Kanker Actueel maakt gebruik van cookies om ons websiteverkeer te analyseren om u een optimale bezoekerservaring te bieden. Bovendien plaatsen adverteerders tracking cookies om u gepersonaliseerde advertenties te tonen. Door op [OK] te klikken gaat u hiermee akkoord.
Een veelbelovende toekomst voor een effectieve oncologische behandeling is ontstaan door de opkomst van een nieuwe benadering die gebruik maakt van oncolytische virussen in immuuntherapie bij vormen van kanker.
Oncolytische virussen zijn virussen die genetisch zijn bewerkt om kwaadaardige cellen aan te vallen en een robuuste immuunreactie te activeren.
Er zijn verschillende technieken ontwikkeld om virussen een oncolytische activiteit te geven door middel van genetische manipulatie. Bijvoorbeeld, redirection capsid modification, stimulatie van anti-neoplastische immuunrespons en genetisch bewapenen van virussen met cytokines zoals IL-12.
Oncolytische virale klinische uitkomsten worden nagestreefd, met name bij meer gevorderde stadia van kanker.
De effectiviteit en het veiligheidsprofiel van het oncolytische virus in klinische studies met of zonder de combinatie van standaardbehandeling (chemotherapie, radiotherapie of primair een operatie) is beoordeeld met behulp van response evaluatie criteria in solide tumoren (RECIST).
Deze review zal uitgebreid de meest recente klinische toepassingen schetsen en de resultaten van verschillende fasen van klinische studies in verschillende vormen van kanker getoetst aan de meest recent gepubliceerde literatuur.
verderop in dit artikel staat abstract naar dit studieverslag
12 november 2022: Op1, met dank aan Diana die mij op deze Op1 uitzending wees en ik heb er onderstaande recente overzichtstudies over oncolytische virussen bij gezocht.
In dit artikel worden de verschillende gemoduleerde virussen besproken, maar ook de werkingsmechanismes en uitdagingen die moeten worden overwonnen voordat massaal oncolytische virussen in de klinische praktijk kunnen worden uitgevoerd.
In dit artikel worden expliciet een aantal gemoduleerde oncolytische virussen besproken:
In onderstaand artikel worden een aantal gemoduleerde virussen besproken die afgelopen decennia zijn onderzocht en ook al worden gebruikt bij kankerpatiënten. Al of niet met andere medicijnen of zelfs andere vormen van immuuntherapie. Meestal nog wel in studieverband.
Uit het artikel:
Hoe het immuunsysteem is betrokken bij oncolytische virustherapie
Tumoren worden beschreven als een immunosuppressief milieu waarin het immuunsysteem wordt onderdrukt om elke reactie op kankercellen te voorkomen. De overdracht van oncolytische virussen (OV's) naar de tumor veroorzaakt immuniteit en produceert een krachtige en duurzame respons (Figuur 2). Dit proces wordt mogelijk gemaakt door zowel aangeboren als adaptieve immuunresponsen [30-32].
Wast Casper van Eyck laat zien in een animatie in de uitzending van Op1 staat hier in Figuur 2 afgebeeld hoe een gemoduleerd virus werkt in het lichaam van een kankerpatiënt en hoe het gemoduleerde virus ook het immuunsysteem activeert omdat het gemoduleerde virus gezien wordt als ongewenst.
Figure 2
The interaction between OVs and the immune system. OVs can only multiply in cancer cells and not in normal cells, causing the tumor mass to lyse. However, OVs can also upregulate the immune system.
De synergetische werkzaamheid van oncolytische virussen (OV's) in combinatie met gerichte behandelingen, radiotherapie - bestraling, chemotherapie en immunotherapeutische geneesmiddelen wordt uitgebeeld in de volgende Figuur 3
Figure 3
The combination of OV therapy with other therapeutic approaches. The combination of OV therapy with molecular targeted therapy, chemotherapy, radiotherapy, and CAR-T cell therapy could significantly enhance the treatment output and support the sensitivity of tumor cells to common therapeutic factors.
Hier de vertaalde conclusie:
6. Conclusie en vooruitzichten
Snelle vorderingen in de moleculaire biotechnologie hebben onderzoekers in staat gesteld om nieuwe manieren te ontwerpen om het immuunsysteem te gebruiken om kanker te behandelen. Bovendien evolueert de oncolytische virus (OV)-behandeling nog steeds, en we hebben nu een veel beter begrip van hoe ze werken.
In de afgelopen twee decennia heeft genetische manipulatie de snelle progressie van oncolytische virussen (OV's) mogelijk gemaakt, waardoor zelfs potentieel schadelijke virussen kunnen worden aangepast voor de behandeling van kanker. Ze kunnen het lokale immunologische milieu van de tumor beïnvloeden, naast het lyseren van cellen als onderdeel van virale replicatie. Het is opgemerkt dat oncolytische virussen (OV's) het immuunonderdrukkende milieu in tumoren verstoren, waardoor immunotherapeutica effectiever kunnen werken.
Het op de juiste manier toedienen van medicijnen is een van de moeilijkste obstakels geweest voor een effectieve oncovirale therapie. De biologische beschikbaarheid van systemisch geïnjecteerde oncolytische virussen is vrij laag. Bovendien, zelfs wanneer het virus intraveneus wordt toegediend, wordt het verzwakte virus snel opgevangen en afgebroken door het menselijke immuunsysteem via het reticulo-endotheliale systeem, aangedreven door rode pulpa-macrofagen in de milt en Kupffer-cellen in de lever [ref. 146].
