14 september 2021: zie ook dit artikel: https://kanker-actueel.nl/bremachlorofyl-radachlorofyl-vermindert-bijwerkingen-bij-chemo-en-verbetert-kwaliteit-van-leven-van-lymfklierkankerpatienten-ziekte-van-hodgkin-na-8-weken-gebruik.html

14 september 2021: 14 september 2012: Zie ook een document waarin beschreven wat PDT - Fotodynamische Therapie met bremachlorofyl kan bewerkstelligen en het werkingsmechanisme wordt uitgelegd hoe PDT een immuunreactie kan bewerkstelligen: PDT induced Immunity

10 september 2021: Bron: Biomedical Optics Express Vol. 12, Issue 7, pp. 3878-3886 (2021)

PDT - Fotodynamische Therapie is in vergelijking met een gewone operatie een manier van opereren die een aantal voordelen heeft op een gewone operatie. Uit verschillende dierstudies bij muizen met borstkanker ingespoten blijkt dat, naast dat PDT minder belastend is omdat het niet in een lichaam snijdt en er geen bloed aan te pas komt maar tumoren vernietigt door licht, een behandeling met PDT ook ervoor zorgt dat er minder tumorcellen in het bloed terecht komen en daardoor voor minder kans op uitzaaiingen zorgt. 

Uit studies blijkt dat in bloed circulerend tumorweefsel minimaal is wanneer er PDT is toegepast. Het optreden van een recidief van de primaire tumor wordt veel langer uitgesteld in de PDT-groep in vergelijking met de operatiegroep. De onderzoekers stellen dat uitzaaiingen zijn gerelateerd aan in bloed circulerende tumorcellen.  Bij de met PDT behandelde muizen werden ook geen uitzaaiingen gezien in de longen of lever.

De onderzoekers stellen dan ook dat hun resultaten suggereren dat PDT effectief uitzaaingen kan verminderen door in bloed circulerende tumorcellen te minimaliseren en deze aanpak lijkt een uitstekende technologie voor de behandeling van borstkanker.

Het studierapport is gratis in te zien of te downloaden. Klik op de titel van het abstract:

Biomedical Optics Express

Abstract

Cancer metastasis after traditional surgery introduces a high barrier to therapy efficacy. Photodynamic therapy (PDT) for cancer is based on a photochemical process of photosensitizers that concentrate in tumors and release oxidant species under light excitation to destroy cells. Compared with traditional surgery, PDT provides minimal invasion and targeted therapy. In this in vivo study, we monitor the real-time and long-term dynamics of circulating tumor cells (CTCs) after a single round of PDT and after surgical resection in a breast cancer animal model. The CTC level is low after PDT treatment, and the recurrence of the primary tumor is postponed in the PDT group compared with the resection group. We find that metastasis is correlated with the CTC level, and the PDT-treated mice show no metastasis in the lung or liver. Our results suggest PDT can effectively reduce metastasis by minimizing CTCs after treatment and is a great technology for breast cancer therapy.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement


References

  • View by:
  •    
  • |
  •    
  • |
  •    
  • |
  •  

  1. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nat. Rev. Cancer 3(5), 380–387 (2003).
     
  2. P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, and D. Kessel, “Photodynamic therapy of cancer: an update,” CA: A Cancer Journal for Clinicians 61(4), 250–281 (2011).
     
  3. R. R. Allison and C. H. Sibata, “Oncologic photodynamic therapy photosensitizers: a clinical review,” Photodiagn. Photodyn. Ther. 7(2), 61–75 (2010).
     
  4. R. Bonnett, “Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy,” Chem. Soc. Rev. 24(1), 19–33 (1995).
     
  5. M. Lan, S. Zhao, W. Liu, C. S. Lee, W. Zhang, and P. Wang, “Photosensitizers for photodynamic therapy,” Adv. Healthcare Mater. 8(13), 1900132 (2019).
     
  6. W. Hongcharu, C. R. Taylor, D. Aghassi, K. Suthamjariya, R. R. Anderson, and Y. Chang, “Topical ALA-photodynamic therapy for the treatment of acne vulgaris,” J. Invest. Dermatol. 115(2), 183–192 (2000).
     
  7. T. C. Zhu and J. C. Finlay, “The role of photodynamic therapy (PDT) physics,” Med. Phys. 35(7Part1), 3127–3136 (2008).
     
  8. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
     
  9. S. Mallidi, S. Anbil, A.-L. Bulin, G. Obaid, M. Ichikawa, and T. Hasan, “Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy,” Theranostics 6(13), 2458–2487 (2016).
     
  10. C. L. Chaffer and R. A. Weinberg, “A perspective on cancer cell metastasis,” Science 331(6024), 1559–1564 (2011).
     
  11. V. Plaks, C. D. Koopman, and Z. Werb, “Circulating tumor cells,” Science 341(6151), 1186–1188 (2013).
     
  12. S. A. Joosse, T. M. Gorges, and K. Pantel, “Biology, detection, and clinical implications of circulating tumor cells,” EMBO Mol Med 7(1), 1–11 (2015).
     
