Mocht u kanker-actueel de moeite waard vinden en ons willen ondersteunen om kanker-actueel online te houden dan kunt u ons machtigen voor een periodieke donatie via donaties: https://kanker-actueel.nl/NL/donaties.html of doneer al of niet anoniem op - rekeningnummer NL79 RABO 0372931138 t.n.v. Stichting Gezondheid Actueel in Amersfoort. Onze IBANcode is NL79 RABO 0372 9311 38   

Helpt u ons aan 500 donateurs?

16 november 2017: Bron: Nat Rev Clin Oncol. Author manuscript; available in PMC 2016 Jun 22.

Lymfklierkanker is er in verschillende vormen en sommige vormen ook gerelateerd aan vormen van leukemie. Bv. ziekte van Hodgkin is anders dan Non-Hodgkin maar heeft uiteraard wel verschillende kenmerken. Zo ook zijn er onder vormen van leukemie verschillende vormen, ieder met eigen karakteristieken. Gemeenschappelijk hebben deze vormen van kanker dat ze sterk gerelateerd zijn aan de 'conditie' van het immuunssyteem en de actieve T-cellen. En er wordt al heel lang gezocht naar de beste vorm van immuunstimulerende medicijnen en behandelingen bij deze vormen van kanker met zoals ze dat noemen kwaadaardige lymfoïden.

Zo heeft het zogeheten anti-CD20 monoklonale antilichaam rituximab bij de behandeling van vormen van lymfklierkanker en vormen van leukemie veel succes bij deze vormen van kanker. In feite is rituximab ook een vorm van immuuntherapie. Sinds de goedkeuring door de FDA van rituximab in 1997 zijn er de afgelopen jaren wel ook weer verschillende nieuwe vormen van immuunstimulatie onderzocht die het vermogen om de T-cellen te stimuleren en nog gerichter de kankercellen aan te kunnen vallen. En met succes lijkt het. 

immuuntherapie bij lymfklierkanker


Rekening houdend met de veelbelovende resultaten uit de praktijk van deze nieuwe immunotherapiebenaderingen, heeft de FDA onlangs een 'doorbraak'-aanduiding toegekend aan drie nieuwe immuunstimulerende behandelingen met verschillende mechanismen.

Ten eerste is chimere antigeenreceptor (CAR) -T-celtherapie veelbelovend voor de behandeling van een recidief van ALL - acute lymfoblastische leukemie bij volwassenen en kinderen.

Ten tweede is blinatumomab, een zogeheten anti lichaam met bispecifieke T-cel stimulatie (BiTE®), inmiddels goedgekeurd voor de behandeling van volwassenen met Philadelphia-chromosoom-negatieve gerecidiveerde en / of refractaire B-precursor ALL.

Ten derde heeft immuuntherapie met het zogeheten anti-PD medicijn nivolumab, uitstekende resultaten laten zien voor de behandeling van het Hodgkin-lymfoom nadat een recidief optrad na de behandeling met autologe stamceltransplantatie en brentuximab-vedotine. 

Er zijn drie studies die recent zijn gepubliceerd die ik onder jullie aandacht wil brengen:

Deze studie: The landscape of new drugs in lymphoma bespreekt alle vormen van medicijnen bij vormen van lymfklierkanker.

Kernpunten uit deze studie zijn:

  • De beschikbaarheid van nieuwe kleinmoleculaire remmers en immuuntherapieën heeft het landschap van medicijnontwikkeling bij lymfomen veranderd.
  • De meest effectieve remmers van kleine moleculen zijn gericht op B-cel-receptor-signalering, PI3K-signalering en het BCL2-eiwit.
  • Meerdere immunotherapeutische studies hebben veelbelovende klinische activiteit aangetoond, waaronder checkpoint remmers (anti-PD medicijnen), CAR T-cellen en bispecifieke antilichamen
  • Veel bedrijven ontwikkelen soortgelijke geneesmiddelen, die hetzelfde doel hebben, waardoor een meer gerichte strategie voor de ontwikkeling van geneesmiddelen nodig is, met prioriteit voor klinisch onderzoek.
  • Vanwege het grote aantal geneesmiddelen dat in ontwikkeling is, wordt het potentiële aantal medicijncombinaties onhandelbaar; Prioriteit moet zich richten op mechanisme-gebaseerde combinaties die potentieel veiliger en effectiever zijn.

Een andere studie is de studie: Clinical applications of genome studies waarin bepaalde biomarkers een grote rol spelen bij de aanpak van lymjfklierkanker en aanverwante vormen van kanker.

En recent is er ook een studie gepubliceerd: Novel immunotherapies in lymphoid malignancies waarin de onderzoekers de achtergrond en ontwikkeling van drie verschillende vormen van immuuntherapie bespreken aan de hand van de literatuur en de wetenschappelijke vooruitgang daarin. M.i. geeft deze studie een uitstekende analyse en maakt het werkingsmechanisme van elke individuele therapie inzichtelijk en begrijpelijk. In de studie bespreken zij ook toekomstige strategieën om deze immunotherapie verder te verbeteren door middel van verbeterde engineering, biomarkerselectie en mechanisme-gebaseerde combinaties van behandelingen. Over deze studie geef ik in dit artikel wat meer informatie.

Het volledige studierapport: Novel immunotherapies in lymphoid malignancies is onderverdeeld in verschillende hoofdstukken. Klik op de kopjes om naar de hoofdstukken te gaan. Ik heb niet altijd een vertaling gemaakt maar u kunt altijd de google translate optie gebruiken rechtsboven elk artikel.