Complement, antilichamen en andere stoffen opsoniseren virale deeltjes, waardoor de betrokkenheid van endotheelcellen en macrofagen en fagocytose wordt verbeterd. Er zijn geen gevallen geweest van geïnactiveerde deeltjes die de virulentie terugdraaiden of een slechte dosistolerantie veroorzaakten voor oncovirale behandeling. Bij oncovirale therapie is het beheersen van het niveau van lokale immunosuppressie een moeilijke taak.
Enerzijds kan immunosuppressie de intratumorale distributie van de therapie verbeteren. Daarentegen zal het versterken van het immuunsysteem van de gastheer de targeting van getransfecteerde tumorcellen verbeteren en de intratumorale virale verspreiding verminderen [ref. 147]. Als gevolg hiervan, en tot op heden, is locoregionale of directe inoculatie de enige manier om oncovirale therapie in voldoende hoeveelheden toe te dienen om klinisch effectief te zijn.
Bovendien is beeldgestuurde toediening onlosmakelijk verbonden met de potentiële effectiviteit en het brede gebruik van oncovirale therapie. Het idee van beeldgeleiding is breed en omvat het plannen, richten, beheren, evalueren en analyseren van de behandelingsreactie voor laesies, die allemaal cruciaal zijn voor het succes van de therapie.
Beeldevaluatie voor planning is niet alleen van vitaal belang voor het detecteren van neoplastische tumoren, maar ook voor het identificeren en selecteren van therapeutische toedieningsdoelen. Het detecteren van een grote maar necrotische laesie kan bijvoorbeeld de voorkeur hebben boven het identificeren van een kleinere maar actieve laesie met metabolisme/proliferatie.
Functionele cellen spelen een centrale rol bij virale transfectie en activering van immuuncellen, en deze weefsels zouden ook kunnen worden verzameld voor monitoring van tumorreacties. Bovendien kan het verwachte naaldpad worden onderzocht om er zeker van te zijn dat het geen ongepaste of risicovolle anatomische kenmerken kruist.
Beeldgeleiding biedt ook directe toegang tot bepaalde lichaamsdelen die anders ontoegankelijk zouden zijn voor effectieve hematogene distributie van systemische therapie, waaronder tumoren met lage mitotische indices of maligniteiten met slechte vascularisatie. Volgens klinisch onderzoek hebben oncolytische virussen als monotherapie minder kans om optimale therapeutische resultaten te verkrijgen.
Aan de andere kant lijken oncolytische virussen sterke kandidaten te zijn om te combineren met andere therapieën, met name immuuntherapie. Bovendien zijn, om de bioveiligheid van oncolytische virotherapie te verifiëren, aanvullende klinische onderzoeken nodig en moeten er zo snel mogelijk meer OV's worden ontwikkeld om te worden gebruikt bij klinische behandeling.
Onderzoekers zullen in de toekomst nieuwe combinatietherapieën met andere geneesmiddelen uitvoeren, evenals nieuwe genetisch gewijzigde OV's en toedieningssystemen. Bij de behandeling van kanker zullen OV's de meest effectieve therapeutische optie zijn zodra fysieke barrières, immunosuppressieve omgeving en verwijdering van OV's door de gastheer zijn geëlimineerd.
Immunotherapy is at the cutting edge of modern cancer treatment. Innovative medicines have been developed with varying degrees of success that target all aspects of tumor biology: tumors, niches, and the immune system. Oncolytic viruses (OVs) are a novel and potentially immunotherapeutic approach for cancer treatment. OVs reproduce exclusively in cancer cells, causing the tumor mass to lyse. OVs can also activate the immune system in addition to their primary activity. Tumors create an immunosuppressive environment by suppressing the immune system’s ability to respond to tumor cells. By injecting OVs into the tumor, the immune system is stimulated, allowing it to generate a robust and long-lasting response against the tumor. The essential biological properties of oncolytic viruses, as well as the underlying mechanisms that enable their usage as prospective anticancer medicines, are outlined in this review. We also discuss the increased efficacy of virotherapy when combined with other cancer medications.
1. Introduction
Cancer leftovers one of the world’s utmost common causes of mortality. The necessity for novel treatment options is becoming increasingly critical as the global cancer incidence continues to increase. Despite the availability of numerous therapeutic methods for cancer treatment, such as surgery, radiation, and chemodrugs, the risk of recurrence remains significant. Immunotherapeutic approaches for cancer treatment have become increasingly popular in preclinical research and clinical practice over the last decade [1]. Traditional oncological strategies are aimed at removing or killing tumor cells directly.
On the other hand, immunotherapy is performed to improve the immune system’s ability to destroy cancer cells, leading to tumor regression, establishment of antitumor immune memory, and, finally, long-lasting reactions. This can be accomplished through various strategies such as monoclonal antibodies, cancer vaccines, and immune checkpoint inhibitors [2]. It was discovered in the early 1900s that natural viral infection caused tumor regression, which sparked an interest in using viruses to treat cancer. However, because of concerns about viral pathogenicity and toxicity, this technique was ruled out. Oncolytic viruses (OVs) are a new generation of viruses created as a result of recent developments in genetic engineering technologies that assure their safety and potency [3].
