3 februari 2013: Bron: Comput Math Methods Med. 2012; 2012: 198145.

Hyperthermie, verwarming, blijkt overeenkomsten te hebben in effect op de groei van een kankercel met het Warburg effect in het metabolisme van de cel. Dit blijkt uit een studie met muizen met borstkanker welke gevolgd zijn met een computermodel terwijl een gedeelte van de muizen voortdurend vertoefde onder een verhitting van ca. 39 graden C.
Howwel dit geen mensenstudie is en het studierapport ook te ingewikkeld voor leken lijkt, is dit wel een interessante studie voor artsen en deskundigen. Ook omdat er vergelijkingen zijn gemaakt en gevonden met het zogeheten Warburg effect in het metabolisme van de cel. Het Warburg effect waar complementair werkende artsen graag en vaak naar verwijzen als effect van niet-toxische middelen.

Ik waag me niet aan een vertaling en duiding van de studiegegevens maar deze studie is echt interessant, zoals een geraadpleegde arts mij vertelde. 

Het volledige studierapport: Study of Tumor Growth under Hyperthermia Condition is gratis in te zien. Hier een introductie van deze studie:

The comparison of the maximum tumor cell growth rate has revealed a slowdown of tumor growth under the long-term mild hyperthermia condition

 Comput Math Methods Med. 2012; 2012 : 198145.
Published online 2012 September 3. doi:  10.1155/2012/198145
PMCID: PMC3438796

Study of Tumor Growth under Hyperthermia Condition

Qing Zhu, 1 Aili Zhang, 1 ,* Ping Liu, 1 , 2 and Lisa X. Xu 1 , 2 ,*

Abstract

The new concept of keeping primary tumor under control in situ to suppress distant foci sheds light on the treatment of metastatic tumor. Hyperthermia is considered as one of the means for controlling tumor growth. To simulate the tumor growth, a continuum mathematical model has been introduced. The newest understanding of the Warburg effect on the cellular metabolism and diffusion of the nutrients in the tissue has been taken into consideration. The numerical results are compared with the in vivo experimental data by fitting the tumor cell doubling time/tumor cell growth rate under different thermal conditions. Both the tumor growth curve and corresponding average glucose concentration have been predicted. The numerical results have quantitatively illustrated the controlling effect on tumor growth under hyperthermia condition in the initial stage.

1. Introduction

Cancer is the second major cause of human death in the world, and its mortality rate is growing every year []. Treatments include surgery, radiotherapy, chemotherapy, and gene therapy. Thermal therapy has also been intended to locally destroy tumor cells or enhance the body defense against tumor cells. However, recurrent rate of malignant tumor is still high [], and the efficacy of the existing therapeutic means is yet to be improved. A new concept has been proposed recently that the primary tumor suppresses distal foci [, ]. This sheds new light on tumor treatment. Keeping the primary tumor in situ but restricting its size might enable the host to impede the development of distal foci and progression of metastasis.

For tumor growth, there are three distinct stages: avascular, vascular, and metastatic/invade stage. Mathematical models have been developed to perform parametric studies on factors influencing tumor growth or to evaluate the outcome of tumor treatment modalities [, ]. Model-based numerical studies would enable one to extrapolate more spatial and temporal information from the experimental findings and to make predictions []. Laird [] first found that the tumor growth data-fitted Gompertz function could be used to simulate the entire growth curve, which was defined as an empirical model. Hu and Ruan [] studied the suppression effect of immunity system on tumor growth by merging the Gompertz function into a cellular automaton model. Other mathematical models based on certain biological assumptions have also been attempted to predict tumor growth curve using fundamental physics, such as mass/energy conservation. Greenspan [] introduced surface tension into the diffusion model developed by Burton []. Tumor growth/inhibition factors [, ], cell adhesions [, ], angiogenesis [, ] and invasion [, ] were further considered to describe tumor growth at different stages.

Models focusing on the avascular stage [] have been well studied and could be easily applied to in vitro experiment. Ward and King [, ] and Casciari et al. [] proposed a continuum mathematical model focusing on how nutrients' concentration affects tumor growth. These models typically consist of reaction-diffusion equations. Forbes [] further incorporated energy metabolism (ATP production rate) into the growth model. However, most of these models have not taken the Warburg effect into consideration, which fundamentally differentiates the tumor cell metabolism from that of the normal cells.

