Zie ook in gerelateerde artikelen.

Raadpleeg ook literatuurlijst niet-toxische middelen  behandelingen specifiek bij eierstokkanker van arts-bioloog drs. Engelbert Valstar

29 juli 2021: Bron:  2021; 13: 17588359211008399. Published online 2021 Apr 22. 

In een recente overzichtstudie (april 2021) geven onderzoekers een historisch overzicht van verschillende vormen van immuuntherapie met de nadruk op gepersonaliseerde (CAR-) T-celtherapiën voor de behandeling van eierstokkanker in alle stadia, met ook aandacht voor dendritische celtherapie.

In onderstaande grafiek wordt in een schema weergegeven van wat er in de studie allemaal behandeld wordt en hoe met name gepersonaliseerde vormen van immuuntherapie worden gegeven:

An external file that holds a picture, illustration, etc.
Object name is 10.1177_17588359211008399-fig1.jpg

Figure 1.

General schematic for using DC vaccines and TIL-ACT for patients with overian cancer (OC).

A schematic is shown which describes the key steps in preparation of TIL-ACT for OC cancer therapy. The resected specimen and blood draw, generally via a leukapheresis procedure are taken from the patient. The resected specimen is divided into multiple tumor fragments that are individually grown in high-dose 6000 UI IL-2 for 7–14 days (pre-REP phase). For the ‘unselected’ TIL therapy (dashed line) the individual cultures are then moved to a rapid-expansion protocol (REP) in the presence of irradiated feeder lymphocytes, anti-CD3, and IL-2 before re-infusion into patients. The NeoAg-TIL therapy entails the sequencing of exomic or whole-genome DNA from tumor cells and healthy cells to call tumor-specific mutations. Corresponding minigenes or peptides encoding each mutated amino acid are synthesized and expressed in, or pulsed into, a patient’s autologous antigen-presenting cells (APCs) for presentation in the context of a patient’s HLA. The identification of individual mutations responsible for tumor recognition is possible with analysis of the T-cell activation marker, such as CD137 (CD8+ T cells), when they recognize their cognate target antigen.

In hun conclusie schrijven de onderzoekers wel dat er nog weinig echt goede studies hebben bewezen goede resultaten te geven voor immuuntherapie bij gevorderde eierstokkanker. Maar ook hier speelt het probleem dat immuuntherapie in heel veel studies pas wordt ingezet bij patiënten met vergevorderde kanker. Er zijn weinig studies die onderzoek doen naar de effectiviteit bij patiënten met weinig of geen tumorload bij de start van de immuuntherapie. 

Het volledige studierapport is gratis in te zien of te downloaden. Klik op de titel.

 2021; 13: 17588359211008399.
Published online 2021 Apr 22. doi: 10.1177/17588359211008399
PMCID: PMC8072818
PMID: 33995591


Abstract

Epithelial ovarian cancer (EOC) is the most important cause of gynecological cancer-related mortality. Despite improvements in medical therapies, particularly with the incorporation of drugs targeting homologous recombination deficiency, EOC survival rates remain low. Adoptive cell therapy (ACT) is a personalized form of immunotherapy in which autologous lymphocytes are expanded, manipulated ex vivo and re-infused into patients to mediate cancer rejection. This highly promising novel approach with curative potential encompasses multiple strategies, including the adoptive transfer of tumor-infiltrating lymphocytes, natural killer cells, or engineered immune components such as chimeric antigen receptor (CAR) constructs and engineered T-cell receptors. Technical advances in genomics and immuno-engineering have made possible neoantigen-based ACT strategies, as well as CAR-T cells with increased cell persistence and intratumoral trafficking, which have the potential to broaden the opportunity for patients with EOC. Furthermore, dendritic cell-based immunotherapies have been tested in patients with EOC with modest but encouraging results, while the combination of DC-based vaccination as a priming modality for other cancer therapies has shown encouraging results. In this manuscript, we provide a clinically oriented historical overview of various forms of cell therapies for the treatment of EOC, with an emphasis on T-cell therapy.

