-
- Aibar S.
- González-Blas C.B.
- Moerman T.
- Huynh-Thu V.A.
- Imrichova H.
- Hulselmans G.
- Rambow F.
- Marine J.-C.
- Geurts P.
- Aerts J.
- et al.
SCENIC: single-cell regulatory network inference and clustering.
Nat. Methods. 2017; 14: 1083-1086
-
- Amsen D.
- van Gisbergen K.
- Hombrink P.
- van Lier R.A.W.
Tissue-resident memory T cells at the center of immunity to solid tumors.
Nat. Immunol. 2018; 19: 538-546
-
- Ashburner M.
- Ball C.A.
- Blake J.A.
- Botstein D.
- Butler H.
- Cherry J.M.
- Davis A.P.
- Dolinski K.
- Dwight S.S.
- Eppig J.T.
- et al.
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Nat. Genet. 2000; 25: 25-29
-
Spatstat: an R package for analyzing spatial point patterns.
J. Stat. Softw. 2005; 12: 1-42
-
Modelling spatial point patterns in R.
in: Baddeley A. Gregori P. Mateu J. Stoica R. Stoyan D. Case Studies in Spatial Point Process Modeling. Springer New York, 2006: 23-74
-
- Baumeister S.H.
- Freeman G.J.
- Dranoff G.
- Sharpe A.H.
Coinhibitory pathways in immunotherapy for cancer.
Annu. Rev. Immunol. 2016; 34: 539-573
-
- Blank C.U.
- Haining W.N.
- Held W.
- Hogan P.G.
- Kallies A.
- Lugli E.
- Lynn R.C.
- Philip M.
- Rao A.
- Restifo N.P.
- et al.
Defining 'T cell exhaustion'.
Nat. Rev. Immunol. 2019; 19: 665-674
-
- Blondel V.D.
- Guillaume J.-L.
- Lambiotte R.
- Lefebvre E.
Fast unfolding of communities in large networks.
J. Stat. Mech. Theor. Exp. 2008; 2008: P10008
-
- Bourdely P.
- Anselmi G.
- Vaivode K.
- Ramos R.N.
- Missolo-Koussou Y.
- Hidalgo S.
- Tosselo J.
- Nunez N.
- Richer W.
- Vincent-Salomon A.
- et al.
Transcriptional and functional analysis of CD1c(+) human dendritic cells identifies a CD163(+) subset priming CD8(+)CD103(+) T cells.
Immunity. 2020; 53: 335-352.e8
-
- Cao Y.
- Trillo-Tinoco J.
- Sierra R.A.
- Anadon C.
- Dai W.
- Mohamed E.
- Cen L.
- Costich T.L.
- Magliocco A.
- Marchion D.
- et al.
ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression.
Nat. Commun. 2019; 10: 1280
-
- Conway J.R.
- Lex A.
- Gehlenborg N.
UpSetR: an R package for the visualization of intersecting sets and their properties.
Bioinformatics. 2017; 33: 2938-2940
-
- Corgnac S.
- Boutet M.
- Kfoury M.
- Naltet C.
- Mami-Chouaib F.
The emerging role of CD8(+) tissue resident memory T (TRM) cells in antitumor immunity: a unique functional contribution of the CD103 integrin.
Front. Immunol. 2018; 9: 1904
-
- Curiel T.J.
- Wei S.
- Dong H.
- Alvarez X.
- Cheng P.
- Mottram P.
- Krzysiek R.
- Knutson K.L.
- Daniel B.
- Zimmermann M.C.
- et al.
Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity.
Nat. Med. 2003; 9: 562-567
-
- Dobin A.
- Davis C.A.
- Schlesinger F.
- Drenkow J.
- Zaleski C.
- Jha S.
- Batut P.
- Chaisson M.
- Gingeras T.R.
STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013; 29: 15-21
-
- Dumauthioz N.
- Labiano S.
- Romero P.
Tumor resident memory T cells: new players in immune surveillance and therapy.
