Zie ook in gerelateerde artikelen hieronder of hiernaast:

Zie ook dit artikel: https://kanker-actueel.nl/NL/wat-houdt-car-t-celtherapie-in-zie-overzicht-en-stand-van-zaken-met-extra-aandacht-voor-car-t-celt-therapie-bij-acute-myeloide-leukemie.html

14 oktober 2025: Bron: EHA 2018 en BLOOD d.d. 29 November 2018, Page 901

Immuuntherapie via CAR-T celtherapie bij Acute Myeloide Leukemie - AML is heel lastig wegens de afwezigheid van receptoren zogeheten antigenen waar een medicijn zich op kan richten en dat zowel effectief als veilig is, aangezien Acute Myeloide Leukemie - AML cellen de meeste oppervlakteantigenen delen met gezonde stamcellen en progenitorcellen (HSPC's).

In een fase I veiligheidstudie gaf een samengestelde CAR-T cel antigene receptor immuuntherapie, dus een dubbele CAR-T cel therapie gericht tegen de oppervlakte-eiwitten CLL1 en CD33 goede resultaten. CD33 komt voor op myeloïde leukemische blasten, maar ook op normale cellen van de bloedcellen in het beenmerg en bloedstamcellen (HSC). CLL1 komt voor op kwaadaardige cellen bij meer dan 90% van de patiënten met Acute Myeloide Leukemie - AML. Het komt ook voor op een klein deel van de chemotherapieresistente leukemische stamcellen. Op normale cellen is dit antigeen beperkt tot de bloedcellen in het beenmerg, en het komt niet voor op de bloedstamcellen (HSC). Zowel in verschillende muizenstudies als in een case studie bij een 46-jarigevrouw met een recidief na een stamceltransplantatie blijkt deze aanpak met een dubbele CAR-T cel therapie effectief en veilig .

In een video op You Tube legt prof. dr. Fang Liu uit hoe zij de samengestelde CAR-T cel antigene receptor immuuntherapie met CLL1 en CD33 hebben ontwikkeld. Zie het abstract van de studie verderop in dit artikel. Het studierapport is gratis in te zien. Download de PDF 


In 2024 publiceerden Amerikaanse onderzoekers ook een CAR-T celtherapie gericht op twee antigene receptoren. Het Hematon omschrijft dit als volgt: dit is een CD123-specifiek single-chain variable fragment (scFv). Door het te combineren met een GRP78-specifiek peptide antigen recognition domain, is een peptidesc-Fv bi-specifiek antigen recognition domain (78.123) gecreëerd. Deze therapie is zowel in vitro als in vivo effectiever gebleken dan CAR T-celtherapie die zich richt op één antigeen.

Hier een grafische weergave van het abstract (tekst gaat verder onder grafiek):

graphic file with name fx1.jpg


Belangrijkste punten van de studie: 

•De meest effectieve strategie om meerdere antigenen aan te pakken blijft ongrijpbaar
•Peptide-scFv-antigeenherkenningsdomeinen maken effectieve targeting op twee antigenen mogelijk
•Structurele configuratie beïnvloedt de toegankelijkheid van antigenen en de CAR-effectorfunctie

Zie abstract en volledige studierapport verderop in dit artikel.

Hier het abstract van de studie tegen de oppervlakte-eiwitten CLL1 en CD33 : Het studierapport is gratis in te zien. Download de PDF 


First-in-Human CLL1-CD33 Compound CAR T Cell Therapy Induces Complete Remission in Patients with Refractory Acute Myeloid Leukemia: Update on Phase 1 Clinical Trial

https://doi.org/10.1182/blood-2018-99-110579Get rights and content
Under an Elsevier user license
Open archive

Abstract

Background
CD19-specific chimeric antigen receptor (CAR) T cell therapy has achieved high efficacy in acute lymphoblastic leukemia patients. However, the treatment of acute myeloid leukemia (AML) has remained a particular challenge due to the heterogeneity of AML bearing cells, which renders single antigen targeting CAR T cell therapy ineffective. CLL1 and CD33 are often used as targets for AML CAR T cell therapy. CLL1 is associated with leukemia stem cells and disease relapse, and CD33 is expressed on the bulk AML disease. Previously, we demonstrated the profound anti-tumor activity of CLL1-CD33 compound CAR (cCAR) T cells. Here we present the efficacy of cCAR in preclinical study and update the success in level 1 dose escalation clinical trial on relapsed/refractory AML patients.