Conclusions

Despite high rates of response to initial treatment, EOC has a high recurrence rate and has yet to show a significant response to available immunotherapeutic agents. Cell therapies have transformed the treatment paradigm for patients with hematologic malignancies; however, the translation of this success to the unmet need of EOC patients is ongoing. Cell-based therapies in EOC have been explored in early-phase studies from a few highly specialized centers, with modest clinical results, raising concerns for the future development of these potentially curative therapeutic approaches.

Previous experience with ACT-TIL has shown the feasibility of this complex approach in the setting with EOC. The incorporation of new technologies such as DNA sequencing, DNA synthesis, and genetic screening tools to identify individual patient-specific NeoAgs with high sensitivity, specificity, and at scale, might broaden the application of this type of treatment to a broader group of EOC patients in coming years. Vaccination strategies have, to date, mainly encompassed shared TAAs and have been met with limited success.

A better understanding of the T-cell biology (T-cell exhaustion) driven by the peculiar EOC TME will be a crucial step in developing ACT for these patients. It will drive advances in T-cell engineering and clinical trial design with combination therapies. The immunosuppressive TME needs to be tackled to improve CAR-T and TIL-ACT products’ activity and persistence, and immune-engineering innovative solutions are currently being developed. Similarly, as T-cell engineering technology is streamlined, it might gain a prominent role in combination with other strategies. We believe that a better understanding of these key biological questions, along with technological developments will be key to broadening the use of cell therapeutics and ultimately improve EOC patients’ clinical outcomes.

Footnotes

Conflict of interest statement: Dr Coukos reports grants from Celgene, grants from Boehringer-Ingelheim, personal fees from Genentech, grants from Roche, personal fees from Roche, grants from BMS, personal fees from BMS, personal fees from AstraZeneca, grants from Iovance Therapeutics, grants from Kite Pharma, personal fees from NextCure, personal fees from Geneos Tx, and personal fees from Sanofi/Avensis outside the submitted work;Dr Coukos has patents in the domain of antibodies and vaccines targeting the tumor vasculature as well as technologies related to T-cell expansion and engineering for T-cell therapy. Dr Coukos holds patents around TEM1 antibodies and receives royalties from the University of Pennsylvania regarding technology licensed to Novartis.Dr Sarivalasis reports consultancy and advisory fees from Roche, Novartis, GSK, Tesaro, BMS, Celgene, BMS, AstraZeneca. Research grants from Roche. Travel fees from Roche, GSK, Tesaro, Clovis, AstraZeneca, MSD, Pfizer, Amgen, Celgene, Novartis.

Funding: The authors received no financial support for the research, authorship, and/or publication of this article.

Contributor Information

Apostolos Sarivalasis, Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.

Matteo Morotti, Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland. Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland.

Arthur Mulvey, Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.

Martina Imbimbo, Department of Oncology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.

George Coukos, CHUV, Rue du Bugnon 46, Lausanne BH09-701, Switzerland.