Front. Immunol. 2018; 9: 2076
-
- Duraiswamy J.
- Turrini R.
- Minasyan A.
- Barras D.
- Crespo I.
- Grimm A.J.
- Casado J.
- Genolet R.
- Benedetti F.
- Wicky A.
- et al.
Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation.
Cancer Cell. 2021; 39: 1623-1642.e20
-
- FitzPatrick M.E.B.
- Provine N.M.
- Garner L.C.
- Powell K.
- Amini A.
- Irwin S.L.
- Ferry H.
- Ambrose T.
- Friend P.
- Vrakas G.
- et al.
Human intestinal tissue-resident memory T cells comprise transcriptionally and functionally distinct subsets.
Cell Rep. 2021; 34: 108661
-
- Ganesan A.P.
- Clarke J.
- Wood O.
- Garrido-Martin E.M.
- Chee S.J.
- Mellows T.
- Samaniego-Castruita D.
- Singh D.
- Seumois G.
- Alzetani A.
- et al.
Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer.
Nat. Immunol. 2017; 18: 940-950
-
- Godec J.
- Tan Y.
- Liberzon A.
- Tamayo P.
- Bhattacharya S.
- Butte A.J.
- Mesirov J.P.
- Haining W.N.
Compendium of immune signatures identifies conserved and species-specific biology in response to inflammation.
Immunity. 2016; 44: 194-206
-
- Granja J.M.
- Klemm S.
- McGinnis L.M.
- Kathiria A.S.
- Mezger A.
- Corces M.R.
- Parks B.
- Gars E.
- Liedtke M.
- Zheng G.X.Y.
- et al.
Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia.
Nat. Biotechnol. 2019; 37: 1458-1465
-
- Gu Z.
- Eils R.
- Schlesner M.
Complex heatmaps reveal patterns and correlations in multidimensional genomic data.
Bioinformatics. 2016; 32: 2847-2849
-
- Gueguen P.
- Metoikidou C.
- Dupic T.
- Lawand M.
- Goudot C.
- Baulande S.
- Lameiras S.
- Lantz O.
- Girard N.
- Seguin-Givelet A.
- et al.
Contribution of resident and circulating precursors to tumor-infiltrating CD8(+) T cell populations in lung cancer.
Sci. Immunol. 2021; 6: eabd5778
-
The source within - intratumoural stem-like T cells give rise to differentiated T cells.
Nat. Rev. Cancer. 2020; 20: 140
-
- Hartana C.A.
- Ahlen Bergman E.
- Broome A.
- Berglund S.
- Johansson M.
- Alamdari F.
- Jakubczyk T.
- Huge Y.
- Aljabery F.
- Palmqvist K.
- et al.
Tissue-resident memory T cells are epigenetically cytotoxic with signs of exhaustion in human urinary bladder cancer.
Clin. Exp. Immunol. 2018; 194: 39-53
-
- Hombrink P.
- Helbig C.
- Backer R.A.
- Piet B.
- Oja A.E.
- Stark R.
- Brasser G.
- Jongejan A.
- Jonkers R.E.
- Nota B.
- et al.
Erratum: programs for the persistence, vigilance and control of human CD8(+) lung-resident memory T cells.
Nat. Immunol. 2017; 18: 246
-
- Hudson W.H.
- Gensheimer J.
- Hashimoto M.
- Wieland A.
- Valanparambil R.M.
- Li P.
- Lin J.X.
- Konieczny B.T.
- Im S.J.
- Freeman G.J.
- et al.
Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1(+) stem-like CD8(+) T cells during chronic infection.
Immunity. 2019; 51: 1043-1058.e4
-
Matplotlib: a 2D graphics environment..
Comput. Sci. Eng. 2007; 9: 90-95
-
- Jadhav R.R.
- Im S.J.
- Hu B.
- Hashimoto M.
- Li P.
- Lin J.X.
- Leonard W.J.
- Greenleaf W.J.
- Ahmed R.
- Goronzy J.J.
Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade.
Proc. Natl. Acad. Sci. U S A. 2019; 116: 14113-14118
-
- Jansen C.S.
- Prokhnevska N.
- Master V.A.
- Sanda M.G.
- Carlisle J.W.
- Bilen M.A.
- Cardenas M.
- Wilkinson S.
- Lake R.
- Sowalsky A.G.
- et al.
An intra-tumoral niche maintains and differentiates stem-like CD8 T cells.
Nature. 2019; 576: 465-470
-
What is trogocytosis and what is its purpose?.
Nat. Immunol. 2003; 4: 815
-
- Khan O.
- Giles J.R.
- McDonald S.
- Manne S.
- Ngiow S.F.
- Patel K.P.
- Werner M.T.
- Huang A.C.
- Alexander K.A.
- Wu J.E.
- et al.
TOX transcriptionally and epigenetically programs CD8(+) T cell exhaustion.
Nature. 2019; 571: 211-218
-
The art of using t-SNE for single-cell transcriptomics.
Nat. Commun. 2019; 10: 5416
-
- Korotkevich G.
- Sukhov V.
- Budin N.
- Shpak B.
- Artyomov M.N.
- Sergushichev A.
Fast gene set enrichment analysis.
bioRxiv. 2021; ()https://doi.org/10.1101/060012
-
- Korsunsky I.
- Millard N.
- Fan J.
- Slowikowski K.
- Zhang F.
- Wei K.
- Baglaenko Y.
- Brenner M.
- Loh P.-r.
- Raychaudhuri S.
Fast, sensitive and accurate integration of single-cell data with Harmony.
Nat. Methods. 2019; 16: 1289-1296
-
- Kumar B.V.
- Ma W.
- Miron M.
- Granot T.
- Guyer R.S.
- Carpenter D.J.
- Senda T.
- Sun X.
- Ho S.H.
- Lerner H.
- et al.
Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites.
Cell Rep. 2017; 20: 2921-2934
-
- Liao Y.
- Smyth G.K.
- Shi W.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features.
Bioinformatics. 2013; 30: 923-930
-
- Liberzon A.
- Subramanian A.
- Pinchback R.
- Thorvaldsdóttir H.
- Tamayo P.
- Mesirov J.P.
Molecular signatures database (MSigDB) 3.0.
Bioinformatics. 2011; 27: 1739-1740
-
- Liberzon A.
- Birger C.
- Thorvaldsdóttir H.
- Ghandi M.
- Mesirov J.P.
- Tamayo P.
The Molecular Signatures Database (MSigDB) hallmark gene set collection.
Cell Syst. 2015; 1: 417-425
-
- Mackay L.K.
- Rahimpour A.
- Ma J.Z.
- Collins N.
- Stock A.T.
- Hafon M.L.
- Vega-Ramos J.
- Lauzurica P.
- Mueller S.N.
- Stefanovic T.
- et al.
The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin.
Nat. Immunol. 2013; 14: 1294-1301
-
- Mackay L.K.
- Minnich M.
- Kragten N.A.
- Liao Y.
- Nota B.
- Seillet C.
- Zaid A.
- Man K.
- Preston S.
- Freestone D.
- et al.
Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes.
Science. 2016; 352: 459-463
-
- Malik B.T.
- Byrne K.T.
- Vella J.L.
- Zhang P.
- Shabaneh T.B.
- Steinberg S.M.
- Molodtsov A.K.
- Bowers J.S.
- Angeles C.V.
- Paulos C.M.
- et al.
Resident memory T cells in the skin mediate durable immunity to melanoma.
Sci. Immunol. 2017; 2: eaam6346
-
- Mallaun M.
- Naeher D.
- Daniels M.A.
- Yachi P.P.
- Hausmann B.
- Luescher I.F.
- Gascoigne N.R.
- Palmer E.
The T cell receptor's alpha-chain connecting peptide motif promotes close approximation of the CD8 coreceptor allowing efficient signal initiation.
