5 oktober 2018: Bron: Science Daily

Kunstmatige zoetstoffen, zoals aspartaam, sucralose, saccharine, neotaam, advantaam en acesulfaam-K die veel als vervangers van suiker worden gebruikt in voeding en dranken blijken een schadelijke invloed te hebben op de darmflora. En daarmee indirect op onze weerstand. Dat blijkt uit een studie door wetenschappers uit Israel en Italie en Singapore en gepubliceerd in Science Daily.

Een citaat uit een bericht op Foodlog hierover:

Ze gebruikten daarvoor een ‘panel’ van gemodificeerde bacteriën, die oplichten als ze met een gifstof in aanraking komen. Dat verschijnsel van bioluminiscentie komt van nature ook voor bij sommige bacteriën. De onderzoekers brachten die eigenschap in bij 3 soorten bacteriën. ............

De ene zoetstof laat andere bacteriën oplichten dan een andere. Bovendien kon vastgesteld worden dat het toxische effect dosesafhankelijk is.
Dit is aanvullend bewijs dat de consumptie van kunstmatige zoetstoffen de microbiële activiteit nadelig beïnvloedt, hetgeen een groot aantal gezondheidsproblemen kan veroorzaken,” aldus een van de onderzoekers in ScienceDaily.

Het persbericht over de studie : Artificial sweeteners have toxic effects on gut microbes luidt:

Conclusie: The collaborative study indicated relative toxicity of six artificial sweeteners (aspartame, sucralose, saccharine, neotame, advantame, and acesulfame potassium-k) and 10 sport supplements containing these artificial sweeteners. The bacteria found in the digestive system became toxic when exposed to concentrations of only one mg./ml. of the artificial sweeteners.

Sweetener.

Credit: © Monika Wisniewska / Fotolia

FDA-approved artificial sweeteners and sport supplements were found to be toxic to digestive gut microbes, according to a new paper published in Molecules by researchers at Ben-Gurion University of the Negev (BGU) in Israel and Nanyang Technological University in Singapore.

The collaborative study indicated relative toxicity of six artificial sweeteners (aspartame, sucralose, saccharine, neotame, advantame, and acesulfame potassium-k) and 10 sport supplements containing these artificial sweeteners. The bacteria found in the digestive system became toxic when exposed to concentrations of only one mg./ml. of the artificial sweeteners>>>>>>>reed the whole article

De studiepublicatie zelf: 

Measuring Artificial Sweeteners Toxicity Using a Bioluminescent Bacterial Panel

is volledig gratis in te zien, zie onderstaande abstract:

Journal Reference:

  1. Dorin Harpaz, Loo Yeo, Francesca Cecchini, Trish Koon, Ariel Kushmaro, Alfred Tok, Robert Marks, Evgeni Eltzov. Measuring Artificial Sweeteners Toxicity Using a Bioluminescent Bacterial Panel. Molecules, 2018; 23 (10): 2454 DOI: 10.3390/molecules23102454

Molecules 2018, 23(10), 2454; doi:10.3390/molecules23102454

Article

Measuring Artificial Sweeteners Toxicity Using a Bioluminescent Bacterial Panel

1
School of Material Science and Engineering, Nanyang Technology University, 50 Nanyang Avenue, Singapore 639798, Singapore
2
Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben Gurion University of the Negev, Beer-Sheva 84105, Israel
3
Institute for Sports Research (ISR), Nanyang Technology University and Loughborough University, Nanyang Avenue, Singapore 639798, Singapore
4
TURVAL Laboratories, Ltd. (Laboratori Turval Italia Srl), via J. Linussio 51, 33100 Udine, Italy
5
Department of Obstetrics and Gynaecology, KK Women’s and Children’s Hospital, 100 Bukit Timah Road, Singapore 229899, Singapore
6
School of Science and Technology, Singapore University of Social Sciences, 463 Clementi Road, Singapore 599494, Singapore
7
The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
8
The Ilse Katz Centre for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
9
Agriculture Research Organization (ARO), Volcani Centre, Rishon LeTsiyon 15159, Israel

*
Authors to whom correspondence should be addressed.

Received: 6 August 2018 / Accepted: 22 September 2018 / Published: 25 September 2018