Engineerd T-car cells

Conclusie uit dit hoofdstukje:

On the basis of promising clinical results, multiple pharmaceutical companies (such as Novartis, Juno Therapeutics, Cellular Biomedicine Group, Bellicum, Celgene/Bluebird, Kite Pharma/Amgen, Cellectis/Servier/Pfizer, Opus Bio, TheraVectys) are developing large-scale clinical-grade production of CAR T cells91. The participation of pharmaceutical companies is critical for success; however, the treatment is unlikely to be standardized in the near future owing to patent issues. Identification of a lead CAR-T-cell construct is unlikely in the absence of head-to-head trials that directly compare each construct and each method in specific disease settings. Results of larger studies of homogenously treated patients across multiple centres with detailed toxicity assessment will be essential in guiding the clinical development of this novel treatment strategy.

Hier een schema van studies met T-car cells. Nummers verwijzen naar referentieliijst onderaan dit artikel

Table 1

Clinical efficacy of second generation CAR-T-cell therapy

Disease and treating instituteNumber of patientsConditioning therapyInfused CAR T-cell doseResponse rate
Survival outcomes
ORR (%)CR (%)PR (%)SD (%)
ALL

MSKCC44,4850 22 (16* + 6) CY (1.5–3.0 g/m2) 1–3 × 106/kg NA 91 NA NA Median OS: 9 months

UPenn51 30* FLU (30 mg/m2 × 4 days)/CY (500 mg/m2 × 2 days): 13, FLU (30 mg/m2 × 4 days)/CY (300 mg/m2 × 2 days): 2, CY (440 mg/m2 × 2 days)/VP (100 mg/m2 × 2 days): 5, CVAD (CY 300 mg/m2 q12h × 3 days, vincristine 2 mg day 3, doxorubicin 50 mg/m2 day 3): 2, CY (300 mg/m2 q12h × 3 days or 1,000 mg/m2 × 1 day): 3, clofarabine 30 mg/m2 × 5 days: 1; VP (150 mg/m2 × 1 day)/Ara-C (300 mg/m2 × 1 day): 1
None: 3
0.76–14.96 × 106/kg NA 90 NA NA NA

NCI52 20* FLU (25 mg/m2 × 3 days)/CY (900 mg/m2 × 1 day) 1 or 3 × 106/kg NA 70 NA 15 RFS: 78.8% at 4.8 months

Fred Hutchinson88 7 Lymphodepleting chemotherapy 2 × 105/kg, 2 × 106/kg, or 2 × 107/kg NA 71.4 NA NA NA

CLL

UPenn45,60,61 14 (3* + 11) FLU (30 mg/m2 × 3 days)/CY (300 mg/m2 × 3 days): 3, pentostatin/CY§: 5, bendamustine§: 6 0.14–5.9 × 108 57.1 21.4 35.7 NA NA

UPenn62 23 Lymphodepleting chemotherapy 5 × 107 or 5 × 108 39 22 17 NA NA

NCI63 4* FLU (25 mg/m2 × 5 days)/CY (60 mg/kg × 2 days) + i.v. IL-2 following CAR-T-cell infusion 0.3–3 × 107/kg 75 25 50 25 NA

NCI64 4* FLU (25 mg/m2 × 5 days)/CY (60 or 120 mg/kg × 2 days) 1–5 × 106/kg 100 75 25 NA NA

MSKCC44,58 10 (8* + 2) None: 4, CY-conditioning (1.5 or 3 g/m2): 4, BR (rituximab 375 mg/m2 × 1 day, bendamustine 90 mg/m2 × 2 days): 2 0.4–1.0 × 107/kg 20 10 10 20 NA

MSKCC59 7 PCR × 6 cycles, CY (600 mg/m2) 3–30 × 106/kg 57.2 14.3 42.9 NR NA

B-NHL

NCI63 4* FLU (25 mg/m2 × 5 days)/CY (60 mg/kg × 2 days) + i.v. IL-2 following CAR-T cell infusion 0.3–3 × 107/kg 100 0 100 0 NA

NCI64 11* FLU (25 mg/m2 × 5 days)/CY (60 or 120 mg/kg × 2 days) 1–5 × 106/kg 88.9 55.6 33.3 11.1 NA

NCI65 9 FLU (30 mg/m2 × 3 days)/CY (300 mg/m2 × 3 days) 1 × 106/kg 66.7 11.1 55.6 0 NA

MSKCC67 6 BEAM conditioning and autologous SCT 5–10 × 106/kg 100 100 0 0 NA

UPenn66 8 EPOCH, CY, bendamustine, FLU/CY§ 3.7–8.9 × 106/kg (median 5.8 × 106/kg) 50 37.5 12.5 0 NA

Fred Hutchinson88 9 Lymphodepleting chemotherapy 2 × 105/kg, 2 × 106/kg, or 2 × 107/kg 66.7 11.1 55.6 NA NA
*In published report.
In reported abstract.
§Doses unknown.
PCR is pentostatin 4 mg/m2 day 1, cyclophosphamide 600 mg/m2 day 1, rituximab 375 mg/m2 day 1.

Abbreviations: ALL, acute lymphocytic leukaemia; BEAM, BCNU (carmustine) + etoposide + cytarabine + melphalan; B-NHL, B-cell non-Hodgkin lymphoma; CAR, chimeric antigen receptor; CLL, chronic lymphocytic leukaemia; CR, complete response; CVAD, cyclophosphamide + vincristine + doxorubicin + dexamethasone; CY, cyclophosphamide; EPOCH, etoposide + vincristine + doxorubicin + cyclophosphamide + prednisone; FLU, fludarabine; Fred Hutchinson, Fred Hutchinson Cancer Research Center; i.v., intravenous; MSKCC, Memorial Sloan Kettering Cancer Center; NCI, National Cancer Institute; NA, not applicable; ORR, overall response rate; OS, overall survival; PR, partial response; RFS, relapse-free survival; SD, stable disease; UPenn, University of Pennsylvania; VP etoposide.

Bispecific antibodies and derivatives

Wat zijn bispecifieke anti bodies?