J. Immunol. 2008; 180: 8211-8221
-
Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet J. 2011; 17: 3
-
Tissue-resident T cells and other resident leukocytes.
Annu. Rev. Immunol. 2019; 37: 521-546
-
- Menares E.
- Galvez-Cancino F.
- Caceres-Morgado P.
- Ghorani E.
- Lopez E.
- Diaz X.
- Saavedra-Almarza J.
- Figueroa D.A.
- Roa E.
- Quezada S.A.
- Lladser A.
Tissue-resident memory CD8(+) T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells.
Nat. Commun. 2019; 10: 4401
-
- Milner J.J.
- Toma C.
- Yu B.
- Zhang K.
- Omilusik K.
- Phan A.T.
- Wang D.
- Getzler A.J.
- Nguyen T.
- Crotty S.
- et al.
Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours.
Nature. 2017; 552: 253-257
-
Tissue resident CD8 memory T cell responses in cancer and autoimmunity.
Front. Immunol. 2018; 9: 2810
-
- Mucha P.J.
- Richardson T.
- Macon K.
- Porter M.A.
- Onnela J.P.
Community structure in time-dependent, multiscale, and multiplex networks.
Science. 2010; 328: 876-878
-
Tissue-resident memory T cells: local specialists in immune defence.
Nat. Rev. Immunol. 2016; 16: 79-89
-
- Oja A.E.
- Piet B.
- Helbig C.
- Stark R.
- van der Zwan D.
- Blaauwgeers H.
- Remmerswaal E.B.M.
- Amsen D.
- Jonkers R.E.
- Moerland P.D.
- et al.
Trigger-happy resident memory CD4(+) T cells inhabit the human lungs.
Mucosal Immunol. 2018; 11: 654-667
-
- Pan Y.
- Tian T.
- Park C.O.
- Lofftus S.Y.
- Mei S.
- Liu X.
- Luo C.
- O'Malley J.T.
- Gehad A.
- Teague J.E.
- et al.
Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism.
Nature. 2017; 543: 252-256
-
- Parga-Vidal L.
- Behr F.M.
- Kragten N.A.M.
- Nota B.
- Wesselink T.H.
- Kavazovic I.
- Covill L.E.
- Schuller M.B.P.
- Bryceson Y.T.
- Wensveen F.M.
- et al.
Hobit identifies tissue-resident memory T cell precursors that are regulated by Eomes.
Sci. Immunol. 2021; 6: eabg3533
-
- Park S.L.
- Gebhardt T.
- Mackay L.K.
Tissue-resident memory T cells in cancer immunosurveillance.
Trends Immunol. 2019; 40: 735-747
-
- Pauken K.E.
- Sammons M.A.
- Odorizzi P.M.
- Manne S.
- Godec J.
- Khan O.
- Drake A.M.
- Chen Z.
- Sen D.R.
- Kurachi M.
- et al.
Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade.
Science. 2016; 354: 1160-1165
-
- Pedregosa F.
- Varoquaux G.
- Gramfort A.
- Michel V.
- Thirion B.
- Grisel O.
- Blondel M.
- Prettenhofer P.
- Weiss R.
- Dubourg V.
- et al.
Scikit-learn: machine learning in Python..
J. Mach. Learn. Res. 2011; 12: 2825-2830
-
- Pliner H.A.
- Packer J.S.
- McFaline-Figueroa J.L.
- Cusanovich D.A.
- Daza R.M.
- Aghamirzaie D.
- Srivatsan S.
- Qiu X.
- Jackson D.
- Minkina A.
- et al.
Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data.
Mol. Cell. 2018; 71: 858-871.e8
-
R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, 2019
-
Methods for diversity and overlap analysis in T-cell receptor populations.
J. Math. Biol. 2013; 67: 1339-1368
-
- Rutkowski M.R.
- Stephen T.L.
- Svoronos N.
- Allegrezza M.J.
- Tesone A.J.
- Perales-Puchalt A.
- Brencicova E.