Abstract

:
Artificial sweeteners have become increasingly controversial due to their questionable influence on consumers’ health. They are introduced in most foods and many consume this added ingredient without their knowledge. Currently, there is still no consensus regarding the health consequences of artificial sweeteners intake as they have not been fully investigated. Consumption of artificial sweeteners has been linked with adverse effects such as cancer, weight gain, metabolic disorders, type-2 diabetes and alteration of gut microbiota activity. Moreover, artificial sweeteners have been identified as emerging environmental pollutants, and can be found in receiving waters, i.e., surface waters, groundwater aquifers and drinking waters. In this study, the relative toxicity of six FDA-approved artificial sweeteners (aspartame, sucralose, saccharine, neotame, advantame and acesulfame potassium-k (ace-k)) and that of ten sport supplements containing these artificial sweeteners, were tested using genetically modified bioluminescent bacteria from E. coli. The bioluminescent bacteria, which luminesce when they detect toxicants, act as a sensing model representative of the complex microbial system. Both induced luminescent signals and bacterial growth were measured. Toxic effects were found when the bacteria were exposed to certain concentrations of the artificial sweeteners. In the bioluminescence activity assay, two toxicity response patterns were observed, namely, the induction and inhibition of the bioluminescent signal. An inhibition response pattern may be observed in the response of sucralose in all the tested strains: TV1061 (MLIC = 1 mg/mL), DPD2544 (MLIC = 50 mg/mL) and DPD2794 (MLIC = 100 mg/mL). It is also observed in neotame in the DPD2544 (MLIC = 2 mg/mL) strain. On the other hand, the induction response pattern may be observed in its response in saccharin in TV1061 (MLIndC = 5 mg/mL) and DPD2794 (MLIndC = 5 mg/mL) strains, aspartame in DPD2794 (MLIndC = 4 mg/mL) strain, and ace-k in DPD2794 (MLIndC = 10 mg/mL) strain. The results of this study may help in understanding the relative toxicity of artificial sweeteners on E. coli, a sensing model representative of the gut bacteria. Furthermore, the tested bioluminescent bacterial panel can potentially be used for detecting artificial sweeteners in the environment, using a specific mode-of-action pattern.