Information about the immune response to new or even old viruses is constantly changing and needs to be updated [4], because viruses’ characteristics change due to geographical and natural interactions [5]. Scientists discovered that some viruses could naturally kill tumor cells in the last century. OVs were generated from wild-type or naturally attenuated virus strains during this time, leaving a lot of space for development in terms of safety and antitumor effects. OV-mediated cancer virotherapy has emerged as a new and successful cancer treatment strategy. Many OVs have been used, and numerous viruses have been studied for cancer therapy [6]. OVs are cancer-targeting viruses that can be native or recombinant. The viruses kill cancer cells in their last stages of replication by lysis or by stimulating an antitumor immune reaction, consequently diminishing impairment in healthy organs [7]. The antitumor efficacy of OVs is based on a number of processes that include the natural interactions between viruses, cancer cells, and the immune system. Another benefit of OVs for cancer therapy is that they may be utilized to impress gene expression in the tumor microenvironment, which either enhances the OVs’ ability or boosts the immune system’s antitumor arm [8].
The fundamental knowledge of viruses’ anticancer properties is rapidly converted into feasible therapy alternatives for aggressive cancers, which is a fascinating phase in the evolution of the OV field. The main goal of this review was to evaluate the monotherapy of OVs in comparison with other therapeutic approaches and highlight the importance of combination therapy because of insufficient antitumor response during OV monotherapy. Additionally, we describe how OVs are important in cancer diagnosis and treatment. Also, the synergistic efficacy of OVs in combination with targeted therapy, radiation, chemotherapy, and immunotherapeutic drugs is described in this review.
Data Availability
All data generated or analyzed during this study are included in this published article.
Conflicts of Interest
There is no conflict of interest.
Authors’ Contributions
All the authors contributed equally.
Acknowledgments
We thank those who help us in writing this manuscript.
Oncolytic viruses (OVs) may provide a much-needed option for cancers resistant to existing treatments. This review will explore the challenges of developing a successful OV, current clinical landscape and the prospects of OVs in early clinical development.
Despite advances in treatment, cancer remains a leading cause of death worldwide. Although treatment strategies are continually progressing, cancers have evolved many mechanisms for evading therapies and the host immune system. Oncolytic viruses (OVs) could provide a much-needed option for cancers that are resistant to existing treatments. OVs can be engineered to specifically target and kill cancer cells, while simultaneously triggering an immune response at the site of infection. This review will focus on the challenges of developing a successful OV and translation to clinical practice, discussing the innovative strategies that are being used to optimize the potential of OVs. Here, we will also explore the current clinical landscape and the prospects of OVs in early clinical development.
Plain language summary
Oncolytic viruses (OVs) are viruses that may help destroy tumor cells. They work by selectively infecting and replicating within tumor cells, causing the cells to burst and release newly built viruses. These viruses infect nearby tumor cells, triggering the body's immune system to attack the tumor and any tumor cells that have spread throughout the body. Clinical trials have shown that OVs can destroy cancer cells that are resistant to standard therapies. OVs in combination with other cancer therapies can be more effective and there are over 100 clinical trials planned, ongoing or completed to investigate this approach. OVs are generally well tolerated, the most common treatment-related side effects include fever, aches and pains, and tiredness for 1–2 days. While only four OVs have been approved so far, there are more expected to come. Overall, OVs may provide a way to directly destroy tumors and turn on the immune system to destroy tumor cells throughout the body.
Tweetable abstract
Click to tweetOVs may provide a much-needed option for cancers resistant to existing treatments. This review will explore the challenges of developing a successful OV, current clinical landscape and the prospects of OVs in early clinical development.
Acknowledgments
The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors (ICMJE). Boehringer Ingelheim International GmbH was given the opportunity to review the manuscript for medical and scientific accuracy as well as intellectual property considerations.
Financial & competing interests disclosure
UM Lauer has worked as a consultant for Boehringer Ingelheim, ViraTherapeutics and MSD/Themis Bioscience, and as an advisor for Novartis, Amgen and Bayer. J Beil has nothing to declare. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. The authors did not receive payment related to the development of the review.
V Cronin of MediTech Media provided writing and editorial support, which was contracted and funded by Boehringer Ingelheim International GmbH.
A promising future for oncology treatment has been brought about by the emergence of a novel approach utilizing oncolytic viruses in cancer immunotherapy. Oncolytic viruses are viruses that have been exploited genetically to assault malignant cells and activate a robust immune response. Several techniques have been developed to endow viruses with an oncolytic activity through genetic engineering. For instance, redirection capsid modification, stimulation of anti-neoplastic immune response, and genetically arming viruses with cytokines such as IL-12. Oncolytic viral clinical outcomes are sought after, particularly in more advanced cancers. The effectiveness and safety profile of the oncolytic virus in clinical studies with or without the combination of standard treatment (chemotherapy, radiotherapy, or primary excision) has been assessed using response evaluation criteria in solid tumors (RECIST). This review will comprehensively outline the most recent clinical applications and provide the results from various phases of clinical trials in a variety of cancers in the latest published literature.
Figure 1. Overview of oncolytic virus clinical trials; 118 ongoing studies categorized on three bases: (A) Viral species, (B) Combination therapies, and (C) Clinical trial phase.
