Cells. [Accessed 2009 July 1]. [ClinicalTrials.gov identifier NCT00091130]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
84. Nventa Biopharmaceuticals Corporation. Safety Study to Test the Safety of HspE7 and Poly-ICLC Given in Patients with Cervical Intraepithelial Neoplasia. [Accessed 2009 November 25]. [ClinicalTrials.gov identifier NCT00493545]. United States Food and Drug Administration. ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
85. Hung CF, Wu TC. Improving DNA vaccine potency via modification of professional antigen presenting cells. Curr Opin Mol Ther. 2003 Feb;5(1):20–24. [PubMed]
86. Tsen SW, Paik AH, Hung CF, Wu TC. Enhancing DNA vaccine potency by modifying the properties of antigen-presenting cells. Expert Rev Vaccines. 2007 Apr;6(2):227–239. [PMC free article] [PubMed]
87. Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, et al. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine. 2003 Sep 8;21(25–26):4036–4042. [PubMed]
88. Chen CA, Chang MC, Sun WZ, Chen YL, Chiang YC, Hsieh CY, et al. Noncarrier naked antigen-specific DNA vaccine generates potent antigen-specific immunologic responses and antitumor effects. Gene Ther. 2009 Jun;16(6):776–787. [PubMed]
89. Yan J, Harris K, Khan AS, Draghia-Akli R, Sewell D, Weiner DB. Cellular immunity induced by a novel HPV18 DNA vaccine encoding an E6/E7 fusion consensus protein in mice and rhesus macaques. Vaccine. 2008 Apr 14; [PubMed]
90. Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, et al. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine. 2009 Jul 18; [PMC free article] [PubMed]
91. Hung CF, Hsu KF, Cheng WF, Chai CY, He L, Ling M, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to a gene encoding the extracellular domain of Fms-like tyrosine kinase 3-ligand. Cancer Res. 2001 Feb 1;61(3):1080–1088. [PubMed]
92. Hauser H, Chen SY. Augmentation of DNA vaccine potency through secretory heat shock protein-mediated antigen targeting. Methods. 2003 Nov;31(3):225–231. [PubMed]
93. Hauser H, Shen L, Gu QL, Krueger S, Chen SY. Secretory heat-shock protein as a dendritic cell-targeting molecule: a new strategy to enhance the potency of genetic vaccines. Gene Ther. 2004 Jun;11(11):924–932. [PubMed]
94. Hung CF, Cheng WF, Chai CY, Hsu KF, He L, Ling M, et al. Improving vaccine potency through intercellular spreading and enhanced MHC class I presentation of antigen. J Immunol. 2001 May 1;166(9):5733–5740. [PubMed]
95. Hung CF, He L, Juang J, Lin TJ, Ling M, Wu TC. Improving DNA vaccine potency by linking Marek's disease virus type 1 VP22 to an antigen. J Virol. 2002 Mar;76(6):2676–2682. [PMC free article] [PubMed]
96. Cheng WF, Hung CF, Lee CN, Su YN, Chang MC, He L, et al. Naked RNA vaccine controls tumors with down-regulated MHC class I expression through NK cells and perforin-dependent pathways. Eur J Immunol. 2004 Jul;34(7):1892–1900. [PubMed]
97. Cheung YK, Cheng SC, Sin FW, Xie Y. Plasmid encoding papillomavirus Type 16 (HPV16) DNA constructed with codon optimization improved the immunogenicity against HPV infection. Vaccine. 2004 Dec 16;23(5):629–638. [PubMed]
98. Liu WJ, Gao F, Zhao KN, Zhao W, Fernando GJ, Thomas R, et al. Codon modified human papillomavirus type 16 E7 DNA vaccine enhances cytotoxic T-lymphocyte induction and anti-tumour activity. Virology. 2002 Sep 15;301(1):43–52. [PubMed]
99. Lin CT, Tsai YC, He L, Calizo R, Chou HH, Chang TC, et al. A DNA vaccine encoding a codon-optimized human papillomavirus type 16 E6 gene enhances CTL response and anti-tumor activity. J Biomed Sci. 2006 Jul;13(4):481–488. [PubMed]