Methods
We engineered a cCAR comprising of an anti-CLL1 CAR linked to an anti- CD33 CAR via a self-cleaving P2A peptide and expressing both functional CAR molecules on the surface of a T-cell cell. We tested the anti-leukemic activities of CLL1-CD33 cCAR using multiple AML cell lines, primary human AML samples, human leukemia cell line (REH cells) expressing either CLL1 or CD33, and multiple mouse models. An alemtuzumab safety switch has also been established to ensure the elimination of CAR T cells following tumor eradication. Children and adults with relapsed/refractory AML were enrolled in our phase 1 dose escalation trial with primary objective to evaluate the safety of cCAR and secondary objective to assess the efficacy of cCAR anti-tumor activity.

Results
Co-culture assays results showed that cCAR displayed profound tumor killing effects in AML cell lines, primary patient samples and multiple mouse model systems. Our preclinical findings suggest that cCAR, targeting two discrete AML antigens: CLL1 and CD33, is an effective two-pronged approach in treating bulk AML disease and eradicating leukemia stem cells. Patients enrolled in the phase 1 dose escalation trial have shown remarkable response to cCAR treatment. Noticeably, a 6-yr-old female patient diagnosed with a complex karyotype AML including FLT3-ITD mutation had achieved complete remission. The patient was diagnosed with Fanconi anemia, which had progressed to juvenile myelomonocytic leukemia and eventually transformed into AML. The patient had been resistant to multiple lines of treatments, including 5 cycles of chemotherapy with FLT3 inhibitor prior to receiving cCAR. Before the treatment, patient's leukemia blasts comprised 73% of the peripheral blood mononuclear cells and 81% of the bone marrow. Patient underwent lymphodepletion therapy (Fludarabine and Cyclophosphamide) prior to cCAR infusion. Two split doses, each consisting of 1x106/kg CAR T cells, were infused on day 1 and day 2 respectively. On day 12, while leukemia blast still counting up to 98% of the bone marrow (Fig. 1A), robust CAR T cell expansion was detected in both peripheral blood and bone marrow. On day 19, patient achieved MRD- complete remission with bone marrow aspirates revealing complete ablation of myeloid cells (Fig. 1B). Flow cytometry confirmed the absence of leukemia blasts and showed that CAR T cells comprised 36% of the PBMC and 60% of the bone marrow. The patient later underwent non-myeloablative hematopoietic cell transplantation with less toxicities compared to conventional total body radiation and high dose chemotherapies. Updated results on other patients enrolled in this clinical trial including adverse events will be presented.

Conclusion
Our first-in-human clinical trial demonstrates promising efficacy of cCAR therapy in treating patients with relapsed/ refractory AML. cCAR is able to eradicate leukemia blasts and leukemia stem cells, exerting a profound tumor killing effect that is superior to single target CAR T cell therapies. cCAR is also shown to induce total myeloid ablation in bone marrow, suggesting that it may act as a safer alternative to avoid the severe toxicities caused by standard bone marrow ablation regimens without sacrificing the anti-tumor efficacy. This strategy will likely benefit patients who are unable to tolerate total body radiation or high dose chemotherapies. In addition to AML, cCAR also has the potential to treat blast crisis developed from myelodysplastic syndrome, chronic myeloid leukemia, and chronic myeloproliferative neoplasm.

Disclosures

Pinz: iCell Gene Therapeutics LLC: Employment. Ma: iCAR Bio Therapeutics Ltd: Employment. Wada: iCell Gene Therapeutics LLC: Employment. Chen: iCell Gene Therapeutics LLC: Employment. Ma: iCell Gene Therapeutics LLC: Employment. Ma: iCell Gene Therapeutics LLC, iCAR Bio Therapeutics Ltd: Consultancy, Equity Ownership, Research Funding.






  



We demonstrate that bispecific CAR T cells successfully recognize and kill tumor cells that express GRP78, CD123, or both antigens and have improved antitumor activity compared to their monospecific counterparts when both antigens are expressed.