Image Source: Zheng et al., 2019 [6]. Use Permitted For non-commercial purposes: Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0)
Conclusions
Virotherapy has been shown to have a noticeable impact on malignant cells through direct toxic replicating effects and immunostimulatory activity at the molecular level, which leads to the induction of complex apoptotic pathways. Several viruses, including adenovirus, HSV, measles virus, and VV, have been manipulated and genetically engineered to possess an oncolytic effect. Depending on the desired site and stage of malignancy, OVs can be administered via a variety of routes. For instance, the IT route is used in melanoma, the IV route in disseminated cancer, and the intrathecal route in CNS tumors. Nonetheless, the tumor microenvironment and antiviral immunity might be potential pitfalls that restrict and minimize OV delivery and therapeutic effects.
Multiple clinical applications of OVs in combination with other standard or complementary treatment modalities have demonstrated outstanding objective clinical outcomes according to RECIST criteria in advanced late-stage cancers with tumor regression, prolongation of OS compared to standard treatment alone, and a manageable safety profile. Among different types of cancer, melanoma, brain tumors, CRC, and prostate cancer are examples of successful utilization of OVs in a clinical setting. Currently, there are a marked number of clinical trials evaluating the efficacy and safety of anti-neoplastic viruses in various types of solid tumors. We hope future successes will tackle the current challenges concerning the therapeutic limitations of virotherapy.
The authors have declared that no competing interests exist.
References
1.Binder MD, Hirokawa N, Windhorst U. Encyclopedia of Neuroscience. Germany: Springer; 2009. Encyclopedia of Neuroscience. [Google Scholar]
2.The mechanisms tumor cells utilize to evade the host's immune system. Kuol N, Stojanovska L, Nurgali K, Apostolopoulos V. Maturitas. 2017;105:8–15. doi: 10.1016/j.maturitas.2017.04.014. [DOI] [PubMed] [Google Scholar]
3.Oncolytic virotherapy-a novel strategy for cancer therapy. Gopisankar MG, Surendiran A. Egypt J Med Hum Genet. 2018;5:165–169. [Google Scholar]
4.Encyclopedia of Cancer. Vol. 23. Berlin, Germany: Springer-Verlag; 2008. Encyclopedia of Cancer. [Google Scholar]
5.Virotherapy: from single agents to combinatorial treatments. Malfitano AM, Di Somma S, Iannuzzi CA, Pentimalli F, Portella G. Biochem Pharmacol. 2020;177:113986. doi: 10.1016/j.bcp.2020.113986. [DOI] [PubMed] [Google Scholar]
6.Oncolytic viruses for cancer therapy: barriers and recent advances. Zheng M, Huang J, Tong A, Yang H. Mol Ther Oncolytics. 2019;15:234–247. doi: 10.1016/j.omto.2019.10.007. [DOI] [PMC free article] [PubMed] [Google Scholar]
7.Redirecting oncolytic viruses: engineering opportunists to take control of the tumour microenvironment. Jamieson TR, Poutou J, Ilkow CS. Cytokine Growth Factor Rev. 2020;56:102–114. doi: 10.1016/j.cytogfr.2020.07.004. [DOI] [PubMed] [Google Scholar]
8.GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation. Dougan M, Dranoff G, Dougan SK. Immunity. 2019;50:796–811. doi: 10.1016/j.immuni.2019.03.022. [DOI] [PubMed] [Google Scholar]
9.Design and application of oncolytic viruses for cancer immunotherapy. Ylösmäki E, Cerullo V. Curr Opin Biotechnol. 2020;65:25–36. doi: 10.1016/j.copbio.2019.11.016. [DOI] [PubMed] [Google Scholar]
10.Advances and potential pitfalls of oncolytic viruses expressing immunomodulatory transgene therapy for malignant gliomas. Zhang Q, Liu F. Cell Death Dis. 2020;11:485. doi: 10.1038/s41419-020-2696-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
11.Optimizing oncolytic viral design to enhance antitumor efficacy: progress and challenges. Chaurasiya S, Fong Y, Warner SG. Cancers (Basel) 2020;12:1699. doi: 10.3390/cancers12061699. [DOI] [PMC free article] [PubMed] [Google Scholar]
12.Cytokines in oncolytic virotherapy. Pol JG, Workenhe ST, Konda P, Gujar S, Kroemer G. Cytokine Growth Factor Rev. 2020;56:4–27. doi: 10.1016/j.cytogfr.2020.10.007. [DOI] [PubMed] [Google Scholar]
13.Advances in the mechanisms of action of cancer-targeting oncolytic viruses. Lin CZ, Xiang GL, Zhu XH, Xiu LL, Sun JX, Zhang XY. Oncol Lett. 2018;15:4053–4060. doi: 10.3892/ol.2018.7829. [DOI] [PMC free article] [PubMed] [Google Scholar]
14.Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Tian Y, Xie D, Yang L. Signal Transduct Target Ther. 2022;7:117. doi: 10.1038/s41392-022-00951-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
