21 oktober 2021: Bron:  2015; 10(5): e0127219. Published online 2015 May 26

We krijgen wat vragen hoe nu precies de laserwatch precies werkt. Ik ben daarvoor op zoek gegaan naar wat meer informatie en kwam o.a. op deze studie / beschrijving. Abstract staat verderop in dit artikel.

Extracorporeal Photo-Immunotherapy for Circulating Tumor Cells


Al in 2015 publiceerden Japanse onderzoekers een manier om PDT - Foto Dynamische Therapie toe te passen op in bloed circulerende tumorcellen. Deze manier wordt Extracorporele fotoferese (ECP) genoemd. Zij gebruikten daarvoor een zoals zij dat noemen extracorporale buis, een dunne transparante medische buis en belichten het bloed dat door de buis heen stroomde met PDT met een golflengte van 660 selectieveNm. gegenereerd door een LED-array. Zoals ook de laserwatch belicht met 660 Nm.. 

Een blootstelling van twee minuten was voldoende om  kankercelnecrose te bereiken, schrijven deze onderzoekers. Dus in 2 minuten werden tumorcellen gedood door het licht. Met de laserwatch zijn ook al enkele patiënten 'behandeld' met een soortgelijke manier waarbij deal belicht werd buiten het lichaam voordat het via een infuus het bloed in ging. In feite een min of meer zelfde manier van belichten buiten het lichaam. Maar ik zal Andrei dit artikel sturen en vragen om zijn commentaar. 

Uit het studieverslag vertaald om proberen duidelijk te maken hoe deze manier van PDT - Foto Dynamische therapie dus werkt:

Hier stellen we een benadering voor met behulp van extracorporale fotodynamische therapie (PDT of foto-immunotherapie) in combinatie met antilichaamtargeting. PDT vereist drie componenten, namelijk: zuurstof, een fotosensibilisator en licht (voornamelijk in het zichtbare bereik). Deze moeten allemaal tegelijkertijd aanwezig zijn om de fotosensibilisator te activeren, reactieve zuurstof te genereren (voornamelijk singlet zuurstof O2 _) en cellen of weefsels te beschadigen. Bovendien is de toxiciteit van de reactieve zuurstofspecies gelokaliseerd in de cel in direct contact ermee, vanwege de korte (< 100 nm) diffusieafstand. [].

Deze kenmerken resulteren in een hoge doelspecificiteit met bijna nul nevenschade aan aangrenzende cellen/weefsels, waardoor PDT een effectieve en veiligere behandeling is in vergelijking met conventionele bestraling en chemotherapie. Ondanks deze voordelen kan zichtbaar licht nauwelijks door weefsel heen dringen, [] vooral in aanwezigheid van bloed (een zichtbaar lichtabsorbeerder) en water (een IR-lichtabsorbeerder) en dus is de toepassing van PDT voornamelijk beperkt tot ziekten in geopende/topische gebieden, waaronder huid, hoofd, nek, longen, tanden, enz.

In deze studie hebben we de haalbaarheid aangetoond van een nieuwe therapeutische toepassing van PDT voor hematologische pathogenen - vormen van bloedkanker, door middel van antilichaamtargeting en een extracorporaal apparaat om de limiet van de weefselpenetratiediepte van PDT te overwinnen. 

We hebben een fotosensitizer (chloor E6 (Ce6)) - antilichaam (anti-CD44)-conjugaat (Ce6-CD44 Ab-conjugaat) ontwikkeld om het fotosensibiliserende middel selectief aan CTC's te leveren (in dit geval PC-3-cellen). PDT werd uitgevoerd door het bloed door een dunne transparante medische buis te laten stromen (Fig 1) en vertoonde een significant verbeterde werkzaamheid van celdoding. Een bijkomend voordeel van deze techniek is dat het antilichaam binnen enkele dagen veilig uit het lichaam kan worden verwijderd door natuurlijke antilichaamafbraakmechanismen []. 


Hieronder grafisch uitgelegd hoe de Japanse onderzoekers te werk gingen. 

An external file that holds a picture, illustration, etc.
Object name is pone.0127219.g001.jpg
Schematic of the proposed device in operation.