  13. P. C. Bailey and S. S. Martin, “Insights on CTC biology and clinical impact emerging from advances in capture technology,” Cells 8(6), 553 (2019).
     
  14. C. Behrenbruch, C. Shembrey, S. Paquet-Fifield, C. Mølck, H.-J. Cho, M. Michael, B. N. Thomson, A. G. Heriot, and F. Hollande, “Surgical stress response and promotion of metastasis in colorectal cancer: a complex and heterogeneous process,” Clin. Exp. Metastasis 35(4), 333–345 (2018).
     
  15. P. C. Kousis, B. W. Henderson, P. G. Maier, and S. O. Gollnick, “Photodynamic therapy enhancement of antitumor immunity is regulated by neutrophils,” Cancer Res. 67(21), 10501–10510 (2007).
     
  16. T. Nojiri, T. Hamasaki, M. Inoue, Y. Shintani, Y. Takeuchi, H. Maeda, and M. Okumura, “Long-term impact of postoperative complications on cancer recurrence following lung cancer surgery,” Ann Surg Oncol 24(4), 1135–1142 (2017).
     
  17. K. Shyamala, H. Girish, and S. Murgod, “Risk of tumor cell seeding through biopsy and aspiration cytology,” J Int Soc Prevent Communit Dent 4(1), 5 (2014).
     
  18. V. Müller, N. Stahmann, S. Riethdorf, T. Rau, T. Zabel, A. Goetz, F. Jänicke, and K. Pantel, “Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity,” Clin. Cancer Res. 11(10), 3678–3685 (2005).
     
  19. Y. Suo, C. Xie, X. Zhu, Z. Fan, Z. Yang, H. He, and X. Wei, “Proportion of circulating tumor cell clusters increases during cancer metastasis,” Cytometry 91(3), 250–253 (2017).
     
  20. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, and A. Muzikansky, “Isolation of rare circulating tumour cells in cancer patients by microchip technology,” Nature 450(7173), 1235–1239 (2007).
     
  21. E. I. Galanzha, M. S. Kokoska, E. V. Shashkov, J. W. Kim, V. V. Tuchin, and V. P. Zharov, “In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles,” J. Biophoton. 2(8-9), 528–539 (2009).
     
  22. V. Tuchin, “In vivo optical flow cytometry and cell imaging,” Opt. Express 14(17), 7789 (2006).
     
  23. E. S. Lianidou, A. Markou, and A. Strati, “The role of CTCs as tumor biomarkers,” Advances in Cancer Biomarkers 867, 341–367 (2015).
     
  24. F.-C. Bidard, “Circulating tumor cells, a tremendous prognostic factor in inflammatory breast cancer,” J. Natl. Cancer Inst. 107(11), djv281 (2015).
     
  25. S. Braun, F. Vogl, B. Naume, W. Janni, and K. Pantel, “A pooled analysis of bone marrow micrometastasis in breast cancer,” N Engl J Med 353(8), 793–802 (2005).
     
  26. M. Korbelik, “PDT-associated host response and its role in the therapy outcome,” Lasers Surg. Med. 38(5), 500–508 (2006).
     
  27. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, and Q. Peng, “Photodynamic therapy,” J. Natl. Cancer Inst. 90(12), 889–905 (1998).
     
  28. G. Krosl, M. Korbelik, and G. J. Dougherty, “Induction of immune cell infiltration into murine SCCVII tumour by photofrin-based photodynamic therapy,” Br. J. Cancer 71(3), 549–555 (1995).
     
  29. R. Bhuvaneswari, Y. Y. Gan, K. C. Soo, and M. Olivo, “The effect of photodynamic therapy on tumor angiogenesis,” Cell. Mol. Life Sci. 66(14), 2275–2283 (2009).
     
  30. B. Krammer, “Vascular effects of photodynamic therapy,” Anticancer Res. 14(5), 323–328 (1996).
     
  31. W. Wang, L. Moriyama, and V. Bagnato, “Photodynamic therapy induced vascular damage: an overview of experimental PDT,” Laser Phys. Lett. 10(2), 023001 (2013).
     
  32. M. Khurana, E. H. Moriyama, A. Mariampillai, K. S. Samkoe, D. Cramb, and B. C. Wilson, “Drug and light dose responses to focal photodynamic therapy of single blood vessels in vivo,” J. Biomed. Opt. 14(6), 064006 (2009).
     
  33. F. Borgia, R. Giuffrida, E. Caradonna, M. Vaccaro, F. Guarneri, and S. P. Cannavò, “Early and late onset side effects of photodynamic therapy,” Biomedicines 6(1), 12 (2018).
     
  34. L. P. Martinelli, I. Iermak, L. T. Moriyama, M. B. Requena, L. Pires, and C. Kurachi, “Optical clearing agent increases effectiveness of photodynamic therapy in a mouse model of cutaneous melanoma: an analysis by Raman microspectroscopy,” Biomed. Opt. Express 11(11), 6516–6527 (2020).
     

Plaats een reactie ...

Reageer op "PDT - Fotodynamische therapie vermindert kans op uitzaaiingen van borstkanker doordat er veel minder in bloed circulerende tumorcellen zijn."


Gerelateerde artikelen