Read more>>>>>>

References:

1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer Journal for Clinicians. 2009;59(4):225–249. [PubMed]
2. Abe O, Abe R, Enomoto K, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;366(9503):2087–2106. [PubMed]
3. Fisher B, Gunduz N, Saffer EA. Influence of the interval between primary tumor removal and chemotherapy on kinetics and growth of metastases. Cancer Research. 1983;43(4):1488–1492. [PubMed]
4. Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J, O’Reilly MS. Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Research. 2001;61(5):2207–2211. [PubMed]
5. Komarova NL. Mathematical modeling of tumorigenesis: mission possible. Current Opinion in Oncology. 2005;17(1):39–43. [PubMed]
6. Secomb TW, Beard DA, Frisbee JC, Smith NP, Pries AR. The role of theoretical modeling in microcirculation research. Microcirculation. 2008;15(8):693–698. [PMC free article] [PubMed]
7. Roose T, Chapman SJ, Maini PK. Mathematical models of avascular tumor growth. SIAM Review. 2007;49(2):179–208.
8. Laird AK. Dynamics of tumor growth. British journal of cancer. 1964;13:490–502. [PMC free article] [PubMed]
9. Hu RC, Ruan XG. A simple cellular automaton model for tumor-immunity system. Proceedings of the IEEE International Conference on Robotics, Intelligent Systems and Signal Processing; 2003; pp. 1031–1035.
10. Greenspan HP. Models for growth of a solid tumor by diffusion. Applied Mathematics. 1972;51(4):317–340.
11. Burton AC. Rate of growth of solid tumours as a problem of diffusion. Growth, Development and Aging. 1966;30(2):157–176. [PubMed]
12. Kim Y, Friedman A. Interaction of tumor with its micro-environment: a mathematical model. Bulletin of Mathematical Biology. 2010;72(5):1029–1068. [PubMed]
13. Byrne HM, Chaplain MA. Growth of nonnecrotic tumors in the presence and absence of inhibitors. Mathematical Biosciences. 1995;130(2):151–181. [PubMed]
14. Anderson ARA. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. Mathematical Medicine and Biology. 2005;22(2):163–186. [PubMed]
15. Preziosi L, Tosin A. Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. Journal of Mathematical Biology. 2009;58(4-5):625–656. [PubMed]
16. Anderson ARA, Chaplain MAJ. Continuous and discrete mathematical models of tumor-induced angiogenesis. Bulletin of Mathematical Biology. 1998;60(5):857–899. [PubMed]
17. Macklin P, McDougall S, Anderson ARA, Chaplain MAJ, Cristini V, Lowengrub J. Multiscale modelling and nonlinear simulation of vascular tumour growth. Journal of Mathematical Biology. 2009;58(4-5):765–798. [PMC free article] [PubMed]
18. Adam JA. Mathematical models of prevascular spheroid development and catastrophe-theoretic description of rapid metastatic growth/tumor remission. Invasion and Metastasis. 1996;16(4-5):247–267. [PubMed]
19. Stein AM, Demuth T, Mobley D, Berens M, Sander LM. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophysical Journal. 2007;92(1):356–365. [PMC free article] [PubMed]
20. Grecu D, Carstea AS, Grecu AT, et al. Mathematical modelling of tumor growth. Romanian Reports in Physics. 2007;59(2):447–455.
21. Jiang Y, Pjesivac-Grbovic J, Cantrell C, Freyer JP. A multiscale model for avascular tumor growth. Biophysical Journal. 2005;89(6):3884–3894. [PMC free article] [PubMed]
22. Sherratt JA, Chaplain MAJ. A new mathematical model for avascular tumour growth. Journal of Mathematical Biology. 2001;43(4):291–312. [PubMed]
23. Ward JP, King JR. Mathematical modelling of avascular-tumour growth. IMA Journal of Mathemathics Applied in Medicine and Biology. 1997;14(1):39–69. [PubMed]
24. Ward JP, King JR. Mathematical modelling of avascular-tumour growth II: modelling growth saturation. IMA Journal of Mathemathics Applied in Medicine and Biology. 1999;16(2):171–211. [PubMed]
25. Casciari JJ, Sotirchos SV, Sutherland RM. Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumour spheroids. Cell Proliferation. 1992;25(1):1–22. [PubMed]
26. Chaplain MAJ, Sleeman BD. A mathematical model for the growth and classification of a solid tumor: a new approach via nonlinear elasticity theory using strain-energy functions. Mathematical Biosciences. 1992;111(2):169–215. [PubMed]
27. Chaplain MAJ. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modelling of the stages of tumour development. Mathematical and Computer Modelling. 1996;23(6):47–87.
28. Casciari JJ, Sotirchos SV, Sutherland RM. Glucose diffusivity in multicellular tumor spheroids. Cancer Research. 1988;48(14):3905–3909. [PubMed]
