Graphical Abstract
Killer instinct: A supramolecular polyvalent antibody mimic (PAM) has been synthesized in situ on the surface of natural killer cells by nucleic acid assembly and hybridization under physiological conditions without genetic manipulation. The PAM-engineered natural killer cells (green) possess a superb ability to bind to and kill cancer cells (red) and thus constitute a promising technology platform for cancer immunotherapy.
Abstract
An ability to promote therapeutic immune cells to recognize cancer cells is important for the success of cell-based cancer immunotherapy. We present a synthetic method for functionalizing the surface of natural killer (NK) cells with a supramolecular aptamer-based polyvalent antibody mimic (PAM). The PAM is synthesized on the cell surface through nucleic acid assembly and hybridization. The data show that PAM has superiority over its monovalent counterpart in powering NKs to bind to cancer cells, and that PAM-engineered NK cells exhibit the capability of killing cancer cells more effectively. Notably, aptamers can, in principle, be discovered against any cell receptors; moreover, the aptamers can be replaced by any other ligands when developing a PAM. Thus, this work has successfully demonstrated a technology platform for promoting interactions between immune and cancer cells.
References
- 1
- 1a , J. Clin. Invest. 2015, 125, 3335–3337;
- 1b , , J. Cancer 2018, 9, 1773–1781.
- 2
- 2a , , , Nat. Immunol. 2016, 17, 1025–1036;
- 2b , , , Nat. Rev. Drug Discovery 2020, 19, 200;
- 2c , , , Nature 2017, 545, 423–431;
- 2d , , , , , , , , , , , , , , , , , , , N. Engl. J. Med. 2014, 371, 1507–1517;
- 2e , , , Nat. Rev. Clin. Oncol. 2016, 13, 370–383;
- 2f , , Immunity 2014, 41, 49–61;
- 2g , , , Cancer Res. 2016, 76, 513–516.
- 3
- 3a , , , J. Oncol. 2019, 4508794;
- 3b , , Immunity 2020, 52, 17–35;
- 3c , , , , Mol. Ther. Oncolytics 2016, 3, 16011.
- 4 , , , , Nat. Rev. Cancer 2014, 14, 135–146.
- 5
- 5a , , Mol. Ther. Oncolytics 2016, 3, 16015;
- 5b , , , , Mol. Ther. Methods Clin. Dev. 2017, 4, 92–101.
- 6
- 6a , , , , Biochem. Biophys. Res. Commun. 2009, 386, 521–525;
- 6b , , , , , Angew. Chem. Int. Ed. 2006, 45, 896–901; Angew. Chem. 2006, 118, 910–915;
- 6c , , , , , , Angew. Chem. Int. Ed. 2018, 57, 6800–6804; Angew. Chem. 2018, 130, 6916–6920;
- 6d , , , , Nucleic Acids Res. 2009, 37, e28;
- 6e , , , , , , J. Am. Chem. Soc. 2012, 134, 765–768;
- 6f , , , , Nat. Commun. 2019, 10, 2223.
- 7
- 7a , , Proc. Natl. Acad. Sci. USA 2004, 101, 15275–15278;
- 7b , , , Biophys. J. 2006, 91, 2966–2975;
- 7c , , , , , , , , Angew. Chem. Int. Ed. 2017, 56, 2171–2175; Angew. Chem. 2017, 129, 2203–2207;
- 7d , , , , , , , , , Talanta 2018, 179, 641–645;
- 7e , , J. Am. Chem. Soc. 2014, 136, 9810–9813;
- 7f , , , , , , , , , , CCS Chem. 2019, 1, 296–303.
- 8 , , , , , , , Nucleic Acids Res. 2000, 28, e63.
- 9 , , , , , , Cold Spring Harbor Symp. Quant. Biol. 1986, 51, 263–273.
- 10
- 10a , , , , , Proc. Natl. Acad. Sci. USA 2008, 105, 17356–17361;
- 10b , , , , , Chem. Commun. 2010, 46, 1857–1859;
- 10c , , , , , Biomaterials 2012, 33, 1353–1362;
- 10d , , , , , , Chem. Soc. Rev. 2016, 45, 1410–1431.