References

  1. Swithers, S.E. Not-so-healthy sugar substitutes? Curr. Opin. Behav. Sci. 2016, 9, 106–110. [Google Scholar] [CrossRef] [PubMed]
  2. FDA, High-Intensity Sweeteners U.S. Food and Drug Administration. Available online: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397716.htm (accessed on 19 May 2014).
  3. EFSA, Sugars and Sweeteners European Food Safety Authority. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/sugars-sweeteners (accessed on 30 January 2018).
  4. Sylvetsky, A.C.; Rother, K.I. Trends in the consumption of low-calorie sweeteners. Physiol. Behav. 2016, 164, 446–450. [Google Scholar] [CrossRef] [PubMed]
  5. Lugasi, A. Safety of intensive sweetener. Orvosi Hetil. 2016, 157 (Suppl. 1), 14–28. [Google Scholar] [CrossRef]
  6. Ranchordas, M.K. Nutrition for adventure racing. Sports Med. 2012, 42, 915–927. [Google Scholar] [PubMed]
  7. Ko, S.Y. Electrolyte Drink. U.S. Patent 06/154,259, 29 May 1980. [Google Scholar]
  8. Kampinga, J.; Colaco, C. Compositions for Use in Rehydration and Nutrition during Athletic Exercise and Methods of Making Same. U.S. Patent 08/899,012, 23 July 1997. [Google Scholar]
  9. Ross, N.; Reyman, J. Chewable Electrolyte Tablet. U.S. Patent 10/954,874, 30 March 2006. [Google Scholar]
  10. Stone, K.R. Cartilage Enhancing Food Supplements and Methods of Preparing the Same. U.S. Patent 09/598,634, 21 June 2000. [Google Scholar]
  11. Howard, A.N.; Harris, R. Compositions Containing Creatine in Suspension, 2001. U.S. Patent 09/419,922, 2 June 1999. [Google Scholar]
  12. Bakal, A.I.; Crossman, T.L. Use of Lactose-Hydrolyzed Whey in Chewing Gum. U.S. Patent 06/472,734, 7 March 1983. [Google Scholar]
  13. Badalov, C. Super Sweet Sugar Crystals and Syrups for Health and Method. U.S. Patent 11/487,933, 17 Janurary 2008. [Google Scholar]
  14. Nuralam, M. Nutritional Supplement Composition Comprising Creatine and Method for Making the Same. U.S. Patent 11/604,562, 29 May 2008. [Google Scholar]
  15. Tandel, K.R. Sugar substitutes: Health controversy over perceived benefits. J. Pharmacol. Pharmacother. 2011, 2, 236–243. [Google Scholar] [CrossRef] [PubMed]
  16. Gupta, S.M.V.; Mahajan, S.; Tandon, V.R. Artificial sweeteners. JK Sci. 2012, 14, 1–4. [Google Scholar]
  17. Marinovich, M.; Galli, C.L.; Bosetti, C.; Gallus, S.; La Vecchia, C. Aspartame, low-calorie sweeteners and disease: Regulatory safety and epidemiological issues. Food Chem. Toxicol. 2013, 60, 109–115. [Google Scholar] [CrossRef] [PubMed]
  18. Mishra, A.; Ahmed, K.; Froghi, S.; Dasgupta, P. Systematic review of the relationship between artificial sweetener consumption and cancer in humans: Analysis of 599,741 participants. Int. J. Clin. Pract. 2015, 69, 1418–1426. [Google Scholar] [CrossRef] [PubMed]
  19. Schernhammer, E.S.; Bertrand, K.A.; Birmann, B.M.; Sampson, L.; Willett, W.C.; Feskanich, D. Consumption of artificial sweetener- and sugar-containing soda and risk of lymphoma and leukemia in men and women. Am. J. Clin. Nutr. 2012, 96, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
  20. Lin, J.; Curhan, G.C. Associations of sugar and artificially sweetened soda with albuminuria and kidney function decline in women. Clin. J. Am. Soc. Nephrol. 2011, 6, 160–166. [Google Scholar] [CrossRef] [PubMed]
  21. Gardener, H.R.T.; Markert, M.; Wright, C.B.; Elkind, M.S.V.; Sacco, R.L. Diet soft drink consumption is associated with an increased risk of vascular events in the northern manhattan study. J. Gen. Intern. Med. 2012, 27, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
  22. Blackburn, G.L.; Kanders, B.S.; Lavin, P.T.; Keller, S.D.; Whatley, J. The effect of aspartame as part of a multidisciplinary weight-control program on short- and long-term control of body weight. Am. J. Clin. Nutr. 1997, 65, 409–418. [Google Scholar] [CrossRef] [PubMed]
  23. Raben, A.; Vasilaras, T.H.; Moller, A.C.; Astrup, A. Sucrose compared with artificial sweeteners: Different effects on ad libitum food intake and body weight after 10 wk of supplementation in overweight subjects. Am. J. Clin. Nutr. 2002, 76, 721–729. [Google Scholar] [CrossRef] [PubMed]
  24. Hampton, T. Sugar substitutes linked to weight gain. JAMA 2008, 299, 2137–2138. [Google Scholar] [CrossRef] [PubMed]
  25. Schiffman, S.S.; Rother, K.I. Sucralose, a synthetic organochlorine sweetener: Overview of biological issues. J. Toxicol. Environ. Health Part B Crit. Rev. 2013, 16, 399–451. [Google Scholar] [CrossRef] [PubMed]
  26. DeNoon, D.J.R.b.C.G.M.M. Drink More Diet Soda, Gain More Weight? Overweight Risk Soars 41% with Each Daily Can of Diet Soft Drink. Web MD Medical News 2005. Available online: https://www.webmd.com/diet/news/20050613/drink-more-diet-soda-gain-more-weight#1 (accessed on 11 February 2011).