15.Armed oncolytic viruses: a kick-start for anti-tumor immunity. de Graaf JF, de Vor L, Fouchier RA, van den Hoogen BG. Cytokine Growth Factor Rev. 2018;41:28–39. doi: 10.1016/j.cytogfr.2018.03.006. [DOI] [PMC free article] [PubMed] [Google Scholar]
16.Designing and building oncolytic viruses. Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng KW, Russell S. Future Virol. 2017;12:193–213. doi: 10.2217/fvl-2016-0129. [DOI] [PMC free article] [PubMed] [Google Scholar]
17.Delivery and biosafety of oncolytic virotherapy. Li L, Liu S, Han D, Tang B, Ma J. Front Oncol. 2020;10:475. doi: 10.3389/fonc.2020.00475. [DOI] [PMC free article] [PubMed] [Google Scholar]
18.Oncolytic viruses: therapeutics with an identity crisis. Breitbach CJ, Lichty BD, Bell JC. EBioMedicine. 2016;9:31–36. doi: 10.1016/j.ebiom.2016.06.046. [DOI] [PMC free article] [PubMed] [Google Scholar]
19.Oncolytic adenovirus: prospects for cancer immunotherapy. Zhao Y, Liu Z, Li L, et al. Front Microbiol. 2021;12:707290. doi: 10.3389/fmicb.2021.707290. [DOI] [PMC free article] [PubMed] [Google Scholar]
20.Oncolytic virotherapy: challenges and solutions. Goradel NH, Baker AT, Arashkia A, Ebrahimi N, Ghorghanlu S, Negahdari B. Curr Probl Cancer. 2021;45:100639. doi: 10.1016/j.currproblcancer.2020.100639. [DOI] [PubMed] [Google Scholar]
21.From benchtop to bedside: a review of oncolytic virotherapy. Choi AH, O'Leary MP, Fong Y, Chen NG. Biomedicines. 2016;4:18. doi: 10.3390/biomedicines4030018. [DOI] [PMC free article] [PubMed] [Google Scholar]
22.Tumour vasculature: friend or foe of oncolytic viruses? Santry LA, van Vloten JP, Knapp JP, et al. Cytokine Growth Factor Rev. 2020;56:69–82. doi: 10.1016/j.cytogfr.2020.07.007. [DOI] [PubMed] [Google Scholar]
23.Efficacy of an oncolytic adenovirus driven by a chimeric promoter and armed with Decorin against renal cell carcinoma. Zhang W, Zhang C, Tian W, et al. Hum Gene Ther. 2020;31:651–663. doi: 10.1089/hum.2019.352. [DOI] [PubMed] [Google Scholar]
24.Singh S, Kumar R, Agrawal B. Adenoviruses. London, United Kingdom: IntechOpen Limited; 2019. Adenoviral vector-based vaccines and gene therapies: current status and future prospects. [Google Scholar]
26.Systemic cancer therapy with engineered adenovirus that evades innate immunity. Atasheva S, Emerson CC, Yao J, Young C, Stewart PL, Shayakhmetov DM. Sci Transl Med. 2020;12 doi: 10.1126/scitranslmed.abc6659. [DOI] [PMC free article] [PubMed] [Google Scholar]
27.Oncolytic adenoviruses as a therapeutic approach for osteosarcoma: a new hope. Garcia-Moure M, Martinez-Vélez N, Patiño-García A, Alonso MM. J Bone Oncol. 2017;9:41–47. doi: 10.1016/j.jbo.2016.12.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
28.Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Wold WS, Toth K. Curr Gene Ther. 2013;13:421–433. doi: 10.2174/1566523213666131125095046. [DOI] [PMC free article] [PubMed] [Google Scholar]
29.The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Eissa IR, Bustos-Villalobos I, Ichinose T, et al. Cancers (Basel) 2018;10:356. doi: 10.3390/cancers10100356. [DOI] [PMC free article] [PubMed] [Google Scholar]
30.Oncolytic herpes simplex virus-based therapies for cancer. Aldrak N, Alsaab S, Algethami A, et al. Cells. 2021;10:1541. doi: 10.3390/cells10061541. [DOI] [PMC free article] [PubMed] [Google Scholar]
31.Oncolytic herpes simplex viral therapy: a stride toward selective targeting of cancer cells. Sanchala DS, Bhatt LK, Prabhavalkar KS. Front Pharmacol. 2017;8:270. doi: 10.3389/fphar.2017.00270. [DOI] [PMC free article] [PubMed] [Google Scholar]
32.Measles virus fusion protein: structure, function and inhibition. Plattet P, Alves L, Herren M, Aguilar HC. Viruses. 2016;8:112. doi: 10.3390/v8040112. [DOI] [PMC free article] [PubMed] [Google Scholar]
34.Clinical trials with oncolytic measles virus: current status and future prospects. Msaouel P, Opyrchal M, Dispenzieri A, Peng KW, Federspiel MJ, Russell SJ, Galanis E. Curr Cancer Drug Targets. 2018;18:177–187. doi: 10.2174/1568009617666170222125035. [DOI] [PMC free article] [PubMed] [Google Scholar]
35.Measles to the rescue: a review of oncolytic measles virus. Aref S, Bailey K, Fielding A. Viruses. 2016;8:294. doi: 10.3390/v8100294. [DOI] [PMC free article] [PubMed] [Google Scholar]
36.Poxvirus oncolytic virotherapy. Torres-Domínguez LE, McFadden G. Expert Opin Biol Ther. 2019;19:561–573. doi: 10.1080/14712598.2019.1600669. [DOI] [PubMed] [Google Scholar]
37.Oncolytic virotherapy for cancer: clinical experience. Chaurasiya S, Fong Y, Warner SG. Biomedicines. 2021;9:419. doi: 10.3390/biomedicines9040419. [DOI] [PMC free article] [PubMed] [Google Scholar]