Bispecifieke antilichamen en aanverwante derivaten zijn ontwikkeld door modulering van bepaalde eiwitten (proteïne-engineering) die de basis vormen van antilichamen om de valentie (mogelijkheid om vedrbindingen aan te gaan) te verhogen, wat de betrokkenheid van het immuunsysteem vergemakkelijkt. De initiële ontwikkeling van bispecifieke antilichamensamenstellingen had te maken met veel problemen die onderzoekers moesten zien te voorkomen, waaronder immunogeniciteit van het product, onvoldoende klinische activiteit en problemen bij grootschalige productie. Nieuwe platforms worden nu ontwikkeld voor de behandeling van vormen van lymfklierkanker en leukemie. (lees verder in studierapport)

(Bispecific antibodies and subsequent derivatives have been developed through protein engineering of the antibody backbone to increase valency, which facilitates engagement of the immune system. The initial development of bispecific-antibody constructs faced many challenges, including immunogenicity of the product, insufficient clinical activity, and difficulties in large-scale production. Novel platforms are being developed for the treatment of lymphoid malignancies.)

immuuntherapie bij vormen van lymfklierkanker en leukemie schema

Studies met

Immune-checkpoint inhibitors

Hier een schema van studies met anti-PD medicijnen. Nummer erachter correspondeert met literatuurlijst onderaan dit artikel:

Table 3

Clinical efficacy of immune-checkpoint inhibitors

Drug (manufacturer) and diseaseNumber of patientsTreatment scheduleResponse rate
Median duration of response (range)Survival outcomes
ORR (%)CR (%)PR (%)SD (%)
Nivolumab (BMS, USA)

B-NHL145* 31 1 mg/kg or 3 mg/kg week 1, week 4, and every 2 weeks thereafter 26 10 16 52 NA NA

DLBCL145* 11 1 mg/kg or 3 mg/kg week 1, week 4, and every 2 weeks thereafter 36 18 18 27 22 weeks (6–77 weeks) NA

Follicular lymphoma145* 10 1 mg/kg or 3 mg/kg week 1, week 4, and every 2 weeks thereafter 40 10 30 60 Not reached (27–82 weeks) NA

T-NHL145 23 3 mg/kg week 1, week 4, and every 2 weeks thereafter 17 0 17 43 NA NA

Hodgkin lymphoma145,148 23§ 1 mg/kg or 3 mg/kg week 1 and 4, and every 2 weeks thereafter 87 26 61 13 NA PFS: 86% at 24 weeks
OS: median not reached

Pembrolizumab (Merck, USA)

Hodgkin lymphoma150 29 10 mg/kg every 2 weeks 66 21 45 21 Not reached (1–185 days) NA

Ipilimumab (BMS, USA)

B-NHL154 18 3 mg/kg → 1 mg/kg × 3 doses (or 3 mg/kg × 4 doses in 6 patients) 11.1 5.6 5.6 NA NA NA

Hodgkin lymphoma (post alio SCT)172 14§ 0.1–3.0 mg/kg 14.3 14.3 0 14.3 NA NA
*Comprises DLBCL, follicular lymphoma, primary mediastinal B-cell lymphoma, and other B-cell lymphomas; data from this study for patients with DLBCL and follicular lymphoma are shown separately in the following two rows.
In reported abstract.
§In published report. Abbreviations: BMS, Bristol-Myers Squibb; B-NHL, B-cell non-Hodgkin lymphoma; CR, complete response; DLBCL, diffuse large-B-cell lymphoma; NR, not applicable or available; ORR, overall response rate; PR, partial response; SD, stable disease; T-NHL, T-cell non-Hodgkin lymphoma.
Conclusie:

We staan aan het begin van een interessant tijdperk van immunotherapeutische behandelingen voor lymfoïde maligniteiten. Veelbelovende resultaten met CAR T-cellen, bispecifieke antilichamen en hun derivaten en anti-PD medicijnen (checkpoint remmers) zijn inmiddels aangetoond, en zonder twijfel zullen vormen van immuuntherapie een van de centrale componenten worden van behandelingsopties bij lymfoïde maligniteiten, vooral bij recideiven of progrssie van de ziekte.

Ondanks het enthousiasme moeten wel nog enkele problemen worden overwonnen, waaronder technische modulering, met name van CAR-T-celtherapieën en bispecifieke antilichamen. Vergeleken met het verbluffende resultaat van zowel CAR-T-celtherapie als bispecifieke antilichamen bij de behandeling van ALL, zijn de resultaten die worden gezien bij patiënten met non-Hodgkin - NHL en Chronische Lymfatische Leukemie - CLL iets minder opvallend maar blijven veelbelovend; deze inconsistentie kan gedeeltelijk te wijten zijn aan de immuunonderdrukkende micro-omgeving geassocieerd met deze tumoren, hoewel verder onderzoek nodig is om dit verschil in werkzaamheid te verklaren.

Naast een verdere verkenning van de werkzaamheid, moeten we in detail het mechanisme van de acties van elke behandelingsmethode begrijpen om elke behandelingsoptie voor individuele patiënten beter te beheren en te volgen. Tot dusverre zijn er geen onderlinge vergelijkingsstudies uitgevoerd, hetgeen vergelijkingen tussen behandelingsmodaliteiten uitsluit. Elk platform heeft zijn eigen sterke en zwakke punten. Het vergelijkbare werkingsmechanisme van blinatumomab en op CD19 gerichte CAR T-cellen vertonen bijvoorbeeld een vergelijkbaar bijwerkingenprofiel. CIV-toediening van blinatumomab is ongemakkelijk, hoewel de korte halfwaardetijd van dit middel voordelig is omdat het een snelle toediening / werking van het geneesmiddel mogelijk maakt om de toxiciteit te minimaliseren.