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020CA Cancer J Clin 2020; 70: 7–30. [PubMed[]
2. Mirza MR, Coleman RL, Gonzalez-Martin A, et al.. The forefront of ovarian cancer therapy: update on PARP inhibitorsAnn Oncol 2020; 31: 1148–1159. [PubMed[]
3. Lheureux S, Gourley C, Vergote I, et al.. Epithelial ovarian cancerLancet 2019; 393: 1240–1253. [PubMed[]
4. Zhang L, Conejo-Garcia JR, Katsaros D, et al.. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancerN Engl J Med 2003; 348: 203–213. [PubMed[]
5. Hwang WT, Adams SF, Tahirovic E, et al.. Prognostic significance of tumor-infiltrating T cells in ovarian cancer: a meta-analysisGynecol Oncol 2012; 124: 192–198. [PMC free article] [PubMed[]
6. Borella F, Ghisoni E, Giannone G, et al.. Immune checkpoint inhibitors in epithelial ovarian cancer: an overview on efficacy and future perspectivesDiagnostics (Basel) 2020; 10: 146. [PMC free article] [PubMed[]
7. Kalbasi A, Ribas A. Tumour-intrinsic resistance to immune checkpoint blockadeNat Rev Immunol 2020; 20: 25–39. [PubMed[]
8. Billan S, Kaidar-Person O, Gil Z. Treatment after progression in the era of immunotherapyLancet Oncol 2020; 21: e463–e476. [PubMed[]
9. Rohaan MW, Wilgenhof S, Haanen J. Adoptive cellular therapies: the current landscapeVirchows Arch 2019; 474: 449–461. [PMC free article] [PubMed[]
10. Met O, Jensen KM, Chamberlain CA, et al.. Principles of adoptive T cell therapy in cancerSemin Immunopathol 2019; 41: 49–58. [PubMed[]
11. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancerScience 2015; 348: 62–68. [PMC free article] [PubMed[]
12. Chapuis AG, Roberts IM, Thompson JA, et al.. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regressionJ Clin Oncol 2016; 34: 3787–3795. [PMC free article] [PubMed[]
13. Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: emerging efficacy and pathways of resistanceImmunol Rev 2019; 290: 127–147. [PMC free article] [PubMed[]
14. June CH, O’Connor RS, Kawalekar OU, et al.. CAR T cell immunotherapy for human cancerScience 2018; 359: 1361–1365. [PubMed[]
15. Frei E, III, Antman K, Teicher B, et al.. Bone marrow autotransplantation for solid tumors–prospectsJ Clin Oncol 1989; 7: 515–526. [PubMed[]
16. MacNeil M, Eisenhauer EA. High-dose chemotherapy: is it standard management for any common solid tumor? Ann Oncol 1999; 10: 1145–1161. [PubMed[]
17. Philip T, Armitage JO, Spitzer G, et al.. High-dose therapy and autologous bone marrow transplantation after failure of conventional chemotherapy in adults with intermediate-grade or high-grade non-Hodgkin’s lymphomaN Engl J Med 1987; 316: 1493–1498. [PubMed[]
18. Fennelly D, Schneider J. Role of chemotherapy dose intensification in the treatment of advanced ovarian cancerOncology (Williston Park) 1995; 9: 911–921; discussion 922, 924, 926. [PubMed[]
19. Mobus V, Wandt H, Frickhofen N, et al.. Phase III trial of high-dose sequential chemotherapy with peripheral blood stem cell support compared with standard dose chemotherapy for first-line treatment of advanced ovarian cancer: intergroup trial of the AGO-Ovar/AIO and EBMTJ Clin Oncol 2007; 25: 4187–4193. [PubMed[]
20. Stiff PJ, Veum-Stone J, Lazarus HM, et al.. High-dose chemotherapy and autologous stem-cell transplantation for ovarian cancer: an autologous blood and marrow transplant registry reportAnn Intern Med 2000; 133: 504–515. [PubMed[]
21. Slavin S, Nagler A, Naparstek E, et al.. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseasesBlood 1998; 91: 756–763. [PubMed[]
22. Dudley ME, Wunderlich JR, Yang JC, et al.. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanomaJ Clin Oncol 2005; 23: 2346–2357. [PMC free article] [PubMed[]