- 11
- 11a , , J. Biol. Chem. 2004, 279, 46483–46489;
- 11b , , , , , , , , Nat. Biotechnol. 2002, 20, 473–477;
- 11c , , , , Nucleic Acids Res. 1996, 24, 702–706;
- 11d , , , , , , Macromol. Biosci. 2009, 9, 831–835;
- 11e , , , , , , Biomacromolecules 2015, 16, 1382–1389;
- 11f , , , , Hum. Gene Ther. 2005, 16, 1097–1110.
- 12 , , , , , , , , , , , , Leukemia 2009, 23, 235–244.
- 13
- 13a , , , , , , , , , Angew. Chem. Int. Ed. 2013, 52, 1472–1476; Angew. Chem. 2013, 125, 1512–1516;
- 13b , , , , Chem. Commun. 2015, 51, 17428–17430.
- 14
- 14a , , , , , Ann. Biomed. Eng. 2008, 36, 661–671;
- 14b , , , , , J. Immunol. 2011, 186, 242–254.
- 15
- 15a , , , JAMA J. Am. Med. Assoc. 1999, 282, 2035–2042;
- 15b , , , Lab Chip 2009, 9, 1897–1902.
Number of times cited according to CrossRef: 50
- Ashok Kumar Jangid, Sungjun Kim, Kyobum Kim, Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics, Biomaterials Research, 10.1186/s40824-023-00404-8, 27, 1, (2023).
- Lili Ai, Xinyi Jiang, Kejing Zhang, Cheng Cui, Bo Liu, Weihong Tan, Tools and techniques for the discovery of therapeutic aptamers: recent advances, Expert Opinion on Drug Discovery, 10.1080/17460441.2023.2264187, 18, 12, (1393-1411), (2023).
- Xiaoqing Chen, Qianyun Yang, Wenyan Kong, Yifan Ge, Jie He, An Yan, Di Li, High spatial-resolved heat manipulating membrane heterogeneity alters cellular migration and signaling, Proceedings of the National Academy of Sciences, 10.1073/pnas.2312603120, 120, 48, (2023).
- He Yang, Lihua Yao, Yichen Wang, Gaojian Chen, Hong Chen, Advancing cell surface modification in mammalian cells with synthetic molecules, Chemical Science, 10.1039/D3SC04597H, 14, 46, (13325-13345), (2023).
- Tingting Cui, Yu Zhang, Geng Qin, Yue Wei, Jie Yang, Ying Huang, Jinsong Ren, Xiaogang Qu, A neutrophil mimicking metal-porphyrin-based nanodevice loaded with porcine pancreatic elastase for cancer therapy, Nature Communications, 10.1038/s41467-023-37580-z, 14, 1, (2023).
- Jingwen Jiang, Yanjuan Huang, Zishan Zeng, Chunshun Zhao, Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy, ACS Nano, 10.1021/acsnano.2c07607, 17, 2, (843-884), (2023).
- Lu Yu, Zongrui Ma, Qunye He, Dynamic DNA Nanostructures for Cell Manipulation, ACS Biomaterials Science & Engineering, 10.1021/acsbiomaterials.2c01204, 9, 2, (562-576), (2023).
- Zhengwei Liu, Zhenqi Liu, Mengyu Sun, Wenting Zhang, Jinsong Ren, Xiaogang Qu, An Antibody Engineered Metalloenzyme for Mediating Cell–Cell Communication and Activation of Immuno- and Chemotherapy, Nano Letters, 10.1021/acs.nanolett.3c01186, 23, 14, (6424-6432), (2023).
- Pan Guo, Di Wang, Shumin Zhang, Dan Cheng, Siyu Wu, Xiaobing Zuo, Yun-Bao Jiang, Tao Jiang, Reassembly of Peptide Nanofibrils on Live Cell Surfaces Promotes Cell–Cell Interactions, Nano Letters, 10.1021/acs.nanolett.3c01100, 23, 14, (6386-6392), (2023).
- Cheng Lv, Yuan Li, Mingzhi Zhang, Yu Cheng, Da Han, Weihong Tan, Sequential Control of Cellular Interactions Using Dynamic DNA Displacement, Nano Letters, 10.1021/acs.nanolett.2c03899, 23, 4, (1167-1174), (2023).
- Dao Lin, Yongqi Ke, Hongjia Chen, Yinlong Zhang, Xinjing Tang, Wei Cui, Xiangjun Li, Yujian He, Li Wu, Self-Assembly Nanostructure Induced by Regulation of G-Quadruplex DNA Topology via a Reduction-Sensitive Azobenzene Ligand on Cells, Biomacromolecules, 10.1021/acs.biomac.3c00657, 24, 11, (5004-5017), (2023).