De bij patiënten aanwezigheid en vermeerdering van CAR T-cellen resulteert in een variabele dosis-effect relatie tussen de verschillende patiënten; de levensduur van de T-cellen kan echter zorgen voor langdurige ziektebestrijding. Anti-PD-1-antilichamen hebben een opmerkelijke werkzaamheid tegen Hodgkin Lymfomen getoond, maar er zijn combinaties van behandelingen nodig om de CR - Complete Remissie percentages te verbeteren. De resultaten van lopende en toekomstige studies zullen ons in staat stellen om het verschil in gebruik van deze behandelingen te begrijpen als een enkele of een gecombineerde behandeling die de prognose van patiënten verbetert.

Het volledige studierapport: Novel immunotherapies in lymphoid malignancies isgratis in te zien. Hieronder het abstract met uitgebreide referentielijst.

We are entering an exciting era of immunotherapies for lymphoid malignancies. Promising results with CAR T cells, bispecific antibodies and their derivatives, and immune-checkpoint blockade have been demonstrated, and without doubt, immunotherapies will become one of the central components of treatment strategies in lymphoid malignancies, especially in the relapsed and/or refractory setting.

Nat Rev Clin Oncol. Author manuscript; available in PMC 2016 Jun 22.
Published in final edited form as:
PMCID: PMC4916838
NIHMSID: NIHMS782997

Novel immunotherapies in lymphoid malignancies

Abstract

The success of the anti-CD20 monoclonal antibody rituximab in the treatment of lymphoid malignancies provided proof-of-principle for exploiting the immune system therapeutically. Since the FDA approval of rituximab in 1997, several novel strategies that harness the ability of T cells to target cancer cells have emerged. Reflecting on the promising clinical efficacy of these novel immunotherapy approaches, the FDA has recently granted ‘breakthrough’ designation to three novel treatments with distinct mechanisms. First, chimeric antigen receptor (CAR)-T-cell therapy is promising for the treatment of adult and paediatric relapsed and/or refractory acute lymphoblastic leukaemia (ALL). Second, blinatumomab, a bispecific T-cell engager (BiTE®) antibody, is now approved for the treatment of adults with Philadelphia-chromosome-negative relapsed and/or refractory B-precursor ALL. Finally, the monoclonal antibody nivolumab, which targets the PD-1 immune-checkpoint receptor with high affinity, is used for the treatment of Hodgkin lymphoma following treatment failure with autologous-stem-cell transplantation and brentuximab vedotin. Herein, we review the background and development of these three distinct immunotherapy platforms, address the scientific advances in understanding the mechanism of action of each therapy, and assess the current clinical knowledge of their efficacy and safety. We also discuss future strategies to improve these immunotherapies through enhanced engineering, biomarker selection, and mechanism-based combination regimens.