23. Gattinoni L, Powell DJ, Jr, Rosenberg SA, et al.. Adoptive immunotherapy for cancer: building on successNat Rev Immunol 2006; 6: 383–393. [PMC free article] [PubMed[]
24. Wright SE, Rewers-Felkins KA, Quinlin IS, et al.. Cytotoxic T-lymphocyte immunotherapy for ovarian cancer: a pilot studyJ Immunother 2012; 35: 196–204. [PMC free article] [PubMed[]
25. Kandalaft LE, Chiang CL, Tanyi J, et al.. A Phase I vaccine trial using dendritic cells pulsed with autologous oxidized lysate for recurrent ovarian cancerJ Transl Med 2013; 11: 149. [PMC free article] [PubMed[]
26. Tanyi JL, Bobisse S, Ophir E, et al.. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancerSci Transl Med 2018; 10: eaao5931. [PubMed[]
27. Kandalaft LE, Powell DJ, Jr, Chiang CL, et al.. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancerOncoimmunology 2013; 2: e22664. [PMC free article] [PubMed[]
28. Tran E, Turcotte S, Gros A, et al.. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancerScience 2014; 344: 641–645. [PMC free article] [PubMed[]
29. Castle JC, Kreiter S, Diekmann J, et al.. Exploiting the mutanome for tumor vaccinationCancer Res 2012; 72: 1081–1091. [PubMed[]
30. Robbins PF, Lu YC, El-Gamil M, et al.. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cellsNat Med 2013; 19: 747–752. [PMC free article] [PubMed[]
31. Linnemann C, van Buuren MM, Bies L, et al.. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanomaNat Med 2015; 21: 81–85. [PubMed[]
32. Dafni U, Michielin O, Lluesma SM, et al.. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysisAnn Oncol 2019; 30: 1902–1913. [PubMed[]
33. Aoki Y, Takakuwa K, Kodama S, et al.. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancerCancer Res 1991; 51: 1934–1939. [PubMed[]
34. Freedman RS, Edwards CL, Kavanagh JJ, et al.. Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor-infiltrating lymphocytes and low-dose recombinant interleukin-2: a pilot trialJ Immunother Emphasis Tumor Immunol 1994; 16: 198–210. [PubMed[]
35. Ikarashi H, Fujita K, Takakuwa K, et al.. Immunomodulation in patients with epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytesCancer Res 1994; 54: 190–196. [PubMed[]
36. Fujita K, Ikarashi H, Takakuwa K, et al.. Prolonged disease-free period in patients with advanced epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytesClin Cancer Res 1995; 1: 501–507. [PubMed[]
37. Freedman RS, Platsoucas CD. Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytesCancer Treat Res 1996; 82: 115–146. [PubMed[]
38. Hua Z, Lu J, Li H. [Clinical study on immunotherapy of ovarian cancer with tumor infiltrating lymphocytes]Zhonghua Fu Chan Ke Za Zhi 1996; 31: 555–557. [PubMed[]
39. Freedman RS, Kudelka AP, Kavanagh JJ, et al.. Clinical and biological effects of intraperitoneal injections of recombinant interferon-gamma and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinomaClin Cancer Res 2000; 6: 2268–2278. [PubMed[]
40. Pedersen M, Westergaard MCW, Milne K, et al.. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot studyOncoimmunology 2018; 7: e1502905. [PMC free article] [PubMed[]
41. Kverneland AH, Pedersen M, Westergaard MCW, et al.. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancerOncotarget 2020; 11: 2092–2105. [PMC free article] [PubMed[]
42. Dudley ME, Wunderlich JR, Shelton TE, et al.. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patientsJ Immunother 2003; 26: 332–342. [PMC free article] [PubMed[]
43. Donia M, Larsen SM, Met O, et al.. Simplified protocol for clinical-grade tumor-infiltrating lymphocyte manufacturing with use of the wave bioreactorCytotherapy 2014; 16: 1117–1120. [PubMed[]
44. Kandalaft LE, Odunsi K, Coukos G. Immunotherapy in ovarian cancer: are we there yet? J Clin Oncol 2019; 37: 2460–2471. [PubMed[]
45. Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell-based treatments for solid tumorsNat Med 2019; 25: 1488–1499. [PubMed[]
46. Pich O, Muinos F, Lolkema MP, et al.. The mutational footprints of cancer therapiesNat Genet 2019; 51: 1732–1740. [PMC free article] [PubMed[]
47. Wick DA, Webb JR, Nielsen JS, et al.. Surveillance of the tumor mutanome by T cells during progression from primary to recurrent ovarian cancerClin Cancer Res 2014; 20: 1125–1134. [PubMed[]
48. Bobisse S, Foukas PG, Coukos G, et al.. Neoantigen-based cancer immunotherapyAnn Transl Med 2016; 4: 262. [PMC free article] [PubMed[]
49. Van Rooij N, Van Buuren MM, Philips D, et al.. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanomaJ Clin Oncol 2013; 31: e439–e442. [PMC free article] [PubMed[]
50. Gubin MM, Zhang X, Schuster H, et al.. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigensNature 2014; 515: 577–581. [PMC free article] [PubMed[]
51. Lu YC, Yao X, Crystal JS, et al.. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressionsClin Cancer Res 2014; 20: 3401–3410. [PMC free article] [PubMed[]
52. Arnaud M, Duchamp M, Bobisse S, et al.. Biotechnologies to tackle the challenge of neoantigen identificationCurr Opin Biotechnol 2020; 65: 52–59. [PubMed[]
53. Leko V, Rosenberg SA. Identifying and targeting human tumor antigens for T cell-based immunotherapy of solid tumorsCancer Cell 2020; 38: 454–472. [PMC free article] [PubMed[]
54. Bowtell DD, Bohm S, Ahmed AA, et al.. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancerNat Rev Cancer 2015; 15: 668–679. [PMC free article] [PubMed[]
55. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinomaNature 2011; 474: 609–615. [PMC free article] [PubMed[]
56. Zhang AW, McPherson A, Milne K, et al.. Interfaces of malignant and immunologic clonal dynamics in ovarian cancerCell 2018; 173: 1755–1769.e22. [PubMed[]
57. Jimenez-Sanchez A, Cybulska P, Mager KL, et al.. Unraveling tumor-immune heterogeneity in advanced ovarian cancer uncovers immunogenic effect of chemotherapyNat Genet 2020; 52: 582–593. [PubMed[]
58. Deniger DC, Pasetto A, Robbins PF, et al.. T-cell Responses to TP53 “Hotspot” mutations and unique neoantigens expressed by human ovarian cancersClin Cancer Res 2018; 24: 5562–5573. [PMC free article] [PubMed[]
59. Malekzadeh P, Pasetto A, Robbins PF, et al.. Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancersJ Clin Invest 2019; 129: 1109–1114. [PMC free article] [PubMed[]
60. Malekzadeh P, Yossef R, Cafri G, et al.. Antigen experienced T cells from peripheral blood recognize p53 neoantigensClin Cancer Res 2020; 26: 1267–1276. [PMC free article] [PubMed[]
61. Moore L, Leongamornlert D, Coorens THH, et al.. The mutational landscape of normal human endometrial epitheliumNature 2020; 580: 640–646. [PubMed[]
62. Bobisse S, Genolet R, Roberti A, et al.. Sensitive and frequent identification of high avidity neo-epitope specific CD8+ T cells in immunotherapy-naive ovarian cancerNat Commun 2018; 9: 1092. [PMC free article] [PubMed[]
63. Westergaard MCW, Andersen R, Chong C, et al.. Tumour-reactive T cell subsets in the microenvironment of ovarian cancerBr J Cancer 2019; 120: 424–434. [PMC free article] [PubMed[]
64. Scheper W, Kelderman S, Fanchi LF, et al.. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancersNat Med 2019; 25: 89–94. [PubMed[]
65. Parkhurst MR, Robbins PF, Tran E, et al.. Unique neoantigens arise from somatic mutations in patients with gastrointestinal cancersCancer Discov 2019; 9: 1022–1035. [PMC free article] [PubMed[]
66. Wells DK, van Buuren MM, Dang KK, et al.. Key parameters of tumor epitope immunogenicity revealed through a consortium approach improve neoantigen predictionCell 2020; 183: 818–834.e13. [PMC free article] [PubMed[]