Photosensitizer-antibody conjugate is injected prior to PDT procedure. Blood circulation was guided by medical tubing with a peristaltic pump. Extracorporeal PDT is performed as the blood flows through the tube inside a reflective chamber. The treated blood is returned to body. All procedures are accomplished in a constant flow mode.

PDT was performed using high power (maximum 100 W input) 660 nm LED array shown in Fig 2(A) (LEDwholesalers.com). Samples were placed within an aluminum foil covered styrofoam chamber shown in Fig 2(B) and Fig 2(C) and illuminated. The duration of illumination was carefully optimized for minimum exposure to PDT treatment.

An external file that holds a picture, illustration, etc.
Object name is pone.0127219.g002.jpg


Fig 2
Extracorporeal PDT setup.

(a) 660 nm LED-array, (b) de met aluminiumfolie bedekte kamer gemaakt van piepschuimdoos met twee buizen gevuld met bloed. (c) PDT wordt uitgevoerd door de LED-array bovenop de kamer te plaatsen. Een belichting van 2 minuten werd uitgevoerd om de extracorporale bloedcirculatie te simuleren.

Naast onderstaand studieverslag zijn recentere studies gepubliceerd, ook uitgevoerd bij kankerpatiënten, die ook refereren aan bovenstaand beschreven studieverslag. Klik op de titels voor de studieverslagen. daaronder abstract plus referentielijst van bovenstaand studieverslag.

Cited by other articles in PMC

 2015; 10(5): e0127219.
Published online 2015 May 26. doi: 10.1371/journal.pone.0127219
PMCID: PMC4444246
PMID: 26011055

Extracorporeal Photo-Immunotherapy for Circulating Tumor Cells

Gwangseong Kim 1 , 2 and Angelo Gaitas 1 , 2 ,*
Hiromu Suzuki, Academic Editor

Abstract

It is well established that metastasis through the circulatory system is primarily caused by circulating tumor cells (CTCs). In this preliminary effort, we report an approach to eliminate circulating tumor cells from the blood stream by flowing the blood though an extracorporeal tube and applying photodynamic therapy (PDT). Chlorin e6 (Ce6), a photosensitizer, was conjugated to CD44 antibody in order to target PC-3, a prostate cancer cell line. PC-3 cells were successfully stained by the Ce6-CD44 antibody conjugate. PDT was performed on whole blood spiked with stained PC-3 cells. As the blood circulated through a thin transparent medical tube, it was exposed to light of 660 nm wavelength generated by an LED array. An exposure of two minutes was sufficient to achieve selective cancer cell necrosis. In comparison, to PDT of cells growing inside a tissue culture, the PDT on thin tube exhibited significantly enhanced efficiency in cell killing, by minimizing light attenuation by blood. It suggests a new extracorporeal methodology of PDT for treating CTCs as well as other hematological pathogens.

Discussion

We have adequately demonstrated in our preliminary studies the utility of PDT in killing CTCs using a tubing and appropriate antibody binding technology. PDT is an effective alternative treatment modality that addresses several of the drawbacks of conventional treatments in cancer and in other diseases. However, the absorption of visible light by blood (especially due to the red blood cells' hemoglobins) significantly reduces the penetration of light through tissue. This is evident in our results shown in "PDT in blood" column of Fig 3, where PC-3 cells were cultured on a 12-well plate. Following a two minute illumination 2 hours later the many cells were still alive. In contrast, the cells in media were completely wiped out by the two minute illumination in the absence of blood within the first 15 minutes. These results clearly demonstarte that cellular and other components present in blood can hamper efficacy of PDT in killing your target cells.

The results, from Fig 4, where PDT was performed in a tube exhibited improved efficacy. Majority of cell death could be achieved before 1 hour following two minute illumination. We believe that the improvement came from the utilization of the narrow tube that reduced light attenuation by blood. The tube used in this study is a transparent PDMS tube with 1.02 mm inner diameter. Since the light came from all the directions surrounding the tube in the reflective chamber, the thin diameter of tube allowed for nearly the entire sample to be within the penetration depth of light. More exposure to light resulted in better outcomes with PDT. These results promise a new effective treatment modality for hematological pathogens using PDT, overcoming its penetration depth limitation.

The experimental parameters used in this investigation, such as the choice of photosensitizer, the illumination time, the antibody, the type of tube material, size of tube (length and diameter), the light source etc. need further refinement. These parameters need to be adequately addressed and optimized to obtain maximum efficacy of PDT, especially with consideration to in vivo constant flow conditions.