29. Venkatasubramanian R, Henson MA, Forbes NS. Incorporating energy metabolism into a growth model of multicellular tumor spheroids. Journal of Theoretical Biology. 2006;242(2):440–453. [PubMed]
30. Waruburg O. On the origin of cancer cells. Science. 1956;123:309–314. [PubMed]
31. Waruburg O. The Prime Cause and Prevention of Cancer. Würzburg, Germany: Konrad Triltsch; 1969.
32. Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033. [PMC free article] [PubMed]
33. Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends in Biochemical Sciences. 1999;24(2):68–72. [PubMed]
34. Postovit LM, Adams MA, Lash GE, Heaton JP, Graham CH. Oxygen-mediated regulation of tumor cell invasiveness—involvement of a nitric oxide signaling pathway. Journal of Biological Chemistry. 2002;277(38):35730–35737. [PubMed]
35. Bussink J, Kaanders JHAM, Van Der Kogel AJ. Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiotherapy and Oncology. 2003;67(1):3–15. [PubMed]
36. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Reviews Cancer. 2004;4(11):891–899. [PubMed]
37. Brahimi-Horn MC, Pouysségur J. Oxygen, a source of life and stress. FEBS Letters. 2007;581(19):3582–3591. [PubMed]
38. Hsu PP, Sabatini DM. Cancer cell metabolism: warburg and beyond. Cell. 2008;134(5):703–707. [PubMed]
39. Peskin BS, Carter MJ. Chronic cellular hypoxia as the prime cause of cancer: what is the de-oxygenating role of adulterated and improper ratios of polyunsaturated fatty acids when incorporated into cell membranes? Medical Hypotheses. 2008;70(2):298–304. [PubMed]
40. Moreno-Sánchez R, Rodríguez-Enríquez S, Marín-Hernández A, Saavedra E. Energy metabolism in tumor cells. FEBS Journal. 2007;274(6):1393–1418. [PubMed]
41. DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metabolism. 2008;7(1):11–20. [PubMed]
42. Chen Y, Cairns R, Papandreou I, Koong A, Denko NC. Oxygen consumption can regulate the growth of tumors, a new perspective on the Warburg effect. PLoS One. 2009;4(9)e7033 [PMC free article] [PubMed]
43. Stauffer PR, Goldberg SN. Introduction: thermal ablation therapy. International Journal of Hyperthermia. 2004;20(7):671–677. [PubMed]
44. Chicheł A, Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia-Description of a method and a review of clinical applications. Reports of Practical Oncology and Radiotherapy. 2007;12(5):267–275.
45. Oleson JR, Dewhirst MW, Harrelson JM, Leopold KA, Samulski TV, Tso CY. Tumor temperature distributions predict hyperthermia effect. International Journal of Radiation Oncology Biology Physics. 1989;16(3):559–570. [PubMed]
46. Lepock JR. Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. International Journal of Hyperthermia. 2003;19(3):252–266. [PubMed]
47. Na M, Chao C, Ai-li Z, et al. Thermal environmental effect on breast tumor growth. Journal of Shanghai Jiaotong University. 2009;27(5):501–505.
48. Roti JLR, Kampinga HH, Malyapa RS, et al. Nuclear matrix as a target for hyperthermic killing of cancer cells. Cell Stress and Chaperones. 1998;3(4):245–255. [PMC free article] [PubMed]
49. Dong J, Liu P, Xu LX. Immunologic response induced by synergistic effect of alternating cooling and heating of breast cancer. International Journal of Hyperthermia. 2009;25(1):25–33. [PubMed]
50. Song CW. Effect of local hyperthermia on blood flow and microenvironment: a review. Cancer Research. 1984;44(10, supplement):S4721–S4730. [PubMed]
51. Song CW, Lokshina A, Rhee JG. Implication of blood flow in hyperthermic treatment of tumors. IEEE Transactions on Biomedical Engineering. 1984;31(1):9–16. [PubMed]
52. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release. 2000;65(1-2):271–284. [PubMed]
53. Connolly DT, Heuvelman DM, Nelson R, et al. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. Journal of Clinical Investigation. 1989;84(5):1470–1478. [PMC free article] [PubMed]
54. Shen Y, Zhang A, Xu LX. Mechanical study on tumor microvessel damage induced by alternate cooling and heating treatment. Proceedings of the 11th ASME Summer Bioengineering Conference (SBC'09); June 2009; pp. 593–594.
55. Freyer JP, Sutherland RM. Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Research. 1986;46(7):3504–3512. [PubMed]

Gerelateerde artikelen
 

Gerelateerde artikelen

Hyperthermie effect toont >> Hyperthermie: Vrouw met uitgezaaide >> Hyperthermie: chemo verpakt >> Hyperthermie: TTF - 100A apparaat >> Borstkanker: hyperthermie: >> Borstkanker: Hyperthermie >> Borstkanker: Nieuwe techniek >> Borstkanker: Hyperthermie >> Vrouw met uitgezaaide borstkanker >> Borstkanker:: Hyperthermie >>