Abstract

The emergence of immune escape is a significant roadblock to developing effective chimeric antigen receptor (CAR) T cell therapies against hematological malignancies, including acute myeloid leukemia (AML). Here, we demonstrate feasibility of targeting two antigens simultaneously by combining a GRP78-specific peptide antigen recognition domain with a CD123-specific scFv to generate a peptide-scFv bispecific antigen recognition domain (78.123). To achieve this, we test linkers with varying length and flexibility and perform immunophenotypic and functional characterization. We demonstrate that bispecific CAR T cells successfully recognize and kill tumor cells that express GRP78, CD123, or both antigens and have improved antitumor activity compared to their monospecific counterparts when both antigens are expressed. Protein structure prediction suggests that linker length and compactness influence the functionality of the generated bispecific CARs. Thus, we present a bispecific CAR design strategy to prevent immune escape in AML that can be extended to other peptide-scFv combinations.

Keywords: AML; B7H3; CAR T cell therapy; CD123; GRP78; bispecific CAR; chimeric antigen receptor; immune escape; leukemia; structure prediction.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests J.T.Z., P.J.C., D.M.L., G.K., S.G., and M.P.V. have patent applications in the field of immunotherapy. S.G. is a member of the Data and Safety Monitoring Board of Immatics, is on the Scientific Advisory Board of Be Biopharma, and has received honoraria from TESSA Therapeutics, Tidal, Catamaran Bio, and Sanofi within the last 2 years.