- Escovar-Fadul X.
- Nguyen J.M.
- Cadungog M.G.
- et al.
Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation.
Cancer Cell. 2015; 27: 27-40
-
- Savas P.
- Virassamy B.
- Ye C.
- Salim A.
- Mintoff C.P.
- Caramia F.
- Salgado R.
- Byrne D.J.
- Teo Z.L.
- Dushyanthen S.
- et al.
Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis.
Nat. Med. 2018; 24: 986-993
-
- Scarlett U.K.
- Rutkowski M.R.
- Rauwerdink A.M.
- Fields J.
- Escovar-Fadul X.
- Baird J.
- Cubillos-Ruiz J.R.
- Jacobs A.C.
- Gonzalez J.L.
- Weaver J.
- et al.
Ovarian cancer progression is controlled by phenotypic changes in dendritic cells.
J. Exp. Med. 2012; 209: 495-506
-
- Schurch C.M.
- Bhate S.S.
- Barlow G.L.
- Phillips D.J.
- Noti L.
- Zlobec I.
- Chu P.
- Black S.
- Demeter J.
- McIlwain D.R.
- et al.
Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive.
Front. Cell. 2020; 182: 1341-1359.e19
-
- Siddiqui I.
- Schaeuble K.
- Chennupati V.
- Fuertes Marraco S.A.
- Calderon-Copete S.
- Pais Ferreira D.
- Carmona S.J.
- Scarpellino L.
- Gfeller D.
- Pradervand S.
- et al.
Intratumoral tcf1(+)PD-1(+)CD8(+) T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy.
Immunity. 2019; 50: 195-211.e10
-
- Song M.
- Sandoval T.A.
- Chae C.S.
- Chopra S.
- Tan C.
- Rutkowski M.R.
- Raundhal M.
- Chaurio R.A.
- Payne K.K.
- Konrad C.
- et al.
IRE1alpha-XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity.
Nature. 2018; 562: 423-428
-
- Stuart T.
- Butler A.
- Hoffman P.
- Hafemeister C.
- Papalexi E.
- Mauck 3rd, W.M.
- Hao Y.
- Stoeckius M.
- Smibert P.
- Satija R.
Comprehensive integration of single-cell data.
Cell. 2019; 177: 1888-1902.e21
-
- Stuart T.
- Srivastava A.
- Lareau C.
- Satija R.
Multimodal single-cell chromatin analysis with Signac.
bioRxiv. 2020; ()https://doi.org/10.1101/2020.11.09.373613
-
- Subramanian A.
- Tamayo P.
- Mootha V.K.
- Mukherjee S.
- Ebert B.L.
- Gillette M.A.
- Paulovich A.
- Pomeroy S.L.
- Golub T.R.
- Lander E.S.
- Mesirov J.P.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. U S A. 2005; 102: 15545-15550
-
- Szabo P.A.
- Levitin H.M.
- Miron M.
- Snyder M.E.
- Senda T.
- Yuan J.
- Cheng Y.L.
- Bush E.C.
- Dogra P.
- Thapa P.
- et al.
Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease.
Nat. Commun. 2019; 10: 4706
-
TFBSTools: an R/bioconductor package for transcription factor binding site analysis.
Bioinformatics. 2016; 32: 1555-1556
-
- Tirosh I.
- Izar B.
- Prakadan S.M.
- Wadsworth 2nd, M.H.
- Treacy D.
- Trombetta J.J.
- Rotem A.
- Rodman C.
- Lian C.
- Murphy G.
- et al.
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.
Science. 2016; 352: 189-196
-
- Traag V.A.
- Waltman L.
- van Eck N.J.
From Louvain to Leiden: guaranteeing well-connected communities.
Sci. Rep. 2019; 9: 5233
-
Fossil: palaeoecological and palaeogeographical analysis tools.
Palaeontol. Electron. 2011; 14: 16
-
- Virtanen P.
- Gommers R.
- Oliphant T.E.
- Haberland M.