References

1. Horowitz M, et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood. 1990;75:555–562. [PubMed]
2. Maloney DG, et al. IDEC-C2B8: results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. J. Clin. Oncol. 1997;15:3266–3274. [PubMed]
3. Maloney DG, et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood. 1997;90:2188–2195. [PubMed]
4. Coiffier B, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 2002;346:235–242. [PubMed]
5. Doubrovina E, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+ lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012;119:2644–2656. [PMC free article] [PubMed]
6. Chapuis AG, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci. Transl. Med. 2013;5:174ra27. [PMC free article] [PubMed]
7. Rooney CM, et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood. 1998;92:1549–1555. [PubMed]
8. Heslop HE, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115:925–935. [PMC free article] [PubMed]
9. Bollard CM, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 2014;32:798–808. [PMC free article] [PubMed]
10. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the γ or ζ subunits of the immunoglobulin and T-cell receptors. Proc. Natl Acad. Sci. USA. 1993;90:720–724. [PMC free article] [PubMed]
11. Annenkov AE, Moyes SP, Eshhar Z, Mageed RA, Chernajovsky Y. Loss of original antigenic specificity in T cell hybridomas transduced with a chimeric receptor containing single-chain Fv of an anti-collagen antibody and FcεRI-signaling γ subunit. J. Immunol. 1998;161:6604–6613. [PubMed]
12. Haynes NM, et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-ζ vs FcεRI-γ. J. Immunol. 2001;166:182–187. [PubMed]
13. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin–T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA. 1989;86:10024–10028. [PMC free article] [PubMed]
14. Bird RE, et al. Single-chain antigen-binding proteins. Science. 1988;242:423–426. [PubMed]
15. Huston JS, et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl Acad. Sci. USA. 1988;85:5879–5883. [PMC free article] [PubMed]
16. Orlandi R, Gussow DH, Jones PT, Winter G. Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc. Natl Acad. Sci. USA. 1989;86:3833–3837. [PMC free article] [PubMed]
17. Hollyman D, et al. Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J. Immunother. 2009;32:169–180. [PMC free article] [PubMed]
18. Lee J, Sadelain M, Brentjens R. Retroviral transduction of murine primary T lymphocytes. Methods Mol. Biol. 2009;506:83–96. [PMC free article] [PubMed]
19. Quintas-Cardama A, et al. Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application. Hum. Gene Ther. 2007;18:1253–1260. [PubMed]
20. Brentjens RJ, et al. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 2007;13:5426–5435. [PubMed]
21. Brentjens RJ, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nat. Med. 2003;9:279–286. [PubMed]
22. Huang X, et al. Sleeping Beauty transposon-mediated engineering of human primary T cells for therapy of CD19+ lymphoid malignancies. Mol. Ther. 2008;16:580–589. [PMC free article] [PubMed]
23. Kochenderfer JN, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J. Immunother. 2009;32:689–702. [PMC free article] [PubMed]
24. Savoldo B, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 2011;121:1822–1826. [PMC free article] [PubMed]
25. Wang X, et al. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J. Immunother. 2012;35:689–701. [PMC free article] [PubMed]
26. Milone MC, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 2009;17:1453–1464. [PMC free article] [PubMed]
27. Terakura S, et al. Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood. 2012;119:72–82. [PMC free article] [PubMed]
28. Zola H, et al. Preparation and characterization of a chimeric CD19 monoclonal antibody. Immunol. Cell Biol. 1991;69:411–422. [PubMed]
29. Bejcek BE, et al. Development and characterization of three recombinant single chain antibody fragments (scFvs) directed against the CD19 antigen. Cancer Res. 1995;55:2346–2351. [PubMed]
30. Nicholson IC, et al. Construction and characterisation of a functional CD19 specific single chain Fv fragment for immunotherapy of B lineage leukaemia and lymphoma. Mol. Immunol. 1997;34:1157–1165. [PubMed]
31. Imai C, et al. Chimeric receptors with 4-1BB signaling capacity provoke potent cytotoxicity against acute lymphoblastic leukemia. Leukemia. 2004;18:676–684. [PubMed]
32. Till BG, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells. Blood. 2008;112:2261–2271. [PMC free article] [PubMed]
33. Jensen MC, et al. Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans. Biol. Blood Marrow Transplant. 2010;16:1245–1256. [PMC free article] [PubMed]
34. Wang J, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Hum. Gene Ther. 2007;18:712–725. [PubMed]
35. Maher J, Brentjens RJ, Gunset G, Riviere I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nat. Biotechnol. 2002;20:70–75. [PubMed]
36. Hombach AA, Rappl G, Abken H. Arming cytokine-induced killer cells with chimeric antigen receptors: CD28 outperforms combined CD28–OX40 “super-stimulation”. Mol. Ther. 2013;21:2268–2277. [PMC free article] [PubMed]
37. Carpenito C, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA. 2009;106:3360–3365. [PMC free article] [PubMed]
38. Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Mol. Ther. 2010;18:413–420. [PMC free article] [PubMed]
39. Tammana S, et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Hum. Gene Ther. 2010;21:75–86. [PMC free article] [PubMed]
40. Pegram HJ, Park JH, Brentjens RJ. CD28z CARs and armored CARs. Cancer J. 2014;20:127–133. [PMC free article] [PubMed]
41. Jones BS, Lamb LS, Goldman F, Di Stasi A. Improving the safety of cell therapy products by suicide gene transfer. Front. Pharmacol. 2014;5:254. [PMC free article] [PubMed]
42. Di Stasi A, et al. T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood. 2009;113:6392–6402. [PMC free article] [PubMed]
43. Kershaw MH, et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum. Gene Ther. 2002;13:1971–1980. [PubMed]
44. Brentjens RJ, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118:4817–4828. [PMC free article] [PubMed]
45. Kalos M, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011;3:95ra73. [PMC free article] [PubMed]
46. Kochenderfer JN, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood. 2010;116:4099–4102. [PMC free article] [PubMed]
47. Wang X, Riviere I. Manufacture of tumor- and virus-specific T lymphocytes for adoptive cell therapies. Cancer Gene Ther. 2015;22:85–94. [PMC free article] [PubMed]
48. Brentjens RJ, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci. Transl. Med. 2013;5:177ra38. [PMC free article] [PubMed]
49. Davila ML, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014;6:224ra25. [PMC free article] [PubMed]
50. Park JH, et al. CD19-targeted 19-28z CAR modified autologous T cells induce high rates of complete remission and durable responses in adult patients with relapsed, refractory B-cell ALL . Blood. 2014;124:a382.
51. Maude SL, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014;371:1507–1517. [PMC free article] [PubMed]
52. Lee DW, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385:517–528. [PubMed]
53. Fielding AK, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–950. [PubMed]
54. Gökbuget N, et al. Outcome of relapsed adult lymphoblastic leukemia depends on response to salvage chemotherapy, prognostic factors, and performance of stem cell transplantation. Blood. 2012;120:2032–2041. [PubMed]
55. Kantarjian HM, et al. Outcome of adults with acute lymphocytic leukemia in second or subsequent complete remission. Leuk. Lymphoma. 2010;51:475–480. [PMC free article] [PubMed]
56. Curran KJ, et al. Validation of donor derived virus specific T-lymphocytes genetically modified to target the CD19 antigen for the treatment of relapsed Leukemia. Mol. Ther. 2011;19:S90.
57. Kochenderfer JN, et al. Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood. 2013;122:4129–4139. [PMC free article] [PubMed]