Figures

None
 
Figure 1
 
Figure 2
 
Figure 3
 
Figure 4
 
Figure 5

Similar articles

Cited by

References

    1. Bouchkouj N., Kasamon Y.L., de Claro R.A., George B., Lin X., Lee S., Blumenthal G.M., Bryan W., McKee A.E., Pazdur R. FDA Approval Summary: Axicabtagene Ciloleucel for Relapsed or Refractory Large B-cell Lymphoma. Clin. Cancer Res. 2019;25:1702–1708. doi: 10.1158/1078-0432.CCR-18-2743. - DOI PubMed
    1. O'Leary M.C., Lu X., Huang Y., Lin X., Mahmood I., Przepiorka D., Gavin D., Lee S., Liu K., George B., et al. FDA Approval Summary: Tisagenlecleucel for Treatment of Patients with Relapsed or Refractory B-cell Precursor Acute Lymphoblastic Leukemia. Clin. Cancer Res. 2019;25:1142–1146. doi: 10.1158/1078-0432.CCR-18-2035. - DOI PubMed
    1. Jen E.Y., Xu Q., Schetter A., Przepiorka D., Shen Y.L., Roscoe D., Sridhara R., Deisseroth A., Philip R., Farrell A.T., Pazdur R. FDA Approval: Blinatumomab for Patients with B-cell Precursor Acute Lymphoblastic Leukemia in Morphologic Remission with Minimal Residual Disease. Clin. Cancer Res. 2019;25:473–477. doi: 10.1158/1078-0432.CCR-18-2337. - DOI PubMed
    1. Ding L., Ley T.J., Larson D.E., Miller C.A., Koboldt D.C., Welch J.S., Ritchey J.K., Young M.A., Lamprecht T., McLellan M.D., et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–510. doi: 10.1038/nature10738. - DOI PMC PubMed
    1. Haubner S., Perna F., Köhnke T., Schmidt C., Berman S., Augsberger C., Schnorfeil F.M., Krupka C., Lichtenegger F.S., Liu X., et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64–74. doi: 10.1038/s41375-018-0180-3. - DOI PMC PubMed
    1. Vetrie D., Helgason G.V., Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat. Rev. Cancer. 2020;20:158–173. doi: 10.1038/s41568-019-0230-9. - DOI PubMed
    1. Shlush L.I., Mitchell A., Heisler L., Abelson S., Ng S.W.K., Trotman-Grant A., Medeiros J.J.F., Rao-Bhatia A., Jaciw-Zurakowsky I., Marke R., et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547:104–108. doi: 10.1038/nature22993. - DOI PubMed
    1. Yilmaz M., Wang F., Loghavi S., Bueso-Ramos C., Gumbs C., Little L., Song X., Zhang J., Kadia T., Borthakur G., et al. Late relapse in acute myeloid leukemia (AML): clonal evolution or therapy-related leukemia? Blood Cancer J. 2019;9 - PMC PubMed
    1. Thol F., Ganser A. Treatment of Relapsed Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2020;21 doi: 10.1007/s11864-020-00765-5. - DOI PMC PubMed
    1. Riddell S.R., Jensen M.C., June C.H. Chimeric antigen receptor--modified T cells: clinical translation in stem cell transplantation and beyond. Biol. Blood Marrow Transplant. 2013;19:S2–S5. doi: 10.1016/j.bbmt.2012.10.021. - DOI PMC PubMed
    1. Sadelain M., Brentjens R., Rivière I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–398. doi: 10.1158/2159-8290.CD-12-0548. - DOI PMC PubMed
    1. Mardiros A., Brown C.E., Budde L.E., Wang X., Forman S.J. Acute myeloid leukemia therapeutics: CARs in the driver's seat. OncoImmunology. 2013;2 doi: 10.4161/onci.27214. - DOI PMC PubMed
    1. Gill S., Tasian S.K., Ruella M., Shestova O., Li Y., Porter D.L., Carroll M., Danet-Desnoyers G., Scholler J., Grupp S.A., et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood. 2014;123:2343–2354. doi: 10.1182/blood-2013-09-529537. - DOI PMC PubMed
    1. Tambaro F.P., Singh H., Jones E., Rytting M., Mahadeo K.M., Thompson P., Daver N., DiNardo C., Kadia T., Garcia-Manero G., et al. Autologous CD33-CAR-T cells for treatment of relapsed/refractory acute myelogenous leukemia. Leukemia. 2021;35:3282–3286. doi: 10.1038/s41375-021-01232-2. - DOI PMC PubMed