100. Yan J, Reichenbach DK, Corbitt N, Hokey DA, Ramanathan MP, McKinney KA, et al. Induction of antitumor immunity in vivo following delivery of a novel HPV-16 DNA vaccine encoding an E6/E7 fusion antigen. Vaccine. 2009 Jan 14;27(3):431–440. [PubMed]
101. Lu D, Hoory T, Monie A, Wu A, Wang MC, Hung CF. Treatment with demethylating agent, 5-aza-2'-deoxycytidine enhances therapeutic HPV DNA vaccine potency. Vaccine. 2009 Jul 9;27(32):4363–4369. [PMC free article] [PubMed]
102. Smahel M, Polakova I, Pokorna D, Ludvikova V, Duskova M, Vlasak J. Enhancement of T cell-mediated and humoral immunity of beta-glucuronidase-based DNA vaccines against HPV16 E7 oncoprotein. Int J Oncol. 2008 Jul;33(1):93–101. [PubMed]
103. Massa S, Simeone P, Muller A, Benvenuto E, Venuti A, Franconi R. Antitumor activity of DNA vaccines based on the human papillomavirus-16 E7 protein genetically fused to a plant virus coat protein. Hum Gene Ther. 2008 Apr;19(4):354–364. [PubMed]
104. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res. 2000 Feb 15;60(4):1035–1042. [PubMed]
105. Huang CY, Chen CA, Lee CN, Chang MC, Su YN, Lin YC, et al. DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol Oncol. 2007 Dec;107(3):404–412. [PubMed]
106. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, et al. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest. 2001 Sep;108(5):669–678. [PMC free article] [PubMed]
107. Kim JW, Hung CF, Juang J, He L, Kim TW, Armstrong DK, et al. Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther. 2004 Jun;11(12):1011–1018. [PubMed]
108. Peng S, Ji H, Trimble C, He L, Tsai YC, Yeatermeyer J, et al. Development of a DNA vaccine targeting human papillomavirus type 16 oncoprotein E6. J Virol. 2004 Aug;78(16):8468–8476. [PMC free article] [PubMed]
109. Bolhassani A, Zahedifard F, Taghikhani M, Rafati S. Enhanced immunogenicity of HPV16E7 accompanied by Gp96 as an adjuvant in two vaccination strategies. Vaccine. 2008 Jun 19;26(26):3362–3370. [PubMed]
110. Hung CF, Cheng WF, He L, Ling M, Juang J, Lin CT, et al. Enhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Res. 2003 May 15;63(10):2393–2398. [PubMed]
111. Hung CF, Cheng WF, Hsu KF, Chai CY, He L, Ling M, et al. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res. 2001 May 1;61(9):3698–3703. [PubMed]
112. Huang CH, Peng S, He L, Tsai YC, Boyd DA, Hansen TH, et al. Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Ther. 2005 Aug;12(15):1180–1186. [PMC free article] [PubMed]
113. Huang B, Mao CP, Peng S, He L, Hung CF, Wu TC. Intradermal administration of DNA vaccines combining a strategy to bypass antigen processing with a strategy to prolong dendritic cell survival enhances DNA vaccine potency. Vaccine. 2007 Nov 7;25(45):7824–7831. [PMC free article] [PubMed]
114. Wu TC, Guarnieri FG, Staveley-O'Carroll KF, Viscidi RP, Levitsky HI, Hedrick L, et al. Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11671–11675. [PMC free article] [PubMed]
115. Ji H, Wang TL, Chen CH, Pai SI, Hung CF, Lin KY, et al. Targeting human papillomavirus type 16 E7 to the endosomal/lysosomal compartment enhances the antitumor immunity of DNA vaccines against murine human papillomavirus type 16 E7-expressing tumors. Hum Gene Ther. 1999 Nov 20;10(17):2727–2740. [PubMed]
116. Hung CF, Tsai YC, He L, Wu TC. DNA vaccines encoding Ii-PADRE generates potent PADRE-specific CD4+ T-cell immune responses and enhances vaccine potency. Mol Ther. 2007 Jun;15(6):1211–1219. [PMC free article] [PubMed]