A similar extracorporeal approach was suggested previously by Edelson et al. [] where the "extracorporeal photopheresis (ECP)" concept was first reported. This technology aims to destroy white blood cells in the blood. The fact that this principle is based on UV light and the photosentizer is used without prior targeting, the white blood cells (WBCs) are required to be separated by apheresis to avoid interference by red blood cells (RBCs) and thereby prevent collateral damages to other blood cells. Then the isolated WBCs are treated with UV illumination and re-injected in the body along with other blood components. This technology is used to treat cutaneous T-cell lymphoma by reducing tumor burden and graft-versus-host diseases (GVHD) in organ transplantation by suppressing immune reaction against foreign organs and is currently approved by the FDA. Our present approach has numerous advantages over photopheresis, such as 1) It does nor require time-consuming processes to separate blood cellular components, 2) Our technology achieves active targeting to specific cells of interest and finally 3) Our PDT utilizes light activation in the far-red/near infrared wavelengths that is less harmful and has deeper penetration depth.

In addition, the photosensitizer-antibody conjugates can be used as an imaging contrast to detect metastasized cancers, as well as adapted to other treatment modalities, including endoscopic photodynamic therapy and the ability to target the lymphatic system. and several other diseases. It complements the current approaches that are being used to reduce the number of CTCs in medical centers worldwide.

Acknowledgments

We would like to thank Dr. Ricky Malhotra for providing us with valuable feedback.

Funding Statement

This research was funded by National Institutes of Health (grant # GM084520). Kytaro, Inc. provided support in the form of salaries for authors AG and GK, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.

Data Availability

All relevant data are within the paper and its Supporting Information files.