- Youshi Zheng, Zisen Lai, Bing Wang, Zuwu Wei, Yongyi Zeng, Qiuyu Zhuang, Xiaolong Liu, Kecan Lin, Natural killer cells modified with a Gpc3 aptamer enhance adoptive immunotherapy for hepatocellular carcinoma, Discover Oncology, 10.1007/s12672-023-00780-6, 14, 1, (2023).
- Jing Li, Jingping Wang, Ling Chen, Yuhang Dong, Haonan Chen, Guangjun Nie, Feng Li, Self-assembly of DNA molecules at bio-interfaces and their emerging applications for biomedicines, Nano Research, 10.1007/s12274-023-5597-y, (2023).
- Zahra Abpeikar, Ali Akbar Alizadeh, Leila Rezakhani, Vahid Ramezani, Arash Goodarzi, Mohsen Safaei, Advantages of Material Biofunctionalization Using Nucleic Acid Aptamers in Tissue Engineering and Regenerative Medicine, Molecular Biotechnology, 10.1007/s12033-023-00737-8, 65, 12, (1935-1953), (2023).
- Run Tian, Yingxu Shang, Yiming Wang, Qiao Jiang, Baoquan Ding, DNA Nanomaterials‐Based Platforms for Cancer Immunotherapy, Small Methods, 10.1002/smtd.202201518, 7, 5, (2023).
- Wenrui Chen, Boran Li, Guanbin Gao, Taolei Sun, Chiral supramolecular nanomaterials: From chirality transfer and amplification to regulation and applications, Interdisciplinary Materials, 10.1002/idm2.12117, 2, 5, (689-713), (2023).
- Tingting Zhang, Yushan Yang, Li Huang, Ying Liu, Gaowei Chong, Weimin Yin, Haiqing Dong, Yan Li, Yongyong Li, Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy, Pharmaceutics, 10.3390/pharmaceutics14040734, 14, 4, (734), (2022).
- Zhong Wang, Xiuying Yang, Nicholas Zhou Lee, Xudong Cao, Multivalent Aptamer Approach: Designs, Strategies, and Applications, Micromachines, 10.3390/mi13030436, 13, 3, (436), (2022).
- Fang Zhou, Peng Wang, Jianghuai Chen, Zhijia Zhu, Youshan Li, Sujuan Wang, Shanchao Wu, Yingyu Sima, Ting Fu, Weihong Tan, Zilong Zhao, A photochemically covalent lock stabilizes aptamer conformation and strengthens its performance for biomedicine, Nucleic Acids Research, 10.1093/nar/gkac703, 50, 16, (9039-9050), (2022).
- Qi Niu, Jiafeng Gao, Kaifeng Zhao, Xiaofeng Chen, Xiaolin Lin, Chen Huang, Yu An, Xiuying Xiao, Qiaoyi Wu, Liang Cui, Peng Zhang, Lingling Wu, Chaoyong Yang, Fluid nanoporous microinterface enables multiscale-enhanced affinity interaction for tumor-derived extracellular vesicle detection, Proceedings of the National Academy of Sciences, 10.1073/pnas.2213236119, 119, 44, (2022).
- Jing-Yun Su, Wen-Hao Li, Yan-Mei Li, New opportunities for immunomodulation of the tumour microenvironment using chemical tools, Chemical Society Reviews, 10.1039/D2CS00486K, 51, 18, (7944-7970), (2022).
- Xuelin Wang, Connie Wen, Brandon Davis, Peng Shi, Lidya Abune, Kyungsene Lee, Cheng Dong, Yong Wang, Synthetic DNA for Cell Surface Engineering: Experimental Comparison between Click Conjugation and Lipid Insertion in Terms of Cell Viability, Engineering Efficiency, and Displaying Stability, ACS Applied Materials & Interfaces, 10.1021/acsami.1c22774, 14, 3, (3900-3909), (2022).
- Zhongdong Wu, Mingshu Xiao, Wei Lai, Yueyang Sun, Li Li, Zongqian Hu, Hao Pei, Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications, ACS Applied Bio Materials, 10.1021/acsabm.1c01126, 5, 5, (1901-1915), (2022).