  27. Swithers, S.E.; Davidson, T.L. A role for sweet taste: Calorie predictive relations in energy regulation by rats. Behav. Neurosci. 2008, 122, 161–173. [Google Scholar] [CrossRef] [PubMed]
  28. Daly, K.; Darby, A.C.; Hall, N.; Nau, A.; Bravo, D.; Shirazi-Beechey, S.P. Dietary supplementation with lactose or artificial sweetener enhances swine gut lactobacillus population abundance. Br. J. Nutr. 2014, 111, 30–35. [Google Scholar] [CrossRef] [PubMed]
  29. Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
  30. Daly, K.; Darby, A.C.; Shirazi-Beechey, S.P. Low calorie sweeteners and gut microbiota. Physiol. Behav. 2016, 164, 494–500. [Google Scholar] [CrossRef] [PubMed]
  31. Lange, F.T.; Scheurer, M.; Brauch, H.-J. Artificial sweeteners—A recently recognized class of emerging environmental contaminants: A review. Anal. Bioanal. Chem. 2012, 403, 2503–2518. [Google Scholar] [CrossRef] [PubMed]
  32. Kokotou, M.G.; Asimakopoulos, A.G.; Thomaidis, N.S. Artificial sweeteners as emerging pollutants in the environment: Analytical methodologies and environmental impact. Anal. Methods 2012, 4, 3057–3070. [Google Scholar] [CrossRef]
  33. Sang, Z.; Jiang, Y.; Tsoi, Y.-K.; Leung, K.S.-Y. Evaluating the environmental impact of artificial sweeteners: A study of their distributions, photodegradation and toxicities. Water Res. 2014, 52, 260–274. [Google Scholar] [CrossRef] [PubMed]
  34. Loos, R.; Gawlik, B.M.; Boettcher, K.; Locoro, G.; Contini, S.; Bidoglio, G. Sucralose screening in european surface waters using a solid-phase extraction-liquid chromatographytriple quadrupole mass spectrometry method. J. Chromatogr. A 2009, 1216, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
  35. Buerge, I.J.; Buser, H.R.; Kahle, M.; Muller, M.D.; Poiger, T. Ubiquitous occurrence of the artificial sweetener acesulfame in the aquatic environment: An ideal chemical marker of domestic wastewater in groundwater. Environ. Sci. Technol. 2009, 43, 4381–4385. [Google Scholar] [CrossRef] [PubMed]
  36. Scheurer, M.; Brauch, H.J.; Lange, F.T. Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (sat). Anal. Bioanal. Chem. 2009, 394, 1585–1594. [Google Scholar] [CrossRef] [PubMed]
  37. Mawhinney, D.B.; Young, R.B.; Vanderford, B.J.; Borch, T.; Snyder, S.A. Artificial sweetener sucralose in U.S. Drinking water systems. Environ. Sci. Technol. 2011, 45, 8716–8722. [Google Scholar] [CrossRef] [PubMed]
  38. Van Stempvoort, D.R.; Roy, J.W.; Brown, S.J.; Bickerton, G. Artificial sweeteners as potential tracers in groundwater in urban environments. J. Hydrol. 2011, 401, 126–133. [Google Scholar] [CrossRef]
  39. Gan, Z.; Sun, H.; Feng, B.; Wang, R.; Zhang, Y. Occurrence of seven artificial sweeteners in the aquatic environment and precipitation of Tianjin, China. Water Res. 2013, 47, 4928–4937. [Google Scholar] [CrossRef] [PubMed]
  40. Stolte, S.; Steudte, S.; Schebb, N.H.; Willenberg, I.; Stepnowski, P. Ecotoxicity of artificial sweeteners and stevioside. Environ. Int. 2013, 60, 123–127. [Google Scholar] [CrossRef] [PubMed]
  41. Whitehouse, C.R.; Boullata, J.; McCauley, L.A. The potential toxicity of artificial sweeteners. Aaohn J. 2008, 56, 251–259. [Google Scholar] [CrossRef] [PubMed]
  42. Eltzov, E.; Ben-Yosef, D.Z.; Kushmaro, A.; Marks, R. Detection of sub-inhibitory antibiotic concentrations via luminescent sensing bacteria and prediction of their mode of action. Sen. Actuators B Chem. 2008, 129, 685–692. [Google Scholar] [CrossRef]
  43. Eltzov, E.; Marks, R.S. Fiber-optic based cell sensors. In Whole Cell Sensing Systems I: Reporter Cells and Devices; Springer: Berlin/Heidelberg, Germany, 2010; Volume 117, pp. 131–154. [Google Scholar]
  44. Nordeen, S.K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques 1988, 6, 454–458. [Google Scholar] [PubMed]
  45. Ivask, A.; Virta, M.; Kahru, A. Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol. Biochem. 2002, 34, 1439–1447. [Google Scholar] [CrossRef]
  46. Tauriainen, S.; Karp, M.; Chang, W.; Virta, M. Luminescent bacterial sensor for cadmium and lead. Biosens. Bioelectron. 1998, 13, 931–938. [Google Scholar] [CrossRef]
  47. Ivask, A.; Green, T.; Polyak, B.; Mor, A.; Kahru, A.; Virta, M.; Marks, R. Fibre-optic bacterial biosensors and their application for the analysis of bioavailable hg and as in soils and sediments from aznalcollar mining area in spain. Biosens. Bioelectron. 2007, 22, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