67. Kandalaft LE, Odunsi K, Coukos G. Immune therapy opportunities in ovarian cancerAm Soc Clin Oncol Educ Book 2020; 40: 1–13. [PubMed[]
68. Harris DT, Kranz DM. Adoptive T cell therapies: a comparison of T cell receptors and chimeric antigen receptorsTrends Pharmacol Sci 2016; 37: 220–230. [PMC free article] [PubMed[]
69. Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapyClin Cancer Res 2016; 22: 1875–1884. [PMC free article] [PubMed[]
70. June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish lineSci Transl Med 2015; 7: 280ps287. [PubMed[]
71. Ilyas S, Yang JC. Landscape of tumor antigens in T cell immunotherapyJ Immunol 2015; 195: 5117–5122. [PMC free article] [PubMed[]
72. Yan W, Hu H, Tang B. Advances of chimeric antigen receptor T cell therapy in ovarian cancerOnco Targets Ther 2019; 12: 8015–8022. [PMC free article] [PubMed[]
73. Kershaw MH, Westwood JA, Parker LL, et al.. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancerClin Cancer Res 2006; 12: 6106–6115. [PMC free article] [PubMed[]
74. Tanyi JL, Haas AR, Beatty GL, et al.. Anti-mesothelin chimeric antigen receptor T cells in patients with epithelial ovarian cancer. Journal of Clinical Oncology 2016; 34: 5511–5551. []
75. Haas AR, Tanyi JL, O’Hara MH, et al.. Phase I study of lentiviral-transduced chimeric antigen receptor-modified T cells recognizing mesothelin in advanced solid cancersMol Ther 2019; 27: 1919–1929. [PMC free article] [PubMed[]
76. Koneru M, O’Cearbhaill R, Pendharkar S, et al.. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16(ecto) directed chimeric antigen receptors for recurrent ovarian cancerJ Transl Med 2015; 13: 102. [PMC free article] [PubMed[]
77. Benard E, Casey NP, Inderberg EM, et al.. SJI 2020 special issue: a catalogue of ovarian cancer targets for CAR therapyScand J Immunol 2020; 92: e12917. [PubMed[]
78. Urbanska K, Powell DJ., Jr. Advances and prospects in adoptive cell transfer therapy for ovarian cancerImmunotherapy 2015; 7: 473–476. [PMC free article] [PubMed[]
79. Odunsi K, Jungbluth AA, Stockert E, et al.. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancerCancer Res 2003; 63: 6076–6083. [PubMed[]
80. Szender JB, Papanicolau-Sengos A, Eng KH, et al.. NY-ESO-1 expression predicts an aggressive phenotype of ovarian cancerGynecol Oncol 2017; 145: 420–425. [PMC free article] [PubMed[]
81. Roth TL. Editing of endogenous genes in cellular immunotherapiesCurr Hematol Malig Rep 2020; 15: 235–240. [PMC free article] [PubMed[]
82. Stadtmauer EA, Fraietta JA, Davis MM, et al.. CRISPR-engineered T cells in patients with refractory cancerScience 2020; 367: eaba7365. [PubMed[]
83. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapyNat Rev Clin Oncol 2020; 17: 147–167. [PMC free article] [PubMed[]
84. Wing A, Fajardo CA, Posey AD, Jr, et al.. Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engagerCancer Immunol Res 2018; 6: 605–616. [PMC free article] [PubMed[]
85. Urbanska K, Lanitis E, Poussin M, et al.. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptorCancer Res 2012; 72: 1844–1852. [PMC free article] [PubMed[]
86. Lee YG, Marks I, Srinivasarao M, et al.. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumorsCancer Res 2019; 79: 387–396. [PubMed[]
87. Xie G, Dong H, Liang Y, et al.. CAR-NK cells: a promising cellular immunotherapy for cancerEBioMedicine 2020; 59: 102975. [PMC free article] [PubMed[]
88. Chou CK, Turtle CJ. Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T cell immunotherapyBone Marrow Transplant 2019; 54: 780–784. [PubMed[]
89. Nersesian S, Glazebrook H, Toulany J, et al.. Naturally killing the silent killer: NK cell-based immunotherapy for ovarian cancerFront Immunol 2019; 10: 1782. [PMC free article] [PubMed[]