- Mengyi Xiong, Gezhi Kong, Qin Liu, Lu Liu, Yao Yin, Ying Liu, Hui Yuan, Xiao-Bing Zhang, Weihong Tan, DNA-Templated Anchoring of Proteins for Programmable Cell Functionalization and Immunological Response, Nano Letters, 10.1021/acs.nanolett.2c03928, 23, 1, (183-191), (2022).
- Xueqin Yang, Lijiao Yang, Donglei Yang, Min Li, Pengfei Wang, In Situ DNA Self-Assembly on the Cell Surface Drives Unidirectional Clustering of Membrane Proteins for the Modulation of Cell Behaviors , Nano Letters, 10.1021/acs.nanolett.2c00680, 22, 8, (3410-3416), (2022).
- Fei Gao, Donglei Yang, Fan Xu, Xiaowei Ma, Pengfei Wang, Promoting Cell Fusion by Polyvalent DNA Ligands, Nano Letters, 10.1021/acs.nanolett.2c00216, 22, 7, (3018-3025), (2022).
- Yujing Kong, Fang Yuan, Fei Yang, Cuiling Zhang, Yuezhong Xian, Cell-Membrane-Anchored Upconversion Nanoprobe for Near-Infrared Light Triggered Cell–Cell Interactions, Analytical Chemistry, 10.1021/acs.analchem.2c01099, 94, 35, (12024-12032), (2022).
- Wenjing Liu, Yuanyu Huang, Zhengping Li, Lele Li, Yuliang Zhao, Mengyuan Li, Multivalent Engineering of Exosomes with Activatable Aptamer Probes for Specific Regulation and Monitoring of Cell Targeting, Analytical Chemistry, 10.1021/acs.analchem.1c04741, 94, 9, (3840-3848), (2022).
- Ahsan Ausaf Ali, Yousef Bagheri, Mingxu You, Digging into the biophysical features of cell membranes with lipid-DNA conjugates, Quarterly Reviews of Biophysics, 10.1017/S003358352200004X, 55, (2022).
- H.-R. Jia, Z. Zhang, X. Fang, M. Jiang, M. Chen, S. Chen, K. Gu, Z. Luo, F.-G. Wu, W. Tan, Recent advances of cell surface modification based on aptamers, Materials Today Nano, 10.1016/j.mtnano.2022.100188, 18, (100188), (2022).
- Jieyu Yuhan, Liye Zhu, Longjiao Zhu, Kunlun Huang, Xiaoyun He, Wentao Xu, Cell-specific aptamers as potential drugs in therapeutic applications: A review of current progress, Journal of Controlled Release, 10.1016/j.jconrel.2022.04.039, 346, (405-420), (2022).
- Sisi Chen, Lei Zhang, Quan Yuan, Jie Tan, Current Advances in Aptamer-based Biomolecular Recognition and Biological Process Regulation, Chemical Research in Chinese Universities, 10.1007/s40242-022-2087-9, 38, 4, (847-855), (2022).
- Mingshu Xiao, Wei Lai, Xiaowei Yao, Hao Pei, Chunhai Fan, Li Li, Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition, Angewandte Chemie International Edition, 10.1002/anie.202203800, 61, 28, (2022).
- Mingshu Xiao, Wei Lai, Xiaowei Yao, Hao Pei, Chunhai Fan, Li Li, Programming Receptor Clustering with DNA Probabilistic Circuits for Enhanced Natural Killer Cell Recognition, Angewandte Chemie, 10.1002/ange.202203800, 134, 28, (2022).
- Jia‐Yi Ma, Ya‐Xin Wang, Yan Huang, Yi Zhang, Yun‐Xi Cui, De‐Ming Kong, Chemical–biological approaches for the direct regulation of cell–cell aggregation, Aggregate, 10.1002/agt2.166, 3, 2, (2022).
- Yuanyuan Chen, Peng Gao, Wei Pan, Mingwan Shi, Shujie Liu, Na Li, Bo Tang, Polyvalent spherical aptamer engineered macrophages: X-ray-actuated phenotypic transformation for tumor immunotherapy, Chemical Science, 10.1039/D1SC03997K, 12, 41, (13817-13824), (2021).
- Dong-Xia Wang, Jing Wang, Ya-Xin Wang, Yi-Chen Du, Yan Huang, An-Na Tang, Yun-Xi Cui, De-Ming Kong, DNA nanostructure-based nucleic acid probes: construction and biological applications, Chemical Science, 10.1039/D1SC00587A, 12, 22, (7602-7622), (2021).