38.Oncolytic properties of non-vaccinia poxviruses. Ricordel M, Foloppe J, Pichon C, et al. Oncotarget. 2018;9:35891–35906. doi: 10.18632/oncotarget.26288. [DOI] [PMC free article] [PubMed] [Google Scholar]
39.Oncotargeting by vesicular stomatitis virus (VSV): advances in cancer therapy. Bishnoi S, Tiwari R, Gupta S, Byrareddy SN, Nayak D. Viruses. 2018;10:90. doi: 10.3390/v10020090. [DOI] [PMC free article] [PubMed] [Google Scholar]
40.The oncolytic Newcastle disease virus as an effective immunotherapeutic strategy against glioblastoma. Cuoco JA, Rogers CM, Mittal S. Neurosurg Focus. 2021;50:0. doi: 10.3171/2020.11.FOCUS20842. [DOI] [PubMed] [Google Scholar]
41.Breaking therapy resistance: an update on oncolytic Newcastle disease virus for improvements of cancer therapy. Schirrmacher V, van Gool S, Stuecker W. Biomedicines. 2019;7:66. doi: 10.3390/biomedicines7030066. [DOI] [PMC free article] [PubMed] [Google Scholar]
42.Oncolytic Newcastle disease virus as cutting edge between tumor and host. Fournier P, Schirrmacher V. Biology (Basel) 2013;2:936–975. doi: 10.3390/biology2030936. [DOI] [PMC free article] [PubMed] [Google Scholar]
43.A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Hu JC, Coffin RS, Davis CJ, et al. Clin Cancer Res. 2006;12:6737–6747. doi: 10.1158/1078-0432.CCR-06-0759. [DOI] [PubMed] [Google Scholar]
44.Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. Senzer NN, Kaufman HL, Amatruda T, et al. J Clin Oncol. 2009;27:5763–5771. doi: 10.1200/JCO.2009.24.3675. [DOI] [PubMed] [Google Scholar]
45.Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. Andtbacka RH, Collichio F, Harrington KJ, Middleton MR, Downey G, Ӧhrling K, Kaufman HL. J Immunother Cancer. 2019;7:145. doi: 10.1186/s40425-019-0623-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
46.A phase 1 trial of oncolytic adenovirus ICOVIR-5 administered intravenously to cutaneous and uveal melanoma patients. García M, Moreno R, Gil-Martin M, et al. Hum Gene Ther. 2019;30:352–364. doi: 10.1089/hum.2018.107. [DOI] [PubMed] [Google Scholar]
47.Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. Beasley GM, Nair SK, Farrow NE, et al. J Immunother Cancer. 2021;9 doi: 10.1136/jitc-2020-002203. [DOI] [PMC free article] [PubMed] [Google Scholar]
48.Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. Lang FF, Conrad C, Gomez-Manzano C, et al. J Clin Oncol. 2018;36:1419–1427. doi: 10.1200/JCO.2017.75.8219. [DOI] [PMC free article] [PubMed] [Google Scholar]
49.Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S, et al. N Engl J Med. 2022;386:2471–2481. doi: 10.1056/NEJMoa2202028. [DOI] [PubMed] [Google Scholar]
50.Convection enhanced delivery of the oncolytic adenovirus delta24-RGD in patients with recurrent GBM: A phase i clinical trial including correlative studies. van Putten EH, Kleijn A, van Beusechem VW, et al. Clin Cancer Res. 2022;28:1572–1585. doi: 10.1158/1078-0432.CCR-21-3324. [DOI] [PMC free article] [PubMed] [Google Scholar]
51.A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. Nat Commun. 2022;13:4119. doi: 10.1038/s41467-022-31262-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
52.Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, Tanaka M. Nat Med. 2022;28:1630–1639. doi: 10.1038/s41591-022-01897-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
53.Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Kicielinski KP, Chiocca EA, Yu JS, Gill GM, Coffey M, Markert JM. Mol Ther. 2014;22:1056–1062. doi: 10.1038/mt.2014.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
54.Abstract CT569: Combination of reovirus (pelareorep) and granulocyte-macrophage colony-stimulating factor (GM-CSF) alongside standard chemoradiotherapy and adjuvant chemotherapy (temozolomide) for patients with glioblastoma multiforme (GBM): Long term follow up results of the ReoGlio phase Ib trial. Short SC, Kendall J, Chalmers A, et al. Cancer Res. 2022;82:0. [Google Scholar]
55.Phase I study of gene-mediated cytotoxic immunotherapy with AdV-tk as adjuvant to surgery and radiation for pediatric malignant glioma and recurrent ependymoma. Kieran MW, Goumnerova L, Manley P, et al. Neuro Oncol. 2019;21:537–546. doi: 10.1093/neuonc/noy202. [DOI] [PMC free article] [PubMed] [Google Scholar]
56.Treatment of a stage III rima glottidis patient with the oncolytic virus Rigvir: a retrospective case report. Proboka G, Rasa A, Olmane E, Isajevs S, Tilgase A, Alberts P. Medicine (Baltimore) 2019;98:0. doi: 10.1097/MD.0000000000017883. [DOI] [PMC free article] [PubMed] [Google Scholar]