  48. Michelini, E.; Leskinen, P.; Virta, M.; Karp, M.; Roda, A. A new recombinant cell-based bioluminescent assay for sensitive androgen-like compound detection. Biosens. Bioelectron. 2005, 20, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
  49. Fine, T.; Leskinen, P.; Isobe, T.; Shiraishi, H.; Morita, M.; Marks, R.S.; Virta, M. Luminescent yeast cells entrapped in hydrogels for estrogenic endocrine disrupting chemical biodetection. Biosens. Bioelectron. 2006, 21, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
  50. Belkin, S.; Smulski, D.R.; Vollmer, A.C.; Van Dyk, T.K.; LaRossa, R.A. Oxidative stress detection with Escherichia coli harboring a katg’: Lux fusion. Appl. Environ. Microbiol. 1996, 62, 2252–2256. [Google Scholar] [PubMed]
  51. Gu, M.B.; Min, J.; Kim, E.J. Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria. Chemosphere 2002, 46, 289–294. [Google Scholar] [CrossRef]
  52. Choi, S.H.; Gu, M.B. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria. Biosens. Bioelectron. 2002, 17, 433–440. [Google Scholar] [CrossRef]
  53. Bechor, O.; Smulski, D.R.; Van Dyk, T.K.; LaRossa, R.A.; Belkin, S. Recombinant microorganisms as environmental biosensors: Pollutants detection by Escherichia coli bearing fabA’:: Lux fusions. J. Biotechnol. 2002, 94, 125–132. [Google Scholar] [CrossRef]
  54. Durand, M.J.; Thouand, G.; Dancheva-Ivanova, T.; Vachon, P.; DuBow, M. Specific detection of organotin compounds with a recombinant luminescent bacteria. Chemosphere 2003, 52, 103–111. [Google Scholar] [CrossRef]
  55. Polyak, B.; Bassis, E.; Novodvorets, A.; Belkin, S.; Marks, R.S. Optical fiber bioluminescent whole-cell microbial biosensors to genotoxicants. Water Sci. Technol. 2000, 42, 305–311. [Google Scholar] [CrossRef]
  56. Polyak, B.; Geresh, S.; Marks, R.S. Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 2004, 5, 389–396. [Google Scholar] [CrossRef] [PubMed]
  57. D’Souza, S.F. Microbial biosensors. Biosens. Bioelectron. 2001, 16, 337–353. [Google Scholar] [CrossRef]
  58. Van der Meer, J.R.; Belkin, S. Where microbiology meets microengineering: Design and applications of reporter bacteria. Nat. Rev. Microbiol. 2010, 8, 511–522. [Google Scholar] [CrossRef] [PubMed]
  59. Zygler, A.; Wasik, A.; Namieśnik, J. Analytical methodologies for determination of artificial sweeteners in foodstuffs. TrAC Trends Anal. Chem. 2009, 28, 1082–1102. [Google Scholar] [CrossRef]
  60. Shankar, P.; Ahuja, S.; Sriram, K. Non-nutritive sweeteners: Review and update. Nutrition 2013, 29, 1293–1299. [Google Scholar] [CrossRef] [PubMed]
  61. Clemente, J.C.; Ursell, L.K.; Parfrey, L.W.; Knight, R. The impact of the gut microbiota on human health: An integrative view. Cell 2012, 148, 1258–1270. [Google Scholar] [CrossRef] [PubMed]
  62. Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: Findings and challenges. Gut Microbes 2015, 6, 149–155. [Google Scholar] [CrossRef] [PubMed]
  63. Palmnas, M.S.A.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PLoS ONE 2014, 9, e109841. [Google Scholar] [CrossRef] [PubMed]
  64. Rettig, S.; Tenewitz, J.; Ahearn, G.; Coughlin, C. Sucralose causes a concentration dependent metabolic inhibition of the gut flora bacteroides, B. fragilis and B. uniformis not observed in the firmicutes, E. faecalis and C. sordellii. FASEB J. 2014, 28, 1118. [Google Scholar]
  65. Abou-Donia, M.B.; El-Masry, E.M.; Abdel-Rahman, A.A.; McLendon, R.E.; Schiffman, S.S. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J. Toxicol. Environ. Health Part A 2008, 71, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
  66. Renneberg, R.; Riedel, K.; Scheller, F. Microbial sensor for aspartame. Appl. Microbiol. Biotechnol. 1985, 21, 180–181. [Google Scholar] [CrossRef]
  67. Labare, M.; Alexander, M. Microbial cometabolism of sucralose, a chlorinated disaccharide, in environmental samples. Appl. Microbiol. Biotechnol. 1994, 42, 173–178. [Google Scholar] [CrossRef] [PubMed]
  68. Young, D.; Bowen, W. The influence of sucralose on bacterial metabolism. J. Dent. Res. 1990, 69, 1480–1484. [Google Scholar] [CrossRef] [PubMed]
  69. Magnuson, B.A.; Roberts, A.; Nestmann, E.R. Critical review of the current literature on the safety of sucralose. Food Chem. Toxicol. 2017, 106, 324–355. [Google Scholar] [CrossRef] [PubMed]
  70. Mayhew, D.A.; Phil Comer, C.; Wayne Stargel, W. Food consumption and body weight changes with neotame, a new sweetener with intense taste: Differentiating effects of palatability from toxicity in dietary safety studies. Regul. Toxicol. Pharmacol. 2003, 38, 124–143. [Google Scholar] [CrossRef]