117. Kim D, Monie A, He L, Tsai YC, Hung CF, Wu TC. Role of IL-2 secreted by PADRE-specific CD4+ T cells in enhancing E7-specific CD8+ T-cell immune responses. Gene Ther. 2008 May;15(9):677–687. [PMC free article] [PubMed]
118. Kim TW, Hung CF, Boyd D, Juang J, He L, Kim JW, et al. Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J Immunol. 2003 Sep 15;171(6):2970–2976. [PubMed]
119. Kim TW, Hung CF, Zheng M, Boyd DA, He L, Pai SI, et al. A DNA vaccine co-expressing antigen and an anti-apoptotic molecule further enhances the antigen-specific CD8+ T-cell immune response. J Biomed Sci. 2004 Jul-Aug;11(4):493–499. [PubMed]
120. Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM, et al. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest. 2003 Jul;112(1):109–117. [PMC free article] [PubMed]
121. Kim TW, Lee JH, He L, Boyd DA, Hardwick JM, Hung CF, et al. Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res. 2005 Jan 1;65(1):309–316. [PubMed]
122. Cheng WF, Chang MC, Sun WZ, Lee CN, Lin HW, Su YN, et al. Connective tissue growth factor linked to the E7 tumor antigen generates potent antitumor immune responses mediated by an antiapoptotic mechanism. Gene Ther. 2008 Jul;15(13):1007–1016. [PubMed]
123. Huang B, Mao CP, Peng S, Hung CF, Wu TC. RNA interference-mediated in vivo silencing of fas ligand as a strategy for the enhancement of DNA vaccine potency. Hum Gene Ther. 2008 Aug;19(8):763–773. [PMC free article] [PubMed]
124. Leachman SA, Tigelaar RE, Shlyankevich M, Slade MD, Irwin M, Chang E, et al. Granulocyte-macrophage colony-stimulating factor priming plus papillomavirus E6 DNA vaccination: effects on papilloma formation and regression in the cottontail rabbit papillomavirus--rabbit model. J Virol. 2000 Sep;74(18):8700–8708. [PMC free article] [PubMed]
125. Chen CH, Wu TC. Experimental vaccine strategies for cancer immunotherapy. J Biomed Sci. 1998 Jul-Aug;5(4):231–252. [PubMed]
126. Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology. 2005 Oct;116(2):255–266. [PMC free article] [PubMed]
127. Ohlschlager P, Quetting M, Alvarez G, Durst M, Gissmann L, Kaufmann AM. Enhancement of immunogenicity of a therapeutic cervical cancer DNA-based vaccine by co-application of sequence-optimized genetic adjuvants. Int J Cancer. 2009 Jul 1;125(1):189–198. [PubMed]
128. Hsieh CY, Chen CA, Huang CY, Chang MC, Lee CN, Su YN, et al. IL-6-encoding tumor antigen generates potent cancer immunotherapy through antigen processing and anti-apoptotic pathways. Mol Ther. 2007 Oct;15(10):1890–1897. [PubMed]
129. Sheets EE, Urban RG, Crum CP, Hedley ML, Politch JA, Gold MA, et al. Immunotherapy of human cervical high-grade cervical intraepithelial neoplasia with microparticle-delivered human papillomavirus 16 E7 plasmid DNA. Am J Obstet Gynecol. 2003 Apr;188(4):916–926. [PubMed]
130. Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M, et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res. 2002 May;8(5):1028–1037. [PubMed]
131. Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol. 2004 Feb;103(2):317–326. [PubMed]
132. Eisai Inc. A Study of Amolimogene (ZYC101a) in Patients with High Grade Cervical Intraepithelial Lesions of the Uterine Cervix. [Accessed 2009 November 13]. [ClinicalTrials.gov identifier NCT00264732]. US Food and Drug Administration, ClinicalTrials.gov . Available from URL: http://clinicaltrials.gov.
133. Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, et al. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res. 2009 Jan 1;15(1):361–367. [PMC free article] [PubMed]
134. VGX Pharmaceuticals, Inc. Phase I of Human Papillomavirus (HPV) DNA Plasmid (VGX-3100) + Electroporation for CIN 2 or 3. [Accessed 2009 July 13]. [ClinicalTrials.gov identifier NCT00685412]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
135. Berglund P, Quesada-Rolander M, Putkonen P, Biberfeld G, Thorstensson R, Liljestrom P. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses. 1997 Nov 20;13(17):1487–1495. [PubMed]
136. Berglund P, Smerdou C, Fleeton MN, Tubulekas I, Liljestrom P. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol. 1998 Jun;16(6):562–565. [PubMed]
137. Hariharan MJ, Driver DA, Townsend K, Brumm D, Polo JM, Belli BA, et al. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol. 1998 Feb;72(2):950–958. [PMC free article] [PubMed]
138. Cheng WF, Hung CF, Hsu KF, Chai CY, He L, Polo JM, et al. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion. Hum Gene Ther. 2002 Mar 1;13(4):553–568. [PubMed]
139. Pushko P, Parker M, Ludwig GV, Davis NL, Johnston RE, Smith JF. Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology. 1997 Dec 22;239(2):389–401. [PubMed]
140. Hsu KF, Hung CF, Cheng WF, He L, Slater LA, Ling M, et al. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther. 2001 Mar;8(5):376–383. [PubMed]
141. Kim TW, Hung CF, Juang J, He L, Hardwick JM, Wu TC. Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Ther. 2004 Feb;11(3):336–342. [PubMed]
142. Varnavski AN, Young PR, Khromykh AA. Stable high-level expression of heterologous genes in vitro and in vivo by noncytopathic DNA-based Kunjin virus replicon vectors. J Virol. 2000 May;74(9):4394–4403. [PMC free article] [PubMed]
143. Herd KA, Harvey T, Khromykh AA, Tindle RW. Recombinant Kunjin virus replicon vaccines induce protective T-cell immunity against human papillomavirus 16 E7-expressing tumour. Virology. 2004 Feb 20;319(2):237–248. [PubMed]
144. Santin AD, Bellone S, Roman JJ, Burnett A, Cannon MJ, Pecorelli S. Therapeutic vaccines for cervical cancer: dendritic cell-based immunotherapy. Curr Pharm Des. 2005;11(27):3485–3500. [PubMed]
145. Williams JC. Dendreon Corporation. Data Presented at AUA Demonstrate PROVENGE Significantly Prolongs Survival for Men with Advanced Prostate Cancer in Pivotal Phase 3 IMPACT Study [Accessed 2009 Apr 30]. Available from URL: http://investor.dendreon.com/releasedetail.cfm?ReleaseID=380042.