90. Carlsten M, Bjorkstrom NK, Norell H, et al.. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cellsCancer Res 2007; 67: 1317–1325. [PubMed[]
91. Knorr DA, Bachanova V, Verneris MR, et al.. Clinical utility of natural killer cells in cancer therapy and transplantationSemin Immunol 2014; 26: 161–172. [PMC free article] [PubMed[]
92. Steis RG, Urba WJ, VanderMolen LA, et al.. Intraperitoneal lymphokine-activated killer-cell and interleukin-2 therapy for malignancies limited to the peritoneal cavityJ Clin Oncol 1990; 8: 1618–1629. [PubMed[]
93. Stewart JA, Belinson JL, Moore AL, et al.. Phase I trial of intraperitoneal recombinant interleukin-2/lymphokine-activated killer cells in patients with ovarian cancerCancer Res 1990; 50: 6302–6310. [PubMed[]
94. Liu J, Li H, Cao S, et al.. Maintenance therapy with autologous cytokine-induced killer cells in patients with advanced epithelial ovarian cancer after first-line treatmentJ Immunother 2014; 37: 115–122. [PubMed[]
95. Geller MA, Cooley S, Judson PL, et al.. A phase II study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancerCytotherapy 2011; 13: 98–107. [PMC free article] [PubMed[]
96. Yang Y, Lim O, Kim TM, et al.. Phase I study of random healthy donor-derived allogeneic natural killer cell therapy in patients with malignant lymphoma or advanced solid tumorsCancer Immunol Res 2016; 4: 215–224. [PubMed[]
97. Zhang Z, Wang L, Luo Z, et al.. Efficacy and safety of cord blood-derived cytokine-induced killer cells in treatment of patients with malignanciesCytotherapy 2015; 17: 1130–1138. [PubMed[]
98. Osipov A, Murphy A, Zheng L. From immune checkpoints to vaccines: the past, present and future of cancer immunotherapyAdv Cancer Res 2019; 143: 63–144. [PubMed[]
99. Chow S, Berek JS, Dorigo O. Development of therapeutic vaccines for ovarian cancerVaccines (Basel) 2020; 8: 657. [PMC free article] [PubMed[]
100. Dafni U, Martin-Lluesma S, Balint K, et al.. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: a 20-year systematic review and meta-analysisEur J Cancer 2021; 142: 63–82. [PubMed[]
101. Chianese-Bullock KA, Irvin WP, Jr, Petroni GR, et al.. A multipeptide vaccine is safe and elicits T-cell responses in participants with advanced stage ovarian cancerJ Immunother 2008; 31: 420–430. [PubMed[]
102. Ojalvo LS, Nichols PE, Jelovac D, et al.. Emerging immunotherapies in ovarian cancerDiscov Med 2015; 20: 97–109. [PubMed[]
103. Tsuda N, Mochizuki K, Harada M, et al.. Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancersJ Immunother 2004; 27: 60–72. [PubMed[]
104. Martin Lluesma S, Wolfer A, Harari A, et al.. Cancer vaccines in ovarian cancer: how can we improve? Biomedicines 2016; 4: 10. [PMC free article] [PubMed[]
105. Odunsi K, Qian F, Matsuzaki J, et al.. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancerProc Natl Acad Sci U S A 2007; 104: 12837–12842. [PMC free article] [PubMed[]
106. Odunsi K, Matsuzaki J, Karbach J, et al.. Efficacy of vaccination with recombinant vaccinia and fowlpox vectors expressing NY-ESO-1 antigen in ovarian cancer and melanoma patientsProc Natl Acad Sci U S A 2012; 109: 5797–5802. [PMC free article] [PubMed[]
107. Chu CS, Boyer J, Schullery DS, et al.. Phase I/II randomized trial of dendritic cell vaccination with or without cyclophosphamide for consolidation therapy of advanced ovarian cancer in first or second remissionCancer Immunol Immunother 2012; 61: 629–641. [PubMed[]
108. Schirrmacher V. Clinical trials of antitumor vaccination with an autologous tumor cell vaccine modified by virus infection: improvement of patient survival based on improved antitumor immune memoryCancer Immunol Immunother 2005; 54: 587–598. [PubMed[]