57.Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Mell LK, Brumund KT, Daniels GA, et al. Clin Cancer Res. 2017;23:5696–5702. doi: 10.1158/1078-0432.CCR-16-3232. [DOI] [PubMed] [Google Scholar]
58.Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): a multicenter, phase 1b study. Harrington KJ, Kong A, Mach N, et al. Clin Cancer Res. 2020;26:5153–5161. doi: 10.1158/1078-0432.CCR-20-1170. [DOI] [PubMed] [Google Scholar]
59.Final analysis of a phase 1b, randomized, multicenter study of talimogene laherparepvec (T-VEC) plus pembrolizumab (pembro) combination for the treatment (Tx) of recurrent/metastatic squamous cell carcinoma of the head and neck (R/M HNSCC): MASTERKEY-232. Harrington KJ, Kong A, Mach N, et al. J Clin Oncol. 2021;15:6036. [Google Scholar]
60.Recombinant adenovirus-p53 enhances the therapeutic effect of surgery and chemoradiotherapy combination in hypopharyngeal squamous cell carcinomas patients. Liu J, Lv D, Wang H, Zou J, Chen F, Yang H. Medicine (Baltimore) 2018;97:0. doi: 10.1097/MD.0000000000012193. [DOI] [PMC free article] [PubMed] [Google Scholar]
61.A multicentre phase 1b study of NG-641, a novel transgene-armed and tumour-selective adenoviral vector, and pembrolizumab as neoadjuvant treatment for squamous cell carcinoma of the head and neck. Ottensmeier C, Evans M, King E, et al. J Immunother Cancer. 2021;9 [Google Scholar]
63.Oncolytic reovirus in combination with chemotherapy in metastatic or recurrent non-small cell lung cancer patients with KRAS-activated tumors. Villalona-Calero MA, Lam E, Otterson GA, et al. Cancer. 2016;122:875–883. doi: 10.1002/cncr.29856. [DOI] [PMC free article] [PubMed] [Google Scholar]
64.Recombinant human adenovirus type 5 (Oncorine) reverses resistance to immune checkpoint inhibitor in a patient with recurrent non-small cell lung cancer: a case report. Zhang QN, Li Y, Zhao Q, Tian M, Chen LL, Miao LY, Zhou YJ. Thorac Cancer. 2021;12:1617–1619. doi: 10.1111/1759-7714.13947. [DOI] [PMC free article] [PubMed] [Google Scholar]
65.Oncolytic herpesvirus therapy for mesothelioma - a phase I/IIa trial of intrapleural administration of HSV1716. Danson SJ, Conner J, Edwards JG, et al. Lung Cancer. 2020;150:145–151. doi: 10.1016/j.lungcan.2020.10.007. [DOI] [PubMed] [Google Scholar]
66.Phase I dose-escalation study of endoscopic intratumoral injection of OBP-301 (Telomelysin) with radiotherapy in oesophageal cancer patients unfit for standard treatments. Shirakawa Y, Tazawa H, Tanabe S, et al. Eur J Cancer. 2021;153:98–108. doi: 10.1016/j.ejca.2021.04.043. [DOI] [PubMed] [Google Scholar]
67.Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. Garcia-Carbonero R, Salazar R, Duran I, et al. J Immunother Cancer. 2017;5:71. doi: 10.1186/s40425-017-0277-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
68.Elucidation of pelareorep pharmacodynamics in a phase I trial in patients with KRAS-mutated colorectal cancer. Goel S, Ocean AJ, Parakrama RY, et al. Mol Cancer Ther. 2020;19:1148–1156. doi: 10.1158/1535-7163.MCT-19-1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
69.Intratumoral OH2, an oncolytic herpes simplex virus 2, in patients with advanced solid tumors: a multicenter, phase I/II clinical trial. Zhang B, Huang J, Tang J, et al. J Immunother Cancer. 2021;9 doi: 10.1136/jitc-2020-002224. [DOI] [PMC free article] [PubMed] [Google Scholar]
70.Viroimmunotherapy for colorectal cancer: clinical studies. Chaurasiya S, Warner S. Biomedicines. 2017;5:11. doi: 10.3390/biomedicines5010011. [DOI] [PMC free article] [PubMed] [Google Scholar]
71.A Phase I clinical trial of EUS-guided intratumoral injection of the oncolytic virus, HF10 for unresectable locally advanced pancreatic cancer. Hirooka Y, Kasuya H, Ishikawa T, et al. BMC Cancer. 2018;18:596. doi: 10.1186/s12885-018-4453-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
72.Phase 2 trial of oncolytic H-1 parvovirus therapy shows safety and signs of immune system activation in patients with metastatic pancreatic ductal adenocarcinoma. Hajda J, Leuchs B, Angelova AL, et al. Clin Cancer Res. 2021;27:5546–5556. doi: 10.1158/1078-0432.CCR-21-1020. [DOI] [PubMed] [Google Scholar]
73.Tolerability and safety of EUS-injected adenovirus-mediated double-suicide gene therapy with chemotherapy in locally advanced pancreatic cancer: a phase 1 trial. Lee JC, Shin DW, Park H, et al. Gastrointest Endosc. 2020;92:1044–1052. doi: 10.1016/j.gie.2020.02.012. [DOI] [PubMed] [Google Scholar]