References

1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasisScience. 2011;331(6024):1559–64. 10.1126/science.1203543 [PubMed] [CrossRef[]
2. López‐Riquelme N, Minguela A, Villar‐Permuy F, Ciprian D, Castillejo A, Álvarez‐López MR, et al. Imaging cytometry for counting circulating tumor cells: Comparative analysis of the CellSearch vs ImageStream systemsApmis. 2013;121(12):1139–43. 10.1111/apm.12061 [PubMed] [CrossRef[]
3. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, et al. Isolation of rare circulating tumour cells in cancer patients by microchip technologyNature. 2007;450(7173):1235–9. [PMC free article] [PubMed[]
4. Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheetsNature nanotechnology. 2013;8(10):735–41. 10.1038/nnano.2013.194 [PMC free article] [PubMed] [CrossRef[]
5. Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert JR. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation Molecular Staging of Cancer: Springer; 2003. p. 149–55. [PubMed[]
6. Lu J, Fan T, Zhao Q, Zeng W, Zaslavsky E, Chen JJ, et al. Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patientsInternational Journal of Cancer. 2010;126(3):669–83. 10.1002/ijc.24814 [PMC free article] [PubMed] [CrossRef[]
7. Adams D, Makarova O, Zhu P, Li S, Amstutz PT, Tang C-M. Rapid and Efficient Isolation of Circulating Tumor Cells using High Porosity Precision MicrofiltersPresented at Cancer Detection and Diagnostics Technologies for Global Health301:983–1650. []
8. Adams D, Makarova O, Zhu P, Li S, Amstutz PT, Tang C-M, editors. Isolation of circulating tumor cells by size exclusion using lithography fabricated precision microfilters. Proceedings 102nd AACR meeting; 2011.
9. Sieben S, Bergemann C, Lübbe A, Brockmann B, Rescheleit D. Comparison of different particles and methods for magnetic isolation of circulating tumor cellsJournal of magnetism and magnetic materials. 2001;225(1):175–9. []
10. Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh K-H, Yu W, et al. Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper deviceProceedings of the National Academy of Sciences. 2009;106(10):3970–5. 10.1073/pnas.0813188106 [PMC free article] [PubMed] [CrossRef[]
11. Hu Y, Fan L, Zheng Je, Cui R, Liu W, He Y, et al. Detection of circulating tumor cells in breast cancer patients utilizing multiparameter flow cytometry and assessment of the prognosis of patients in different CTCs levelsCytometry Part A. 2010;77(3):213–9. 10.1002/cyto.a.20838 [PubMed] [CrossRef[]
12. Kim M-Y, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH-F, Norton L, et al. Tumor self-seeding by circulating cancer cellsCell. 2009;139(7):1315–26. 10.1016/j.cell.2009.11.025 [PMC free article] [PubMed] [CrossRef[]
13. Edelman MJ, Potter P, Mahaffey KG, Frink R, Leidich RB. The potential for reintroduction of tumor cells during intraoperative blood salvage: reduction of risk with use of the RC-400 leukocyte depletion filterUrology. 1996;47(2):179–81. [PubMed[]
14. Frühauf N, Dumpich O, Kaudel C, Kasimir-Bauer S, Oldhafer K. Filtration of malignant cells: tumour cell depletion in an ex vivo model using a leukocyte adhesion filterPerfusion. 2001;16(1 suppl):51–5. [PubMed[]
15. Perseghin P, Vigano M, Rocco G, Pona C, Buscemi A, Rizzi A. Effectiveness of leukocyte filters in reducing tumor cell contamination after intraoperative blood salvage in lung cancer patientsVox sanguinis. 1997;72(4):221–4. [PubMed[]
16. Rana K, Liesveld JL, King MR. Delivery of apoptotic signal to rolling cancer cells: A novel biomimetic technique using immobilized TRAIL and E‐selectinBiotechnology and bioengineering. 2009;102(6):1692–702. 10.1002/bit.22204 [PubMed] [CrossRef[]
17. King MR, Western LT, Rana K, Liesveld JL. Biomolecular surfaces for the capture and reprogramming of circulating tumor cellsJournal of Bionic Engineering. 2009;6(4):311–7. []
18. Mitchell MJ, Wayne E, Rana K, Schaffer CB, King MR. TRAIL-coated leukocytes that kill cancer cells in the circulationProceedings of the National Academy of Sciences. 2014;111(3):930–5. 10.1073/pnas.1316312111 [PMC free article] [PubMed] [CrossRef[]
19. Angelo Gaitas GK. Extracorporeal cleansing device for the removal of cancer cells and other disease causing cells and molecules. PlosOne2014.
20. Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygenPhotochemistry and photobiology. 1991;53(4):549–53. 10.1111/j.1751-1097.1991.tb03669.x [PubMed] [CrossRef[]
21. Niedre M, Patterson MS, Wilson BC. Direct Near-infrared Luminescence Detection of Singlet Oxygen Generated by Photodynamic Therapy in Cells In Vitro and Tissues In Vivo¶Photochemistry and photobiology. 2002;75(4):382–91. 10.1562/0031-8655(2002)0750382dnildo2.0.co2 [PubMed] [CrossRef[]
22. Doiron DR, Svaasand LO, Profio AE. Light dosimetry in tissue: application to photoradiation therapy Porphyrin Photosensitization: Springer; 1983. p. 63–76. [PubMed[]
23. Stolik S, Delgado J, Perez A, Anasagasti L. Measurement of the penetration depths of red and near infrared light in human “ex vivo” tissuesJournal of Photochemistry and Photobiology B: Biology. 2000;57(2):90–3. [PubMed[]
24. Taliaferro WH. General introduction: Synthesis and degradation of antibodyJournal of Cellular and Comparative Physiology. 1957;50(S1):1–26. 10.1002/jcp.1030500403 [PubMed] [CrossRef[]
25. Draffin JE, McFarlane S, Hill A, Johnston PG, Waugh DJ. CD44 potentiates the adherence of metastatic prostate and breast cancer cells to bone marrow endothelial cellsCancer research. 2004;64(16):5702–11. [PubMed[]
26. Edelson R, Berger C, Gasparro F, Jegasothy B, Heald P, Wintroub B, et al. Treatment of Cutaneous T-Cell Lymphoma by Extracorporeal PhotochemotherapyNew England Journal of Medicine. 1987;316(6):297–303. 10.1056/NEJM198702053160603 . [PubMed] [CrossRef[]

Articles from PLoS ONE are provided here courtesy of Public Library of Science

Plaats een reactie ...

Reageer op "PDT - Foto Dynamische Therapie op in bloed circulerende tumorcellen toe passen op het bloed in een extracorporale buis heeft groot effect op doden van tumorcellen."


Gerelateerde artikelen