  71. Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Sweeteners as food additives in the xxi century: A review of what is known, and what is to come. Food Chem. Toxicol. 2017, 107, 302–317. [Google Scholar] [CrossRef] [PubMed]
  72. Hanina, M.; Shahril, M.H.; Asyikin, I.I.N.; Jalil, A.A.; Salina, M.; Maryam, M.; Rosfarizan, M. Extracellular protein secreted by Bacillus subtilis atcc21332 in the presence of streptomycin sulfate. World Acad. Sci. Eng. Technol. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 820–824. [Google Scholar]
  73. Yang, D.; Chen, B. Determination of neotame in beverages, cakes and preserved fruits by column-switching high-performance liquid chromatography. Food Addit. Contam. Part A 2010, 27, 1221–1225. [Google Scholar] [CrossRef] [PubMed]
  74. Mukherjee, A.; Chakrabarti, J. In vivo cytogenetic studies on mice exposed to acesulfame-k—A non-nutritive sweetener. Food Chem. Toxicol. 1997, 35, 1177–1179. [Google Scholar] [CrossRef]
  75. Mukhopadhyay, M.; Mukherjee, A.; Chakrabarti, J. In vivo cytogenetic studies on blends of aspartame and acesulfame-k. Food Chem. Toxicol. 2000, 38, 75–77. [Google Scholar] [CrossRef]
  76. Chattopadhyay, S.; Raychaudhuri, U.; Chakraborty, R. Artificial sweeteners—A review. J. Food Sci. Technol. 2014, 51, 611–621. [Google Scholar] [CrossRef] [PubMed]
  77. Kirkland, D.; Gatehouse, D. Aspartame: A review of genotoxicity data. Food Chem. Toxicol. 2015, 84, 161–168. [Google Scholar] [CrossRef] [PubMed]
  78. Bandyopadhyay, A.; Ghoshal, S.; Mukherjee, A. Genotoxicity testing of low-calorie sweeteners: Aspartame, acesulfame-k, and saccharin. Drug Chem. Toxicol. 2008, 31, 447–457. [Google Scholar] [CrossRef] [PubMed]
  79. Weihrauch, M.R.; Diehl, V. Artificial sweeteners—Do they bear a carcinogenic risk? Ann. Oncol. 2004, 15, 1460–1465. [Google Scholar] [CrossRef] [PubMed]
  80. Cohen, S.M.; Arnold, L.L.; Emerson, J.L. Safety of saccharin. Agro Food Ind. Hi Tech 2008, 19, 26–29. [Google Scholar]
  81. Eltzov, E.; Cohen, A.; Marks, R.S. Bioluminescent liquid light guide pad biosensor for indoor air toxicity monitoring. Anal. Chem. 2015, 87, 3655–3661. [Google Scholar] [CrossRef] [PubMed]
  82. Hakkila, K.; Green, T.; Leskinen, P.; Ivask, A.; Marks, R.; Virta, M. Detection of bioavailable heavy metals in eilatox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 2004, 24, 333–342. [Google Scholar] [CrossRef] [PubMed]
  83. Eltzov, E.; Slobodnik, V.; Ionescu, R.E.; Marks, R.S. On-line biosensor for the detection of putative toxicity in water contaminants. Talanta 2015, 132, 583–590. [Google Scholar] [CrossRef] [PubMed]
  84. Choi, S.H.; Gu, M.B. A whole cell bioluminescent biosensor for the detection of membrane-damaging toxicity. Biotechnol. Bioprocess Eng. 1999, 4, 59–62. [Google Scholar] [CrossRef]
  85. Premkumar, J.R.; Lev, O.; Marks, R.S.; Polyak, B.; Rosen, R.; Belkin, S. Antibody-based immobilization of bioluminescent bacterial sensor cells. Talanta 2001, 55, 1029–1038. [Google Scholar] [CrossRef]
  86. Van Dyk, T.K.; Majarian, W.R.; Konstantinov, K.B.; Young, R.M.; Dhurjati, P.S.; LaRossa, R.A. Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl. Environ. Microbiol. 1994, 60, 1414–1420. [Google Scholar] [PubMed]
  87. Vollmer, A.C.; Belkin, S.; Smulski, D.R.; Van Dyk, T.K.; LaRossa, R.A. Detection of DNA damage by use of Escherichia coli carrying reca’::Lux, uvra’::Lux, or alka’::Lux reporter plasmids. Appl. Environ. Microbiol. 1997, 63, 2566–2571. [Google Scholar] [PubMed]
  88. Eltzov, E.; Marks, R.S.; Voost, S.; Wullings, B.A.; Heringa, M.B. Flow-through real time bacterial biosensor for toxic compounds in water. Sens. Actuators B Chem. 2009, 142, 11–18. [Google Scholar] [CrossRef]
  89. Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [PubMed]
  90. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010, 464, 59–65. [Google Scholar] [CrossRef] [PubMed]
  91. Berg, R.D. The indigenous gastrointestinal microflora. Trends Microbiol. 1996, 4, 430–435. [Google Scholar] [CrossRef]
Figure 1. Artificial sweeteners toxicity. The toxicity index of different artificial sweeteners on the three tested bioluminescent bacteria strains: (A) TV1061; (B) DPD2544; (C) DPD2794. A strong induction response pattern may be observed in the response of the TV1061 strain to saccharin and DPD2794 strain to aspartame and saccharin. In addition, a strong inhibition response pattern may be observed in the response of the TV1061 strain to sucralose.
Molecules 23 02454 g001
Figure 2. Sport supplements’ toxicity. Toxicity index of different sport supplements on the three tested bioluminescent bacteria strains: (A) TV1061; (B) DPD2544; (C) DPD2794.
Molecules 23 02454 g002aMolecules 23 02454 g002b