- Hao-Ran Jia, Ya-Xuan Zhu, Qiu-Yi Duan, Fu-Gen Wu, Cell surface-localized imaging and sensing, Chemical Society Reviews, 10.1039/D1CS00067E, 50, 10, (6240-6277), (2021).
- Junjun Hou, Shitai Zhu, Ziwei Zhao, Jianlei Shen, Jie Chao, Jiye Shi, Jiang Li, Lihua Wang, Zhilei Ge, Qian Li, Programming cell communications with pH-responsive DNA nanodevices, Chemical Communications, 10.1039/D1CC00875G, 57, 37, (4536-4539), (2021).
- Jacky C. H. Chu, Chihao Shao, Summer Y. Y. Ha, Wing-Ping Fong, Clarence T. T. Wong, Dennis K. P. Ng, One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy, Biomaterials Science, 10.1039/D1BM01306H, 9, 23, (7832-7837), (2021).
- Qunye He, Yanfei Liu, Ke Li, Yuwei Wu, Ting Wang, Yifu Tan, Ting Jiang, Xiaoqin Liu, Zhenbao Liu, Deoxyribonucleic acid anchored on cell membranes for biomedical application, Biomaterials Science, 10.1039/D1BM01057C, 9, 20, (6691-6717), (2021).
- Wenjuan Ma, Yuxi Zhan, Yuxin Zhang, Chenchen Mao, Xueping Xie, Yunfeng Lin, The biological applications of DNA nanomaterials: current challenges and future directions, Signal Transduction and Targeted Therapy, 10.1038/s41392-021-00727-9, 6, 1, (2021).
- Yan Zhou, Yuting Zhuo, Ruizi Peng, Yutong Zhang, Yulin Du, Qiang Zhang, Yue Sun, Liping Qiu, Functional nucleic acid-based cell imaging and manipulation, Science China Chemistry, 10.1007/s11426-021-1115-3, 64, 11, (1817-1825), (2021).
- Ziwen Dai, Lei Wang, Zhigang Wang, Functional Immunostimulating DNA Materials: The Rising Stars for Cancer Immunotherapy, Macromolecular Bioscience, 10.1002/mabi.202100083, 21, 6, (2021).
- Zhenzhen Guo, Lili Zhang, Qiuxia Yang, Ruizi Peng, Xi Yuan, Liujun Xu, Zhimin Wang, Fengming Chen, Huidong Huang, Qiaoling Liu, Weihong Tan, Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks, Angewandte Chemie International Edition, 10.1002/anie.202111151, 61, 7, (2021).
- Peng Shi, Yong Wang, Synthetic DNA for Cell‐Surface Engineering, Angewandte Chemie International Edition, 10.1002/anie.202010278, 60, 21, (11580-11591), (2021).
- Zhenzhen Guo, Lili Zhang, Qiuxia Yang, Ruizi Peng, Xi Yuan, Liujun Xu, Zhimin Wang, Fengming Chen, Huidong Huang, Qiaoling Liu, Weihong Tan, Manipulation of Multiple Cell–Cell Interactions by Tunable DNA Scaffold Networks, Angewandte Chemie, 10.1002/ange.202111151, 134, 7, (2021).
- Peng Shi, Yong Wang, Synthetic DNA for Cell‐Surface Engineering, Angewandte Chemie, 10.1002/ange.202010278, 133, 21, (11684-11695), (2021).
- Junjie Li, Kazunori Kataoka, Chemo-physical Strategies to Advance the in Vivo Functionality of Targeted Nanomedicine: The Next Generation , Journal of the American Chemical Society, 10.1021/jacs.0c09029, 143, 2, (538-559), (2020).
- Mengyi Xiong, Gezhi Kong, Qin Liu, Lu Liu, Yao Yin, Ying Liu, Hui Yuan, Xiaobing Zhang, Weihong Tan, DNA-Templated Assembly of Proteins for Programmable Cell Functionalization and Regulable Cell Immunotherapy, SSRN Electronic Journal, 10.2139/ssrn.4179774.
Plaats een reactie ...
Reageer op "Immuuntherapie met gemoduleerde navelstreng natural killer cellen - UBC-nk celtherapie. Wat is dat voor vorm van immuuntherapie?"