58. Park JH, et al. Impact of the conditioning chemotherapy on outcomes in adoptive T cell therapy: results from a phase I clinical trial of autologous CD19-targeted T cells for patients with relapsed CLL . Blood. 2012;120:a1797.
59. Park JH, et al. Phase I trial of autologous CD19-targeted CAR-modified T cells as consolidation after purine analog-based first-line therapy in patients with previously untreated CLL . J. Clin. Oncol. 2014;32(5s Suppl.):a7020.
60. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 2011;365:725–733. [PMC free article] [PubMed]
61. Porter DL, et al. Chimeric antigen receptor modified t cells directed against CD19 (CTL019 cells) have long-term persistence and induce durable responses in relapsed, refractory CLL . Blood. 2013;122:a4162.
62. Porter DL, et al. Randomized, phase II dose optimization study of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed, refractory CLL . Blood. 2014;124:a1982.
63. Kochenderfer JN, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119:2709–2720. [PMC free article] [PubMed]
64. Kochenderfer JN, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 2015;33:540–549. [PMC free article] [PubMed]
65. Kochenderfer JN, et al. Anti-CD19 CAR T cells administered after low-dose chemotherapy can induce remissions of chemotherapy-refractory diffuse large B-cell lymphoma . Blood. 2014;124:a550.
66. Schuster SJ, et al. Phase IIa trial of chimeric antigen receptor modified T cells directed against CD19 (CTL019) in patients with relapsed or refractory CD19+ lymphomas . Blood. 2014;124:a3087.
67. Sauter CS, et al. Interim safety analysis: a phase I trial of high dose therapy and autologous stem cell transplantation followed by infusion of chimeric antigen receptor modified T-cells (19-28z CAR-T) directed against CD19+ B-cells for relapsed and refractory aggressive B cell non-Hodgkin lymphoma (B-NHL) . Blood. 2014;124:a677.
68. Lee DW, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014;124:188–195. [PMC free article] [PubMed]
69. Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J. 2014;20:119–122. [PMC free article] [PubMed]
70. Ramos CA, Savoldo B, Dotti G. CD19-CAR trials. Cancer J. 2014;20:112–118. [PMC free article] [PubMed]
71. Maude SL, Teachey DT, Porter DL, Grupp SA. CD19-targeted chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Blood. 2015;125:4017–4023. [PMC free article] [PubMed]
72. Grupp SA, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 2013;368:1509–1518. [PMC free article] [PubMed]
73. Turtle CJ, et al. Immunotherapy with CD19-specific chimeric antigen receptor (CAR)-modified T cells of defined subset composition . J. Clin. Oncol. 2015;33(Suppl.):a3006.
74. Wang X, et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood. 2011;118:1255–1263. [PMC free article] [PubMed]
75. Di Stasi A, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 2011;365:1673–1683. [PMC free article] [PubMed]
76. Giordano Attianese GM, et al. In vitro and in vivo model of a novel immunotherapy approach for chronic lymphocytic leukemia by anti-CD23 chimeric antigen receptor. Blood. 2011;117:4736–4745. [PMC free article] [PubMed]
77. Berger C, et al. Safety of targeting ROR1 in primates with chimeric antigen receptor-modified T cells. Cancer Immunol. Res. 2015;3:206–216. [PMC free article] [PubMed]
78. Haso W, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood. 2013;121:1165–1174. [PMC free article] [PubMed]
79. Vera J, et al. T lymphocytes redirected against the κ light chain of human immunoglobulin efficiently kill mature B lymphocyte-derived malignant cells. Blood. 2006;108:3890–3897. [PMC free article] [PubMed]
80. Savoldo B, et al. Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30ζ artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood. 2007;110:2620–2630. [PMC free article] [PubMed]
81. Ruella M, et al. Novel chimeric antigen receptor T cells for the treatment of Hodgkin lymphoma . Blood. 2014;124:a806.
82. Chinnasamy D, et al. Local delivery of interleukin-12 using T cells targeting VEGF receptor-2 eradicates multiple vascularized tumors in mice. Clin. Cancer Res. 2012;18:1672–1683. [PubMed]
83. Craddock JA, et al. Enhanced tumor trafficking of GD2 chimeric antigen receptor T cells by expression of the chemokine receptor CCR2b. J. Immunother. 2010;33:780–788. [PMC free article] [PubMed]
84. Karlsson SC, et al. Combining CAR T cells and the Bcl-2 family apoptosis inhibitor ABT-737 for treating B-cell malignancy. Cancer Gene Ther. 2013;20:386–393. [PubMed]
85. Pavel O, et al. Immunomodulatory agent lenalidomide enhances antitumor functions of chimeric receptor-modified t cells in vitro and in vivo . Blood. 2014;124:a805.
86. John LB, et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 2013;19:5636–5646. [PubMed]
87. Cruz CR, et al. Infusion of donor-derived CD19-redirected-virus-specific T cells for B-cell malignancies relapsed after allogeneic stem cell transplant: a phase I study . Blood. 2013;122:a152. [PMC free article] [PubMed]
88. Turtle CJ, et al. Therapy of B cell malignancies with CD19-specific chimeric antigen receptor-modified T cells of defined subset composition . Blood. 2014;124:a384.
89. Derniame S, et al. Multiplex genome editing as a platform for “off-the-shelf” adoptive CAR T-cellimmunotherapies . Blood. 2014;124:a1111.
90. Torikai H, et al. A foundation for universal T-cell based immunotherapy: T cells engineered to express a CD19-specific chimeric-antigen-receptor and eliminate expression of endogenous TCR. Blood. 2012;119:5697–5705. [PMC free article] [PubMed]
91. June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci. Transl. Med. 2015;7:280ps7. [PubMed]
92. Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl Acad. Sci. USA. 1995;92:7021–7025. [PMC free article] [PubMed]
93. Loffler A, et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95:2098–2103. [PubMed]
94. Dreier T, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int. J. Cancer. 2002;100:690–697. [PubMed]
95. Offner S, Hofmeister R, Romaniuk A, Kufer P, Baeuerle PA. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 2006;43:763–771. [PubMed]
96. Schlereth B, et al. T-cell activation and B-cell depletion in chimpanzees treated with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Cancer Immunol. Immunother. 2006;55:503–514. [PubMed]
97. Kufer P, et al. Minimal costimulatory requirements for T cell priming and TH1 differentiation: activation of naive human T lymphocytes by tumor cells armed with bifunctional antibody constructs. Cancer Immun. 2001;1:10. [PubMed]
98. Bargou R, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321:974–977. [PubMed]
99. Haas C, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214:441–453. [PubMed]
100. Gruen M, Bommert K, Bargou RC. T-cell-mediated lysis of B cells induced by a CD19 × CD3 bispecific single-chain antibody is perforin dependent and death receptor independent. Cancer Immunol. Immunother. 2004;53:625–632. [PubMed]
101. Klinger M, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/ CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119:6226–6233. [PubMed]
102. Nagorsen D, Kufer P, Baeuerle PA, Bargou R. Blinatumomab: a historical perspective. Pharmacol. Ther. 2012;136:334–342. [PubMed]
103. Goebeler ME, et al. Final results from a phase 1 study of blinatumomab in patients with relapsed/ refractory non-Hodgkin's lymphoma. Hematol. Oncol. 2013;31:197.
104. Swerdlow SH, et al., editors. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th edn International Agency for Research on Cancer; 2008.
105. Topp MS, et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120:5185–5187. [PubMed]
106. Topp MS, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J. Clin. Oncol. 2011;29:2493–2498. [PubMed]
107. Topp MS, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 2014;32:4134–4140. [PubMed]
108. Topp MS, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16:57–66. [PubMed]
109. Viardot A, et al. Treatment of relapsed/refractory diffuse large B-cell lymphoma with the Bispecific T-cell Engager (BiTE®) antibody construct blinatumomab: primary analysis results from an open-label, phase 2 study . Blood. 2014;124:a4460.