146. Tillman BW, Hayes TL, DeGruijl TD, Douglas JT, Curiel DT. Adenoviral vectors targeted to CD40 enhance the efficacy of dendritic cell-based vaccination against human papillomavirus 16-induced tumor cells in a murine model. Cancer Res. 2000 Oct 1;60(19):5456–5463. [PubMed]
147. Mackova J, Kutinova L, Hainz P, Krystofova J, Sroller V, Otahal P, et al. Adjuvant effect of dendritic cells transduced with recombinant vaccinia virus expressing HPV16-E7 is inhibited by co-expression of IL12. Int J Oncol. 2004 Jun;24(6):1581–1588. [PubMed]
148. Murakami M, Gurski KJ, Marincola FM, Ackland J, Steller MA. Induction of specific CD8+ T-lymphocyte responses using a human papillomavirus-16 E6/E7 fusion protein and autologous dendritic cells. Cancer Res. 1999 Mar 15;59(6):1184–1187. [PubMed]
149. Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF, et al. Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther. 2005 May;16(5):584–593. [PMC free article] [PubMed]
150. Kim JH, Kang TH, Noh KH, Bae HC, Kim SH, Yoo YD, et al. Enhancement of dendritic cell-based vaccine potency by anti-apoptotic siRNAs targeting key pro-apoptotic proteins in cytotoxic CD8(+) T cell-mediated cell death. Immunol Lett. 2009 Jan 29;122(1):58–67. [PubMed]
151. Adams M, Navabi H, Jasani B, Man S, Fiander A, Evans AS, et al. Dendritic cell (DC) based therapy for cervical cancer: use of DC pulsed with tumour lysate and matured with a novel synthetic clinically non-toxic double stranded RNA analogue poly [I]:poly [C(12)U] (Ampligen R) Vaccine. 2003 Jan 30;21(7–8):787–790. [PubMed]
152. Wang TL, Ling M, Shih IM, Pham T, Pai SI, Lu Z, et al. Intramuscular administration of E7-transfected dendritic cells generates the most potent E7-specific anti-tumor immunity. Gene Ther. 2000 May;7(9):726–733. [PubMed]
153. Benencia F, Courreges MC, Coukos G. Whole tumor antigen vaccination using dendritic cells: comparison of RNA electroporation and pulsing with UV-irradiated tumor cells. J Transl Med. 2008;6:21 [PMC free article] [PubMed]
154. Santin AD, Bellone S, Gokden M, Cannon MJ, Parham GP. Vaccination with HPV-18 E7-pulsed dendritic cells in a patient with metastatic cervical cancer. N Engl J Med. 2002 May 30;346(22):1752–1753. [PubMed]
155. Ferrara A, Nonn M, Sehr P, Schreckenberger C, Pawlita M, Durst M, et al. Dendritic cell-based tumor vaccine for cervical cancer II: results of a clinical pilot study in 15 individual patients. J Cancer Res Clin Oncol. 2003 Sep;129(9):521–530. [PubMed]
156. Santin AD, Bellone S, Palmieri M, Ravaggi A, Romani C, Tassi R, et al. HPV16/18 E7-pulsed dendritic cell vaccination in cervical cancer patients with recurrent disease refractory to standard treatment modalities. Gynecol Oncol. 2006 Mar;100(3):469–478. [PubMed]
157. Santin AD, Bellone S, Palmieri M, Zanolini A, Ravaggi A, Siegel ER, et al. Human papillomavirus type 16 and 18 E7-pulsed dendritic cell vaccination of stage IB or IIA cervical cancer patients: a phase I escalating-dose trial. J Virol. 2008 Feb;82(4):1968–1979. [PMC free article] [PubMed]
158. National Taiwan University Hospital. Immunotherapy of Recurrent Cervical Cancers Using Dendritic Cells (DCs) [Accessed 2009 June 22]. [ClinicalTrials.gov identifier NCT00155766]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://www.clinicaltrials.gov.