    1. Riberdy J.M., Zhou S., Zheng F., Kim Y.I., Moore J., Vaidya A., Throm R.E., Sykes A., Sahr N., Bonifant C.L., et al. The Art and Science of Selecting a CD123-Specific Chimeric Antigen Receptor for Clinical Testing. Mol. Ther. Methods Clin. Dev. 2020;18:571–581. doi: 10.1016/j.omtm.2020.06.024. - DOI PMC PubMed
    1. Sugita M., Galetto R., Zong H., Ewing-Crystal N., Trujillo-Alonso V., Mencia-Trinchant N., Yip W., Filipe S., Lebuhotel C., Gouble A., et al. Allogeneic TCRαβ deficient CAR T-cells targeting CD123 in acute myeloid leukemia. Nat. Commun. 2022;13:2227. doi: 10.1038/s41467-022-29668-9. - DOI PMC PubMed
    1. Cai T., Gouble A., Black K.L., Skwarska A., Naqvi A.S., Taylor D., Zhao M., Yuan Q., Sugita M., Zhang Q., et al. Targeting CD123 in blastic plasmacytoid dendritic cell neoplasm using allogeneic anti-CD123 CAR T cells. Nat. Commun. 2022;13:2228. doi: 10.1038/s41467-022-29669-8. - DOI PMC PubMed
    1. Budde L., Song J.Y., Kim Y., Blanchard S., Wagner J., Stein A.S., Weng L., Del Real M., Hernandez R., Marcucci E., et al. Remissions of Acute Myeloid Leukemia and Blastic Plasmacytoid Dendritic Cell Neoplasm Following Treatment with CD123-Specific CAR T Cells: A First-in-Human Clinical Trial. Blood. 2017;130:811. doi: 10.1182/blood.V130.Suppl_1.811.811. - DOI
    1. Hebbar N., Epperly R., Vaidya A., Thanekar U., Moore S.E., Umeda M., Ma J., Patil S.L., Langfitt D., Huang S., et al. CAR T cells redirected to cell surface GRP78 display robust anti-acute myeloid leukemia activity and do not target hematopoietic progenitor cells. Nat. Commun. 2022;13:587. doi: 10.1038/s41467-022-28243-6. - DOI PMC PubMed
    1. Gifford J.B., Huang W., Zeleniak A.E., Hindoyan A., Wu H., Donahue T.R., Hill R. Expression of GRP78, Master Regulator of the Unfolded Protein Response, Increases Chemoresistance in Pancreatic Ductal Adenocarcinoma. Mol. Cancer Therapeut. 2016;15:1043–1052. doi: 10.1158/1535-7163.MCT-15-0774. - DOI PubMed
    1. Casas C. GRP78 at the Centre of the Stage in Cancer and Neuroprotection. Front. Neurosci. 2017;11:177. doi: 10.3389/fnins.2017.00177. - DOI PMC PubMed
    1. Epperly R., Gottschalk S., Velasquez M.P. Harnessing T Cells to Target Pediatric Acute Myeloid Leukemia: CARs, BiTEs, and Beyond. Children. 2020;7 doi: 10.3390/children7020014. - DOI PMC PubMed
    1. Moretti S., Lanza F., Dabusti M., Tieghi A., Campioni D., Dominici M., Castoldi G.L. CD123 (interleukin 3 receptor alpha chain) J. Biol. Regul. Homeost. Agents. 2001;15:98–100. - PubMed
    1. Perna F., Berman S.H., Soni R.K., Mansilla-Soto J., Eyquem J., Hamieh M., Hendrickson R.C., Brennan C.W., Sadelain M. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell. 2017;32:506–519.e5. doi: 10.1016/j.ccell.2017.09.004. - DOI PMC PubMed
    1. Naik S., Madden R.M., Lipsitt A., Lockey T., Bran J., Rubnitz J.E., Klco J., Shulkin B., Patil S.L., Schell S., et al. Safety and Anti-Leukemic Activity of CD123-CAR T Cells in Pediatric Patients with AML: Preliminary Results from a Phase 1 Trial. Blood. 2022;140:4584–4585. doi: 10.1182/blood-2022-170201. - DOI
    1. Abbott R.C., Hughes-Parry H.E., Jenkins M.R. To go or not to go? Biological logic gating engineered T cells. J. Immunother. Cancer. 2022;10 doi: 10.1136/jitc-2021-004185. - DOI PMC PubMed
    1. Dai H., Wu Z., Jia H., Tong C., Guo Y., Ti D., Han X., Liu Y., Zhang W., Wang C., et al. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J. Hematol. Oncol. 2020;13:30. doi: 10.1186/s13045-020-00856-8. - DOI PMC PubMed
    1. Zah E., Lin M.Y., Silva-Benedict A., Jensen M.C., Chen Y.Y. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol. Res. 2016;4:498–508. doi: 10.1158/2326-6066.CIR-15-0231. - DOI PMC PubMed