110. Zugmaier G, et al. Long-term follow-up of serum immunoglobulin levels in blinatumomab-treated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia. Blood Cancer J. 2014;4:244. [PMC free article] [PubMed]
111. Goebeler M, et al. CD3/CD19 bispecific BiTE antibody blinatumomab treatment of non-Hodgkin lymphoma (NHL) patients: 60 μg/m2/d by continuous infusion is tolerable and results in durable responses [abstract 0559]. Haematologica. 2010;95(Suppl. 2):230.
112. Viardot A, et al. Treatment of patients with non-Hodgkin lymphoma (NHL) with CD19/CD3 bispecific antibody blinatumomab (MT103): double-step dose increase to continuous infusion of 60 μg/m2/d is tolerable and highly effective . Blood. 2010;116:a2880.
113. Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc. Natl Acad. Sci. USA. 1993;90:6444–6448. [PMC free article] [PubMed]
114. Moore PA, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117:4542–4551. [PubMed]
115. Kipriyanov SM, et al. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J. Mol. Biol. 1999;293:41–56. [PubMed]
116. Brinkmann U, Reiter Y, Jung SH, Lee B, Pastan I. A recombinant immunotoxin containing a disulfide-stabilized Fv fragment. Proc. Natl Acad. Sci. USA. 1993;90:7538–7542. [PMC free article] [PubMed]
117. Johnson S, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J. Mol. Biol. 2010;399:436–449. [PubMed]
118. Rothe A, et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125:4024–4031. [PMC free article] [PubMed]
119. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. [PMC free article] [PubMed]
120. Dong H, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 2002;8:793–800. [PubMed]
121. Curiel TJ, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat. Med. 2003;9:562–567. [PubMed]
122. Ruiz-Cabello F, et al. Phenotypic expression of histocompatibility antigens in human primary tumours and metastases. Clin. Exp. Metastasis. 1989;7:213–226. [PubMed]
123. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271:1734–1736. [PubMed]
124. Linsley PS, et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity. 1996;4:535–543. [PubMed]
125. Linsley PS, et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity. 1994;1:793–801. [PubMed]
126. Lenschow DJ, et al. CD28/B7 regulation of TH1 and TH2 subsets in the development of autoimmune diabetes. Immunity. 1996;5:285–293. [PubMed]
127. Parry RV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell Biol. 2005;25:9543–9553. [PMC free article] [PubMed]
128. Latchman YE, et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc. Natl Acad. Sci. USA. 2004;101:10691–10696. [PMC free article] [PubMed]
129. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–151. [PubMed]
130. Gotsman I, et al. Proatherogenic immune responses are regulated by the PD-1/PD-L pathway in mice. J. Clin. Invest. 2007;117:2974–2982. [PMC free article] [PubMed]
131. Waterhouse P, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995;270:985–988. [PubMed]
132. Tivol EA, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–547. [PubMed]
133. Green MR, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116:3268–3277. [PMC free article] [PubMed]
134. Chen BJ, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 2013;19:3462–3473. [PMC free article] [PubMed]
135. Andorsky DJ, et al. Programmed death ligand 1 is expressed by non-Hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin. Cancer Res. 2011;17:4232–4244. [PubMed]
136. Naidoo J, Page DB, Wolchok JD. Immune checkpoint blockade. Hematol. Oncol. Clin. North Am. 2014;28:585–600. [PubMed]
137. Green MR, et al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer Res. 2012;18:1611–1618. [PMC free article] [PubMed]
138. Spranger S, et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. 2013;5:200ra116. [PMC free article] [PubMed]
139. Taube JM, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014;20:5064–5074. [PMC free article] [PubMed]
140. Steidl C, et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature. 2011;471:377–381. [PMC free article] [PubMed]
141. Joos S, et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 2000;60:549–552. [PubMed]
142. Berger R, et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin. Cancer Res. 2008;14:3044–3051. [PubMed]
143. Armand P, et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol. 2013;31:4199–4206. [PMC free article] [PubMed]
144. Westin JR, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15:69–77. [PMC free article] [PubMed]
145. Timmerman J, et al. Nivolumab in patients with relapsed or refractory lymphoid malignancies and classical Hodgkin lymphoma: updated results of a phase I study (CA209-039) . Hematol. Oncol. 2015;33:a010.
146. Garcia-Manero G, et al. A multicohort trial of the safety and efficacy of the PD-1 inhibitor MK-3475 in patients with hematologic malignancies . J. Clin. Oncol. 2014;32(5s Suppl.):TPS3116.
147. US National Library of Medicine . ClinicalTrials.gov 2015. https://clinicaltrials.gov/ct2/show NCT01953692.
148. Ansell SM, et al. PD-1 Blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 2015;372:311–319. [PMC free article] [PubMed]
149. Armand P, et al. Nivolumab in patients with relapsed or refractory Hodgkin lymphoma — preliminary safety, efficacy and biomarker results of a phase I study . Blood. 2014;124:a289.
150. Moskowitz CH, et al. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013) . Blood. 2014;124:a290.
151. Brahmer JR, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012;366:2455–2465. [PMC free article] [PubMed]
152. US National Library of Medicine ClinicalTrials.gov 2015 https://clinicaltrials.gov/ct2/show/NCT02220842?term=NCT02220842&rank=1.
153. US National Library of Medicine ClinicalTrials.gov 2015 https://clinicaltrials.gov/ct2/show/NCT01775631.
154. Ansell SM, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 2009;15:6446–6453. [PMC free article] [PubMed]
155. Weber JS. Practical management of immune-related adverse events from immune checkpoint protein antibodies for the oncologist. Am. Soc. Clin. Oncol. Educ. Book. 2012;2012:174–177. [PubMed]
156. Weber JS, Yang JC, Atkins MB, Disis ML. Toxicities of immunotherapy for the practitioner. J. Clin. Oncol. 2015;33:2092–2099. [PMC free article] [PubMed]
157. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015;373:23–34. [PubMed]
158. Bristol-Myers Squibb Yervoy (ipilimumab): Immune-mediated adverse reaction management guide https://www.hcp.yervoy.com/pdf/rems-management-guide.pdf.
159. Lesokhin AM, et al. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies . Blood. 2014;124:a291.
160. US National Library of Medicine ClinicalTrials.gov 2015 https://clinicaltrials.gov/ct2/show/ NCT02038946?term=NCT02038946&rank=1.
161. US National Library of Medicine ClinicalTrials.gov 2015 https://clinicaltrials.gov/ct2/show/NCT02038933?term=NCT02038933&rank=1.
162. US National Library of Medicine ClinicalTrials.gov 2015 https://clinicaltrials.gov/ct2/show/NCT02181738?term=NCT02181738&rank=1.
163. US National Library of Medicine ClinicalTrials.gov 2015 https://clinicaltrials.gov/ct2/show/NCT01592370?term=NCT01592370&rank=1.
164. Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N. Engl. J. Med. 2015;372:2018–2028. [PubMed]
165. Carbognin L, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE. 2015;10:e0130142. [PMC free article] [PubMed]
166. Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 2014;371:2189–2199. [PMC free article] [PubMed]
167. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–128. [PMC free article] [PubMed]
168. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. [PMC free article] [PubMed]
169. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. [PMC free article] [PubMed]
170. Reichel J, et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed–Sternberg cells. Blood. 2015;125:1061–1072. [PubMed]
171. Lin JH, et al. Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1. Blood. 2015;125:2228–2238. [PubMed]
172. Bashey A, et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113:1581–1588. [PMC free article] [PubMed]