- Reddy T.
- Cournapeau D.
- Burovski E.
- Peterson P.
- Weckesser W.
- Bright J.
- et al.
SciPy 1.0: fundamental algorithms for scientific computing in Python..
Nat. Methods. 2020; 17: 261-272
-
- Wakim L.M.
- Woodward-Davis A.
- Liu R.
- Hu Y.
- Villadangos J.
- Smyth G.
- Bevan M.J.
The molecular signature of tissue resident memory CD8 T cells isolated from the brain.
J. Immunol. 2012; 189: 3462-3471
-
- Waskom M.
- Botvinnik O.
- O'Kane D.
- Hobson P.
- Lukauskas S.
- Gemperline D.C.
- Augspurger T.
- Halchenko Y.
- Cole J.B.
- Warmenhoven J.
Mwaskom/Seaborn: V0. 8.1 (September 2017)..
Zenodo. 2017;
-
- Webb J.R.
- Milne K.
- Watson P.
- Deleeuw R.J.
- Nelson B.H.
Tumor-infiltrating lymphocytes expressing the tissue resident memory marker CD103 are associated with increased survival in high-grade serous ovarian cancer.
Clin. Cancer Res. 2014; 20: 434-444
-
- Wolf F.A.
- Angerer P.
- Theis F.J.
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018; 19: 15
-
- Wolf F.A.
- Hamey F.K.
- Plass M.
- Solana J.
- Dahlin J.S.
- Göttgens B.
- Rajewsky N.
- Simon L.
- Theis F.J.
PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells.
Genome Biol. 2019; 20: 59
-
- Workel H.H.
- Lubbers J.M.
- Arnold R.
- Prins T.M.
- van der Vlies P.
- de Lange K.
- Bosse T.
- van Gool I.C.
- Eggink F.A.
- Wouters M.C.A.
- et al.
A transcriptionally distinct CXCL13(+)CD103(+)CD8(+) T-cell population is associated with B-cell recruitment and neoantigen load in human cancer.
Cancer Immunol. Res. 2019; 7: 784-796
-
- Wu J.
- Madi A.
- Mieg A.
- Hotz-Wagenblatt A.
- Weisshaar N.
- Ma S.
- Mohr K.
- Schlimbach T.
- Hering M.
- Borgers H.
- Cui G.
T cell factor 1 suppresses CD103+ lung tissue-resident memory T cell development.
Cell Rep. 2020; 31: 107484
-
- Xia H.
- Wang W.
- Crespo J.
- Kryczek I.
- Li W.
- Wei S.
- Bian Z.
- Maj T.
- He M.
- Liu R.J.
- et al.
Suppression of FIP200 and autophagy by tumor-derived lactate promotes naive T cell apoptosis and affects tumor immunity.
Sci. Immunol. 2017; 2: eaan4631
-
- Zhu H.
- Bengsch F.
- Svoronos N.
- Rutkowski M.R.
- Bitler B.G.
- Allegrezza M.J.
- Yokoyama Y.
- Kossenkov A.V.
- Bradner J.E.
- Conejo-Garcia J.R.
- Zhang R.
BET bromodomain inhibition promotes anti-tumor immunity by suppressing PD-L1 expression.
Cell Rep. 2016; 16: 2829-2837
-
- Zsiros E.
- Duttagupta P.
- Dangaj D.
- Li H.
- Frank R.
- Garrabrant T.
- Hagemann I.S.
- Levine B.L.
- June C.H.
- Zhang L.
- et al.
The ovarian cancer chemokine landscape is conducive to homing of vaccine-primed and CD3/CD28-costimulated T cells prepared for adoptive therapy.
Clin. Cancer Res. 2015; 21: 2840-2850
Plaats een reactie ...
Reageer op "Onderzoekers ontdekken waarom immuuntherapie bij eierstokkanker soms wel en soms niet werkt. Aangeboren immuniteit speelt grotere rol dan verworven immuniteit bij eierstokkanker en immuuntherapie."