    1. Zah E., Nam E., Bhuvan V., Tran U., Ji B.Y., Gosliner S.B., Wang X., Brown C.E., Chen Y.Y. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 2020;11:2283. doi: 10.1038/s41467-020-16160-5. - DOI PMC PubMed
    1. Castellanos J.R., Purvis I.J., Labak C.M., Guda M.R., Tsung A.J., Velpula K.K., Asuthkar S. B7-H3 role in the immune landscape of cancer. Afr. J. Clin. Exp. Immunol. 2017;6:66–75. - PMC PubMed
    1. Lichtman E.I., Du H., Shou P., Song F., Suzuki K., Ahn S., Li G., Ferrone S., Su L., Savoldo B., Dotti G. Preclinical Evaluation of B7-H3-specific Chimeric Antigen Receptor T Cells for the Treatment of Acute Myeloid Leukemia. Clin. Cancer Res. 2021;27:3141–3153. doi: 10.1158/1078-0432.CCR-20-2540. - DOI PMC PubMed
    1. Weber E.W., Parker K.R., Sotillo E., Lynn R.C., Anbunathan H., Lattin J., Good Z., Belk J.A., Daniel B., Klysz D., et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science. 2021;372 doi: 10.1126/science.aba1786. - DOI PMC PubMed
    1. Tunyasuvunakool K., Adler J., Wu Z., Green T., Zielinski M., Žídek A., Bridgland A., Cowie A., Meyer C., Laydon A., et al. Highly accurate protein structure prediction for the human proteome. Nature. 2021;596:590–596. doi: 10.1038/s41586-021-03828-1. - DOI PMC PubMed
    1. Cronk R.J., Zurko J., Shah N.N. Bispecific Chimeric Antigen Receptor T Cell Therapy for B Cell Malignancies and Multiple Myeloma. Cancers. 2020;12 doi: 10.3390/cancers12092523. - DOI PMC PubMed
    1. Zah E., Lin M.-Y., Silva-Benedict A., Jensen M.C., Chen Y.Y. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol. Res. 2016;4:498–508. doi: 10.1158/2326-6066. - DOI PMC PubMed
    1. Bielamowicz K., Fousek K., Byrd T.T., Samaha H., Mukherjee M., Aware N., Wu M.F., Orange J.S., Sumazin P., Man T.K., et al. Trivalent CAR T cells overcome interpatient antigenic variability in glioblastoma. Neuro Oncol. 2018;20:506–518. doi: 10.1093/neuonc/nox182. - DOI PMC PubMed
    1. Qin H., Ramakrishna S., Nguyen S., Fountaine T.J., Ponduri A., Stetler-Stevenson M., Yuan C.M., Haso W., Shern J.F., Shah N.N., Fry T.J. Preclinical Development of Bivalent Chimeric Antigen Receptors Targeting Both CD19 and CD22. Mol. Ther. Oncolytics. 2018;11:127–137. doi: 10.1016/j.omto.2018.10.006. - DOI PMC PubMed
    1. Spiegel J.Y., Patel S., Muffly L., Hossain N.M., Oak J., Baird J.H., Frank M.J., Shiraz P., Sahaf B., Craig J., et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat. Med. 2021;27:1419–1431. doi: 10.1038/s41591-021-01436-0. - DOI PMC PubMed
    1. Cordoba S., Onuoha S., Thomas S., Pignataro D.S., Hough R., Ghorashian S., Vora A., Bonney D., Veys P., Rao K., et al. CAR T cells with dual targeting of CD19 and CD22 in pediatric and young adult patients with relapsed or refractory B cell acute lymphoblastic leukemia: a phase 1 trial. Nat. Med. 2021;27:1797–1805. doi: 10.1038/s41591-021-01497-1. - DOI PMC PubMed
    1. Zanetti S.R., Velasco-Hernandez T., Gutierrez-Agüera F., Díaz V.M., Romecín P.A., Roca-Ho H., Sánchez-Martínez D., Tirado N., Baroni M.L., Petazzi P., et al. A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL. Mol. Ther. 2022;30:550–563. doi: 10.1016/j.ymthe.2021.08.033. - DOI PMC PubMed
    1. Ruella M., Barrett D.M., Kenderian S.S., Shestova O., Hofmann T.J., Perazzelli J., Klichinsky M., Aikawa V., Nazimuddin F., Kozlowski M., et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. J. Clin. Invest. 2016;126:3814–3826. doi: 10.1172/JCI87366. - DOI PMC PubMed
    1. Ding L., Ley T.J., Larson D.E., Miller C.A., Koboldt D.C., Welch J.S., Ritchey J.K., Young M.A., Lamprecht T., McLellan M.D., et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481:506–510. doi: 10.1038/nature10738. - DOI PMC PubMed