In this Review, we describe the most promising agents in clinical development for the treatment of lymphoma, and provide expert opinion on new strategies that might enable more streamlined drug development. We also address new approaches for patient selection and for incorporating new end points into clinical trials.

Nat Rev Clin Oncol. Author manuscript; available in PMC 2017 Sep 25.
Published in final edited form as:
PMCID: PMC5611863
NIHMSID: NIHMS897656

The landscape of new drugs in lymphoma

Abstract

The landscape of drugs for the treatment of lymphoma has become crowded in light of the plethora of new agents, necessitating the efficient prioritization of drugs for expedited development. The number of drugs available, and the fact that many can be given for an extended period of time, has resulted in the emergence of new challenges; these include determining the optimal duration of therapy, and the need to balance costs, benefits, and the risk of late-onset toxicities. Moreover, with the increase in the number of available investigational drugs, the number of possible combinations is becoming overwhelming, which necessitates prioritization plans for the selective development of novel combination regimens. In this Review, we describe the mospromising agents in clinical development for the treatment of lymphoma, and provide expert opinion on new strategies that might enable more streamlined drug development. We also address new approaches for patient selection and for incorporating new end points into clinical trials.

Hundreds of new agents are currently being evaluated in preclinical and clinical settings for the treatment of cancer, and the failure rate of drug development processes remains very high1. The majority of agents are not successful owing to unacceptable toxicities and/or a lack of antitumour efficacy. Biomarkers to enable selection of patients for a specific therapy and the development of mechanism-based combination regimens are among the strategies that are being deployed to improve the success of drug development. However, drug development, unfortunately, remains a lengthy process that delays the availability of potentially life-saving new drugs. To help overcome these obstacles, innovative clinical trial designs that incorporate robust clinical end points and informative biomarkers are needed.

In recent years, several drugs have received regulatory approval for the treatment of lymphoma, including the antibody-drug conjugate brentuximab vedotin, the novel glycol-engineered anti-CD20 antibody obinutuzumab, the B-cell receptor signalling inhibitor ibrutinib, the PI3K-δ inhibitor idelalisib, and the immunomodulatory drug lenalidomide. Many unapproved targeted drugs have also demonstrated promising efficacy, including the BCL2 inhibitor venetoclax, the second-generation inhibitor of Bruton tyrosine kinase (BTK) acalabrutinib and several antibody-drug conjugates. In addition, various immunotherapies have also demonstrated efficacy in patients with lymphoma, such as mono-specific and bi-specific antibodies, immune-checkpoint inhibitors, and engineered chimeric antigen receptor (CAR) T cells. Thus, the drug landscape for lymphoma has become crowded, necessitating the rational prioritization of the development and selection of combination therapies for these patients. Herein, we provide an overview of the current landscape of drug development in lymphoma, including the mospromising agents currently in clinical testing, and provide expert opinion on new strategies that might enable streamlining of the drug development process.


Plaats een reactie ...

Reageer op "Lymfklierkanker en leukemie kennen verschillende vormen en stadia. Hier een recente studie van de belangrijkste behandelingsopties, vooral met vormen van immuuntherapie"


Gerelateerde artikelen