Figure 3. Experimental process. (A) each bacteria strain tested was striked on an agar plate containing Kanamycin, and incubated overnight at 37 °C; (B) a starter was grown from a single colony from the striked plate, and incubated overnight at 37 °C in a shaking incubator; (C) the starter was refreshed by adding 200 μL of the overnight culture into 10 mL of fresh LB, and then grown for 3–4 h at 30 °C in a non-shaking incubator; (D) the bacteria strains were then exposed to the different samples of different concentrations in a high-throughput measurement using a 96-well plate; (E,F) the toxicity (Relative Light Unit (RLU)) and growth (O.D. 600 nm) signals were measured continuously during the 16 h incubation at 26 °C, in the Luminometer and TECAN reader, respectively.
Molecules 23 02454 g003
Table 1. Artificial sweeteners toxicity and viability effect (mg/mL).
StrainMLICMLIndCMGICMGIndC
Aspartame TV1061 N.E. N.E. N.E. N.E.
DPD2544 N.E. N.E. N.E. N.E.
DPD2794 N.E. 4 N.E. N.E.
Sucralose TV1061 1 N.E. 50 N.E.
DPD2544 50 N.E. 50 N.E.
DPD2794 100 N.E. 50 N.E.
Saccharin TV1061 N.E. 5 5 N.E.
DPD2544 N.E. N.E. N.E. N.E.
DPD2794 N.E. 5 N.E. N.E.
Advantame TV1061 N.E. N.E. N.E. 2
DPD2544 N.E. N.E. N.E. N.E.
DPD2794 N.E. N.E. N.E. N.E.
Neotame TV1061 N.E. 2 N.E. N.E.
DPD2544 2 N.E. N.E. N.E.
DPD2794 N.E. N.E. N.E. N.E.
Ace-K TV1061 N.E. N.E. N.E. N.E.
DPD2544 N.E. N.E. N.E. N.E.
DPD2794 N.E. 10 N.E. N.E.
MLIC—Minimum Luminescent Inhibition Concentration; MLIndC—Minimum Luminescent Induction Concentration; MGIC—Minimum Growth Inhibition Concentration; MGIndC—Minimum Growth Induction Concentration; N.E.—No Effect.
Table 2. Sport supplements’ toxicity and viability effect (µg/mL).
StrainMLICMLIndCMGICMGIndC
SS1 TV1061 N.E. 2000 N.E. N.E.
DPD2544 2 × 10−3 2 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. 2000 N.E.
SS2 TV1061 N.E. N.E. N.E. N.E.
DPD2544 1 × 10−3 1 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. 1000 N.E.
SS3 TV1061 N.E. N.E. N.E. 4000
DPD2544 4 × 10−3 4 × 10−6 N.E. N.E.
DPD2794 4000 N.E. N.E. 4000
SS4 TV1061 N.E. N.E. N.E. 5000
DPD2544 5 × 10−3 5 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. N.E. 5000
SS5 TV1061 N.E. 5000 N.E. N.E.
DPD2544 5 × 10−3 5 × 10−6 N.E. N.E.
DPD2794 N.E. 5000 5000 N.E.
SS6 TV1061 N.E. N.E. N.E. 3000
DPD2544 3 × 10−3 3 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. N.E. N.E.
SS7 TV1061 5000 500 5000 N.E.
DPD2544 5 × 10−3 5 × 10−6 N.E. N.E.
DPD2794 5000 N.E. 5000 N.E.
SS8 TV1061 N.E. N.E. N.E. 2000
DPD2544 2 × 10−3 2 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. N.E. 2000
SS9 TV1061 N.E. 3000 N.E. N.E.
DPD2544 3 × 10−3 3 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. N.E. N.E.
SS10 TV1061 N.E. N.E. N.E. 3000
DPD2544 3 × 10−3 3 × 10−6 N.E. N.E.
DPD2794 N.E. N.E. N.E. 3000
MLIC—Minimum Luminescent Inhibition Concentration; MLIndC—Minimum Luminescent Induction Concentration; MGIC—Minimum Growth Inhibition Concentration; MGIndC—Minimum Growth Induction Concentration; N.E.—No Effect.
Table 3. Sport supplement profile.
Artificial Sweeteners ContentRecommended Amount for Consumption
(1 oz = 30 mL)
Ingredients
SS1 Sucralose 2 tablets (5 g), recommended to drink a lot of water Creatine Hydrochloride, Cellulose, Dicalcium phosphate, Enteric Coating (Cellulose, Sodium Alginate, Medium Chain Triglycerides, Oleic and Stearic Acid), Natural Mint Flavor, Sucralose, Titanium Dioxide
SS2 Acesulfame Potassium-K and Sucralose 2 (7 g) to 8 (28 g) scoops in 8–10 oz per serving (2 scoops) Black Tea Extract, Green Tea Extract, Green Coffee Extract, Micronized Taurine, Micronized l-Glutamine, Micronized l-Arginine, Micronized l-Leucine, Beta-Alanine (as CarnoSyn®), Micronized Citrulline, Micronized l-Isoleucine, Micronized l-Valine, Micronized l-Tyrosine, Micronized l-Histidine, Micronized l-Lysine, Micronized l-Phenylalanine, Micronized l-Threonine, Micronized l-Methionine
Other Ingredients: Inulin, Acesulfame Potassium, Citric Acid, FD&C Red #40, Malic Acid, Natural and Artificial Flavors, Sucralose, Silion Dioxide
SS3 Acesulfame Potassium-K and Sucralose 1 (31 g) to 2 (62 g) scoops in 6–8 oz per scoop Calcium, Cholesterol, Dietary Fibers, Potassium, Protein, Saturated Fat, Sodium, Sugars, Trans Fat
Other Ingredients: Acesulfame Potassium, Cocoa (Processed with Alkali), Enzyme Blend (Aminogen®, Lactase), Lecithin, Natural and Artificial Flavors, Salt, Sucralose, Whey Protein Blend (Whey Protein Isolate, Whey Protein Concentrate, Whey Protein Hydrolysate), Xanthan Gum
SS4 Sucralose 1 (31 g) to 2 (62 g) scoops in 4–10 oz per scoop Calcium, Cholesterol, proteins, Sodium, Saturated Fat, sugars, Trans Fat