159. Bubenik J, Simova J, Hajkova R, Sobota V, Jandlova T, Smahel M, et al. Interleukin 2 gene therapy of residual disease in mice carrying tumours induced by HPV 16. Int J Oncol. 1999 Mar;14(3):593–597. [PubMed]
160. Hallez S, Detremmerie O, Giannouli C, Thielemans K, Gajewski TF, Burny A, et al. Interleukin-12-secreting human papillomavirus type 16-transformed cells provide a potent cancer vaccine that generates E7-directed immunity. Int J Cancer. 1999 May 5;81(3):428–437. [PubMed]
161. Mikyskova R, Indrova M, Simova J, Jandlova T, Bieblova J, Jinoch P, et al. Treatment of minimal residual disease after surgery or chemotherapy in mice carrying HPV16-associated tumours: Cytokine and gene therapy with IL-2 and GM-CSF. Int J Oncol. 2004 Jan;24(1):161–167. [PubMed]
162. Chang EY, Chen CH, Ji H, Wang TL, Hung K, Lee BP, et al. Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. Int J Cancer. 2000 Jun 1;86(5):725–730. [PubMed]
163. de Gruijl TD, van den Eertwegh AJ, Pinedo HM, Scheper RJ. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines. Cancer Immunol Immunother. 2008 Oct;57(10):1569–1577. [PMC free article] [PubMed]
164. Chen CH, Wang TL, Hung CF, Pardoll DM, Wu TC. Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine. 2000 Apr 3;18(19):2015–2022. [PubMed]
165. Wlazlo AP, Deng H, Giles-Davis W, Ertl HC. DNA vaccines against the human papillomavirus type 16 E6 or E7 oncoproteins. Cancer Gene Ther. 2004 Jun;11(6):457–464. [PubMed]
166. Rittich S, Duskova M, Mackova J, Pokorna D, Jinoch P, Smahel M. Combined immunization with DNA and transduced tumor cells expressing mouse GM-CSF or IL-2. Oncol Rep. 2005 Feb;13(2):311–317. [PubMed]
167. Lin CT, Hung CF, Juang J, He L, Lin KY, Kim TW, et al. Boosting with recombinant vaccinia increases HPV-16 E7-Specific T cell precursor frequencies and antitumor effects of HPV-16 E7-expressing Sindbis virus replicon particles. Mol Ther. 2003 Oct;8(4):559–566. [PubMed]
168. Mackova J, Stasikova J, Kutinova L, Masin J, Hainz P, Simsova M, et al. Prime/boost immunotherapy of HPV16-induced tumors with E7 protein delivered by Bordetella adenylate cyclase and modified vaccinia virus Ankara. Cancer Immunol Immunother. 2006 Jan;55(1):39–46. [PubMed]
169. Kast WM. VEEV Replicon-Based Vaccines Used in Heterologous Prime Boost Strategies Induce Lifelong Protection againt Cancer and Therapy of Cervical Cancer in Mice and Robust Cell-mediated Immunity in Rhesus macques. Vaccine Technology II. 2008:P09.
170. Smyth LJ, Van Poelgeest MI, Davidson EJ, Kwappenberg KM, Burt D, Sehr P, et al. Immunological responses in women with human papillomavirus type 16 (HPV-16)-associated anogenital intraepithelial neoplasia induced by heterologous prime-boost HPV-16 oncogene vaccination. Clin Cancer Res. 2004 May 1;10(9):2954–2961. [PubMed]
171. Fiander AN, Tristram AJ, Davidson EJ, Tomlinson AE, Man S, Baldwin PJ, et al. Prime-boost vaccination strategy in women with high-grade, noncervical anogenital intraepithelial neoplasia: clinical results from a multicenter phase II trial. Int J Gynecol Cancer. 2006 May-Jun;16(3):1075–1081. [PubMed]
172. Davidson EJ, Faulkner RL, Sehr P, Pawlita M, Smyth LJ, Burt DJ, et al. Effect of TA-CIN (HPV 16 L2E6E7) booster immunisation in vulval intraepithelial neoplasia patients previously vaccinated with TA-HPV (vaccinia virus encoding HPV 16/18 E6E7) Vaccine. 2004 Jul 29;22(21–22):2722–2729. [PubMed]
173. Johns Hopkins University. Vaccine Therapy With or Without Imiquimod in Treating Patients With Grade 3 Cervical Intraepithelial Neoplasia. [Accessed 2009 June 4]. [ClinicalTrials.gov identifier NCT00788164]. US National Institutes of Health, ClinicalTrials.gov . Available from URL: http://wwwclinicaltrials.gov.