    1. Haubner S., Mansilla-Soto J., Nataraj S., Kogel F., Chang Q., de Stanchina E., Lopez M., Ng M.R., Fraser K., Subklewe M., et al. Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell. 2023;41:1871–1891. doi: 10.1016/j.ccell.2023.09.010. - DOI PMC PubMed
    1. Ajina A., Maher J. Strategies to Address Chimeric Antigen Receptor Tonic Signaling. Mol. Cancer Therapeut. 2018;17:1795–1815. doi: 10.1158/1535-7163.MCT-17-1097. - DOI PMC PubMed
    1. Calderon H., Mamonkin M., Guedan S. Analysis of CAR-Mediated Tonic Signaling. Methods Mol. Biol. 2020;2086:223–236. doi: 10.1007/978-1-0716-0146-4_17. - DOI PubMed
    1. Scherer L., Tat C., Sauer T., Tashiro H., Naik S., Velasquez M.P., Gottschalk S., Rooney C.M., Brenner M.K., Omer B. LigandCD70.CAR As a Platform for Dual-Targeting CAR T Cells for Acute Myeloid Leukemia. Blood. 2022;140:7396–7397.
    1. Liu F., Cao Y., Pinz K., Ma Y., Wada M., Chen K., Ma G., Shen J., Tse C.O., Su Y., et al. First-in-Human CLL1-CD33 Compound CAR T Cell Therapy Induces Complete Remission in Patients with Refractory Acute Myeloid Leukemia: Update on Phase 1 Clinical Trial. Blood. 2018;132:901. doi: 10.1182/blood-2018-99-110579. - DOI
    1. Cui W., Zhang X., Dai H., Cui Q., Song B., Wu D., Tang X., Yin J., Li Z. Tandem CD19/CD22 Dual Targets CAR-T Cells Therapy Acquires Superior CR Rate Than CD19 CAR-T Cells: A Case Controlled Study. Blood. 2020;136:44. doi: 10.1182/blood-2020-143474. - DOI
    1. Jordan C.T., Upchurch D., Szilvassy S.J., Guzman M.L., Howard D.S., Pettigrew A.L., Meyerrose T., Rossi R., Grimes B., Rizzieri D.A., et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000;14:1777–1784. doi: 10.1038/sj.leu.2401903. - DOI PubMed
    1. Trychta K.A., Bäck S., Henderson M.J., Harvey B.K. KDEL Receptors Are Differentially Regulated to Maintain the ER Proteome under Calcium Deficiency. Cell Rep. 2018;25:1829–1840.e6. doi: 10.1016/j.celrep.2018.10.055. - DOI PMC PubMed
    1. Tsai Y.L., Ha D.P., Zhao H., Carlos A.J., Wei S., Pun T.K., Wu K., Zandi E., Kelly K., Lee A.S. Endoplasmic reticulum stress activates SRC, relocating chaperones to the cell surface where GRP78/CD109 blocks TGF-β signaling. Proc. Natl. Acad. Sci. USA. 2018;115 doi: 10.1073/pnas.1714866115. E4245-e4254. - DOI PMC PubMed
    1. Staquicini D.I., D'Angelo S., Ferrara F., Karjalainen K., Sharma G., Smith T.L., Tarleton C.A., Jaalouk D.E., Kuniyasu A., Baze W.B., et al. Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma: preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates. Pharmacogenomics J. 2018;18:436–443. - PMC PubMed
    1. Bonifant C.L., Szoor A., Torres D., Joseph N., Velasquez M.P., Iwahori K., Gaikwad A., Nguyen P., Arber C., Song X.T., et al. CD123-Engager T Cells as a Novel Immunotherapeutic for Acute Myeloid Leukemia. Mol. Ther. 2016;24:1615–1626. doi: 10.1038/mt.2016.116. - DOI PMC PubMed
    1. Mardiros A., Dos Santos C., McDonald T., Brown C.E., Wang X., Budde L.E., Hoffman L., Aguilar B., Chang W.C., Bretzlaff W., et al. T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood. 2013;122:3138–3148. doi: 10.1182/blood-2012-12-474056. - DOI PMC PubMed
    1. Vaidya A., Doherty E., Wu X., Huang S., Hebbar N., Thanekar U., Bonifant C.L., Cheng C., Gottschalk S., Velasquez M.P. Improving the anti-acute myeloid leukemia activity of CD123-specific engager T cells by MyD88 and CD40 costimulation. Haematologica. 2023;108:1039–1052. doi: 10.3324/haematol.2021.279301. - DOI PMC PubMed
    1. Moore S.E., Zoine J.T., Crawford J.C., Langfitt D., Barajas J.M., Abdelhamed S., Iacobucci I., Haydar D., Krenciute G., Mullighan C.G., et al. Establishing Immunocompetent Leukemia Models to Investigate the Impact of CAR T Cells on the Immune Microenvironment and Bone Marrow Niche. Blood. 2022;140:7376–7377.