109. Ioannides CG, Platsoucas CD, Patenia R, et al.. T-cell functions in ovarian cancer patients treated with viral oncolysates: I. Increased helper activity to immunoglobulins productionAnticancer Res 1990; 10: 645–653. [PubMed[]
110. Chiang CL, Benencia F, Coukos G. Whole tumor antigen vaccinesSemin Immunol 2010; 22: 132–143. [PMC free article] [PubMed[]
111. Chiang CL, Coukos G, Kandalaft LE. Whole tumor antigen vaccines: where are we? Vaccines (Basel) 2015; 3: 344–372. [PMC free article] [PubMed[]
112. Graciotti M, Marino F, Pak H, et al.. Deciphering the mechanisms of improved immunogenicity of hypochlorous acid-treated antigens in anti-cancer dendritic cell-based vaccinesVaccines (Basel) 2020; 8: 271. [PMC free article] [PubMed[]
113. Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccinesInt Rev Immunol 2011; 30: 150–182. [PubMed[]
114. Chiang CL, Kandalaft LE, Tanyi J, et al.. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedsideClin Cancer Res 2013; 19: 4801–4815. [PMC free article] [PubMed[]
115. Bapsy PP, Sharan B, Kumar C, et al.. Open-label, multi-center, non-randomized, single-arm study to evaluate the safety and efficacy of dendritic cell immunotherapy in patients with refractory solid malignancies, on supportive careCytotherapy 2014; 16: 234–244. [PubMed[]
116. Hernando JJ, Park TW, Kubler K, et al.. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trialCancer Immunol Immunother 2002; 51: 45–52. [PubMed[]
117. Lovgren T, Wolodarski M, Wickstrom S, et al.. Complete and long-lasting clinical responses in immune checkpoint inhibitor-resistant, metastasized melanoma treated with adoptive T cell transfer combined with DC vaccinationOncoimmunology 2020; 9: 1792058. [PMC free article] [PubMed[]
118. Sahin U, Tureci O. Personalized vaccines for cancer immunotherapyScience 2018; 359: 1355–1360. [PubMed[]
119. Ott PA, Hu Z, Keskin DB, et al.. An immunogenic personal neoantigen vaccine for patients with melanomaNature 2017; 547: 217–221. [PMC free article] [PubMed[]
120. Sarivalasis A, Boudousquie C, Balint K, et al.. A phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinomaJ Transl Med 2019; 17: 391. [PMC free article] [PubMed[]
121. Ghisoni E, Imbimbo M, Zimmermann S, et al.. Ovarian cancer immunotherapy: turning up the heatInt J Mol Sci 2019; 20: 2927. [PMC free article] [PubMed[]
122. Wagner J, Wickman E, DeRenzo C, et al.. CAR T cell therapy for solid tumors: bright future or dark reality? Mol Ther 2020; 28: 2320–2339. [PMC free article] [PubMed[]
123. Ahmed AA, Becker CM, Bast RC., Jr. The origin of ovarian cancerBJOG 2012; 119: 134–136. [PubMed[]
124. Labanieh L, Majzner RG, Mackall CL. Programming CAR-T cells to kill cancerNat Biomed Eng 2018; 2: 377–391. [PubMed[]
125. Jiménez-Sánchez A, Memon D, Pourpe S, et al.. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patientCell 2017; 170: 927–938.e20. [PMC free article] [PubMed[]
126. Anderson KG, Stromnes IM, Greenberg PD. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapiesCancer Cell 2017; 31: 311–325. [PMC free article] [PubMed[]

Articles from Therapeutic Advances in Medical Oncology are provided here courtesy of SAGE Publications


 

Plaats een reactie ...

Reageer op "Overzichtstudie van vormen van immuuntherapie bij eierstokkanker in alle stadia, waaronder dendritische celtherapie, CAR-T celtherapie en immuuntherapie met anti-PD medicijnen."


Gerelateerde artikelen
 

Gerelateerde artikelen

Onderzoekers ontdekken waarom >> Overzichtstudie van vormen >> Pembrolizumab, een anti-PD >> Dendritische celtherapie aanvullend >> Immuuntherapie met avelumab, >> Nivolumab, immuuntherapie >> DMUC5754A een nieuw experimenteel >> Dendritische celtherapie blijkt >> Immuuntherapie met p53-SLP-vaccin >> Immuuntherapie: Antibody therapie >>