Other Ingredients: Citric Acid, FD&C Red #40 Lake, Lactase, Sucralose, Natural and Artificial Flavors, Soy Lecithin, Whey Protein Isolate, Whey Protein Concentrate, Whey Peptides
SS5 Sucralose 2 (9 g) to 6 (27 g) scoops in 10–12 oz per serving (2 scoops) Caffeine, Green Tea Extract, Green Coffee Extract, Micronized Taurine, Micronized l-Glutamine, Micronized l-Arginine, Micronized l-Leucine, Beta-Alanine (as CarnoSyn®), Micronized Citrulline, Micronized l-Isoleucine, Micronized l-Valine, Micronized l-Tyrosine, Micronized l-Histidine, Micronized l-Lysine HCI, Micronized l-Phenylalanine, Micronized l-Threonine, Micronized l-Methionine
Other Ingredients: Calcium Citrate, Calcium Silicate, Citric Acid, Gum Blend (Cellulose Gum, Xanthan Gum, Carrageenan), FD&C Blue #2, FD&C Red #40, Inulin, Lecithin, Malic Acid, Natural and Artificial Flavors, Silicon Dioxide, Sucralose, Tartaric Acid
SS6 Acesulfame Potassium-K 1 (29.4 g) rounded scoop in 4–10 oz Calcium, Protein, Saturated Fat, Sodium, Sugars, Trans Fat
Other Ingredients: Acesulfame Potassium, Aminogen®, Lactase, Lecithin, Natural and Artificial Flavor, Whey Protein Isolate, Whey Protein Concentrate, Whey Peptides
SS7 Acesulfame Potassium-K and Sucralose 1 (49 g) to 2 (98 g) scoops in 6 oz per scoop Alpha lipoic acid, Calcium, Citric Acid, Creatine Monohydrate, Creatine HCI, Dicalcium Phosphate, Dextrose, l-alanine, l-Isoleucine, l-Leucine, l-Valine, Magnesium Oxide, Potassium, Sodium, Sugar, Taurine, Vitamin B6, Vitamin C, Vitamin B12
Other Ingredients: Acesulfame-Potassium, Dextrose, Ethyl-Cellulose, Glucose Polymers, Modcarb™ [Oat Bran, Amaranth, Quinoa, Buckwheat, Millet, Chia], Natural Flavors, Calcium Silicate, Salt, Sucralose, FD&C Yellow No. 6, Soy Lecithin, FD&C Yellow No. 5, Waxy Maize (Corn Starch), (Cluster Dextrin)
SS8 Acesulfame Potassium-K and Sucralose 1 (34 g) scoop in 6 oz water or skim milk Calcium, Cholesterol, Dietary Fiber, Iron, Protein, Saturated Fat, Sodium, Sugar
Other Ingredients: Acesulfame-Potassium, Alkalized Cocoa Powder, Calcium Carbonate, Gum Blend (Cellulose Gum, Xanthan Gum, Carrageenan), Natural and Artificial Flavors, Salt, Soy Lecithin, Sucralose, Sunflower-based Creamer (Sunflower oil, Corn syrup solids, Sodium Caseinate, Mono-Diglycerides, Dipotassium Phosphate, Tocopherols), Tricalcium Phosphate, Whey Protein Isolate, Whey Peptides, whey Protein Concentrate
SS9 Acesulfame Potassium-K and Sucralose 1 (32.4 g) to 2 (64.8 g) scoops in 8–12 oz Calcium, Cholesterol, Dietary Fiber, Iron, Potassium, Protein, Saturated Fat, Sodium, Sugar, Trans Fat, Vitamin A, Vitamin C
Other Ingredients: Acesulfame-Potassium, Amino Matrix (l-Glycine, l-Taurine, BCAAs (Leucine, Iso-Leucine, Valine), l-Glutamine), Flax Seed Oil, Glucose Polymers, Lactase, Natural and Artificial Flavors, Sucralose, Sea Salt, Suspension Matrix (Xanthan Gum, Cellulose Gum, Guar Gum), Whey Protein Concentrate, Whey Protein Isolate, Whey Protein Hydrolysate
SS10 Acesulfame Potassium-K and Sucralose 1 (34.9 g) to 2 (69.8 g) scoops in 8–12 oz Calcium, Cholesterol, Dietary Fiber, Iron, Multi-level Amino Acid Growth Matrix, Potassium, Protein, Saturated Fat, Sodium, Trans Fat
Other Ingredients: Alanine, Arginine, Aspartic Acid, BCAAs (l-Leucine, l-isoleucine, l-Glutamine, l-valine), Cystine, Digestive Enzyme Blend, Egg Albumen, Glycine, Histidine, Lactase, Lysine, Methionine, Micellar Casein, Partially-hydrolyzed Whey Concentrate, Phenylalanine, Proline, Protease, Serine, Tyrosine, Threonine, Tryptophan, Whey Protein Isolate, Whey Protein Concentrate
Table 4. Bioluminescent bacterial strains.
StrainE. coli Host StrainPromoterPlasmidStress SensitivityReference
TV1061 RFM443 grp E pGrpELux5 Heat Shock (Cytotoxic) [86]
DPD2544 W3110 fab A pFabALux6 Fatty Acid Availability (Cytotoxic) [53]
DPD2794 RFM443 rec A pRecALux3 SOS—DNA Damage (Genotoxicity) [87]
  • Sample Availability: Not available.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Plaats een reactie ...

1 Reactie op "Zijn zoetstoffen schadelijk voor de gezondheid van de mens? Nieuw onderzoek ziet aantasting van darmflora door bepaalde zoetstoffen."

  • jhon :
    Sinds mijn expat ervaring in China (1992)gebruik ik uitsluitend Stevia. In de EU was import en gebruik van Stevia verboden ?

Gerelateerde artikelen
 

Gerelateerde artikelen

FAQ - Veel gestelde vragen >> Sitehulp. Hoe vindt u informatie >> Waar in Europa wordt nog meer >> Wim Huppes staat 18 en 20 >> Tineke geeft haar mening over >> Crowdsurfing project: Helpen >> Mevrouw B. en haar dochter >> Wat is een darmmicrobioomtest >> Wie heeft tips voor mij over >> Een neuspray en mondspray >>