    1. Budde L., Song J.Y., Kim Y., Blanchard S., Wagner J., Stein A.S., Weng L., Del Real M., Hernandez R., Marcucci E., et al. Remissions of Acute Myeloid Leukemia and Blastic Plasmacytoid Dendritic Cell Neoplasm Following Treatment with CD123-Specific CAR T Cells: A First-in-Human Clinical Trial. Blood. 2017;130:811.
    1. Sallman D.A., DeAngelo D.J., Pemmaraju N., Dinner S., Gill S., Olin R.L., Wang E.S., Konopleva M., Stark E., Korngold A., et al. Ameli-01: A Phase I Trial of UCART123v1.2, an Anti-CD123 Allogeneic CAR-T Cell Product, in Adult Patients with Relapsed or Refractory (R/R) CD123+ Acute Myeloid Leukemia (AML) Blood. 2022;140:2371–2373. - PubMed
    1. Grada Z., Hegde M., Byrd T., Shaffer D.R., Ghazi A., Brawley V.S., Corder A., Schönfeld K., Koch J., Dotti G., et al. TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Mol. Ther. Nucleic Acids. 2013;2:e105. doi: 10.1038/mtna.2013.32. - DOI PMC PubMed
    1. Hegde M., Joseph S.K., Pashankar F., DeRenzo C., Sanber K., Navai S., Byrd T.T., Hicks J., Xu M.L., Gerken C., et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 2020;11:3549. doi: 10.1038/s41467-020-17175-8. - DOI PMC PubMed
    1. Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. - DOI PMC PubMed
    1. Ershov D., Phan M.-S., Pylvänäinen J.W., Rigaud S.U., Le Blanc L., Charles-Orszag A., Conway J.R.W., Laine R.F., Roy N.H., Bonazzi D., et al. Bringing TrackMate in the era of machine-learning and deep-learning. bioRxiv. 2021 doi: 10.1101/2021.09.03.458852. Preprint at. - DOI
    1. Gu Z. Complex heatmap visualization. iMeta. 2022;1:e43. - PMC PubMed
    1. Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. - PubMed
    1. Williams TaK C. 2011. Gnuplot 4.5: an interactive plotting program.http://gnuplot.info URL.
    1. Kim Y., Lillo A.M., Steiniger S.C.J., Liu Y., Ballatore C., Anichini A., Mortarini R., Kaufmann G.F., Zhou B., Felding-Habermann B., Janda K.D. Targeting heat shock proteins on cancer cells: selection, characterization, and cell-penetrating properties of a peptidic GRP78 ligand. Biochemistry. 2006;45:9434–9444. doi: 10.1021/bi060264j. - DOI PubMed
    1. Ahmed N., Salsman V.S., Yvon E., Louis C.U., Perlaky L., Wels W.S., Dishop M.K., Kleinerman E.E., Pule M., Rooney C.M., et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol. Ther. 2009;17:1779–1787. doi: 10.1038/mt.2009.133. - DOI PMC PubMed
    1. Diaconu I., Ballard B., Zhang M., Chen Y., West J., Dotti G., Savoldo B. Inducible Caspase-9 Selectively Modulates the Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells. Mol. Ther. 2017;25:580–592. doi: 10.1016/j.ymthe.2017.01.011. - DOI PMC PubMed
    1. Nguyen P., Okeke E., Clay M., Haydar D., Justice J., O'Reilly C., Pruett-Miller S., Papizan J., Moore J., Zhou S., et al. Route of 41BB/41BBL Costimulation Determines Effector Function of B7-H3-CAR.CD28ζ T Cells. Mol. Ther. Oncolytics. 2020;18:202–214. doi: 10.1016/j.omto.2020.06.018. - DOI PMC PubMed
    1. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. - PMC PubMed

Plaats een reactie ...

Reageer op "CAR-T celtherapie gericht op de CLL1 en CD33 expressie met dubbele aanpak geeft hoopvolle resultaten bij Acute Myeloide Leukemie. Een vrouw met recidief van AML na beenmergtransplantatie komt zelfs in een duurzame complete remissie"


Gerelateerde artikelen
 

Gerelateerde artikelen

Wat houdt CAR-T celtherapie >> CAR-T celtherapie gericht >> CAR-T-celtherapie geneest >> CAR-T celtherapie maakt dat >> CD19 Fast-CAR-T-cel therapie >> CAR-T celtherapie brengt binnen >> CAR-T celtherapie is zeer >> Immuuntherapie met gemanipuleerde >> Immuuntherapie met gemanipuleerde >> Dendritische celtherapie met >>