174. Yue FY, Dummer R, Geertsen R, Hofbauer G, Laine E, Manolio S, et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer. 1997 May 16;71(4):630–637. [PubMed]
175. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med. 2001 Oct;7(10):1118–1122. [PubMed]
176. Chuang CM, Hoory T, Monie A, Wu A, Wang MC, Hung CF. Enhancing therapeutic HPV DNA vaccine potency through depletion of CD4+CD25+ T regulatory cells. Vaccine. 2009 Jan 29;27(5):684–689. [PMC free article] [PubMed]
177. Goldberg MV, Maris CH, Hipkiss EL, Flies AS, Zhen L, Tuder RM, et al. Role of PD-1 and its ligand, B7-H1, in early fate decisions of CD8 T cells. Blood. 2007 Jul 1;110(1):186–192. [PMC free article] [PubMed]
178. Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007 Jan;7(1):41–51. [PubMed]
179. Groh V, Wu J, Yee C, Spies T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature. 2002 Oct 17;419(6908):734–738. [PubMed]
180. Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med. 2004 Jan;10(1):15–18. [PubMed]
181. Rubinstein N, Alvarez M, Zwirner NW, Toscano MA, Ilarregui JM, Bravo A, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell. 2004 Mar;5(3):241–251. [PubMed]
182. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006 Jun 1;66(11):5527–5536. [PubMed]
183. Kang TH, Lee JH, Song CK, Han HD, Shin BC, Pai SI, et al. Epigallocatechin-3-gallate enhances CD8+ T cell-mediated antitumor immunity induced by DNA vaccination. Cancer Res. 2007 Jan 15;67(2):802–811. [PMC free article] [PubMed]
184. Bae SH, Park YJ, Park JB, Choi YS, Kim MS, Sin JI. Therapeutic synergy of human papillomavirus E7 subunit vaccines plus cisplatin in an animal tumor model: causal involvement of increased sensitivity of cisplatin-treated tumors to CTL-mediated killing in therapeutic synergy. Clin Cancer Res. 2007 Jan 1;13(1):341–349. [PubMed]
185. Ye GW, Park JB, Park YJ, Choi YS, Sin JI. Increased sensitivity of radiated murine cervical cancer tumors to E7 subunit vaccine-driven CTL-mediated killing induces synergistic anti-tumor activity. Mol Ther. 2007 Aug;15(8):1564–1570. [PubMed]
186. Tseng CW, Monie A, Wu CY, Huang B, Wang MC, Hung CF, et al. Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. J Mol Med. 2008 Aug;86(8):899–908. [PMC free article] [PubMed]
187. Tseng CW, Trimble C, Zeng Q, Monie A, Alvarez RD, Huh WK, et al. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother. 2009 May;58(5):737–748. [PMC free article] [PubMed]
188. Chuang CM, Monie A, Wu A, Hung CF. Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J Biomed Sci. 2009 May 27;16(1):49. [PMC free article] [PubMed]
189. Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise (review) Int J Oncol. 2007 Jan;30(1):233–245. [PubMed]
190. Tseng CW, Monie A, Trimble C, Alvarez RD, Huh WK, Buchsbaum DJ, et al. Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects. Vaccine. 2008 Aug 12;26(34):4314–4319. [PMC free article] [PubMed]

Plaats een reactie ...

Reageer op "Immuuntherapie met vaccin tegen HPV - Humane Papillomavirus-16, succesvol bij vulvakanker wordt getest bij al bestaande baarmoederhalskanker in LUMC"


Gerelateerde artikelen
 

Gerelateerde artikelen

HPV vaccinatie bij tieners >> Gardasil goedgekeurd als vaccin >> HPV test voor vrouwen goedgekeurd >> Immuuntherapie met vaccin >> Reportage van EenVandaag over >> Gentherapie in de vorm van >> Vaccinatieprogramma tegen >> Vaccins tegen HPV virus ter >> Vaccinatie tegen HPV virus >> Vaccinatieprogramma mislukt >>