74.A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. Breitbach CJ, Moon A, Burke J, Hwang TH, Kirn DH. Methods Mol Biol. 2015;1317:343–357. doi: 10.1007/978-1-4939-2727-2_19. [DOI] [PubMed] [Google Scholar]
75.Vectorized gene therapy of liver tumors: proof-of-concept of TG4023 (MVA-FCU1) in combination with flucytosine. Husseini F, Delord JP, Fournel-Federico C, et al. Ann Oncol. 2017;28:169–174. doi: 10.1093/annonc/mdw440. [DOI] [PubMed] [Google Scholar]
76.The effect of gene therapy on postoperative recurrence of small hepatocellular carcinoma (less than 5cm) Meng J, Zhang JG, Du ST, et al. https://www.nature.com/articles/s41417-018-0043-0. Cancer Gene Ther. 2019;26:114–117. doi: 10.1038/s41417-018-0043-0. [DOI] [PubMed] [Google Scholar]
77.Abstract PS12-08: A window-of-opportunity study with atezolizumab and the oncolytic virus pelareorep in early breast cancer (REO-027, AWARE-1) Manso L, Villagrasa P, Chic N, et al. Cancer Res. 2021;81:0–8. [Google Scholar]
78.Abstract OT-32-02: Irene study: Phase 2 study of incmga00012 (retifanlimab) and the oncolytic virus pelareorep in metastatic triple negative breast cancer. George M, Williams N, Lustberg M, et al. Cancer Res. 2021;81:0–2. [Google Scholar]
79.A phase II trial of stereotactic radiation therapy and in situ oncolytic virus therapy in metastatic triple-negative breast cancer (mTNBC) patients followed by pembrolizumab (STOMP) Sun K, Ensor JE, Xu Y, et al. J Clin Oncol. 2021;15:1079. [Google Scholar]
80.A phase I trial of talimogene laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer. Soliman H, Hogue D, Han H, et al. Clin Cancer Res. 2021;27:1012–1018. doi: 10.1158/1078-0432.CCR-20-3105. [DOI] [PubMed] [Google Scholar]
81.Pronounced clinical response following the oncolytic vaccinia virus GL-ONC1 and chemotherapy in a heavily pretreated ovarian cancer patient. Mori KM, Giuliano PD, Lopez KL, King MM, Bohart R, Goldstein BH. Anticancer Drugs. 2019;30:1064–1066. doi: 10.1097/CAD.0000000000000836. [DOI] [PubMed] [Google Scholar]
82.Oncolytic viral therapy engenders a clinical response in a recurrent ovarian cancer patient. Micha J, Rettenmaier M, Giuliano P, Bohart R, Goldstein B. Anticancer Drugs. 2022;33:513–516. doi: 10.1097/CAD.0000000000001296. [DOI] [PubMed] [Google Scholar]
83.A phase 1b study of intraperitoneal oncolytic viral immunotherapy in platinum-resistant or refractory ovarian cancer. Manyam M, Stephens AJ, Kennard JA, LeBlanc J, Ahmad S, Kendrick JE, Holloway RW. Gynecol Oncol. 2021;163:481–489. doi: 10.1016/j.ygyno.2021.10.069. [DOI] [PubMed] [Google Scholar]
84.Safety and efficacy of the tumor-selective adenovirus enadenotucirev with or without paclitaxel in platinum-resistant ovarian cancer: a phase 1 clinical trial. Moreno V, Barretina-Ginesta MP, García-Donas J, et al. J Immunother Cancer. 2021;9 doi: 10.1136/jitc-2021-003645. [DOI] [PMC free article] [PubMed] [Google Scholar]
85.Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Kantoff PW, Schuetz TJ, Blumenstein BA, et al. J Clin Oncol. 2010;28:1099–1105. doi: 10.1200/JCO.2009.25.0597. [DOI] [PMC free article] [PubMed] [Google Scholar]
86.Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. Kantoff PW, Gulley JL, Pico-Navarro C. J Clin Oncol. 2017;35:124–125. doi: 10.1200/JCO.2016.69.7748. [DOI] [PMC free article] [PubMed] [Google Scholar]
87.Phase III trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. Gulley JL, Borre M, Vogelzang NJ, et al. J Clin Oncol. 2019;37:1051–1061. doi: 10.1200/JCO.18.02031. [DOI] [PMC free article] [PubMed] [Google Scholar]
88.PROSTVAC in combination with nivolumab enhanced immune cell infiltration in prostate cancer. Bailey S, Lassoued W, Papanicolau-Sengos A, et al. J Immunother Cancer. 2021;9 [Google Scholar]
89.Neoadjuvant PROSTVAC prior to radical prostatectomy enhances T-cell infiltration into the tumor immune microenvironment in men with prostate cancer. Abdul Sater H, Marté JL, Donahue RN, et al. J Immunother Cancer. 2020;8 doi: 10.1136/jitc-2020-000655. [DOI] [PMC free article] [PubMed] [Google Scholar]
90.Intratumoral and s.c. injection of inactivated hemagglutinating virus of Japan envelope (GEN0101) in metastatic castration-resistant prostate cancer. Fujita K, Kato T, Hatano K, et al. Cancer Sci. 2020;111:1692–1698. doi: 10.1111/cas.14366. [DOI] [PMC free article] [PubMed] [Google Scholar]
91.Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC) Bilusic M, McMahon S, Madan RA, et al. J Immunother Cancer. 2021;9 doi: 10.1136/jitc-2021-002374. [DOI] [PMC free article] [PubMed] [Google Scholar]
92.Clinical results from a phase I dose escalation study in treatment-naïve early stage prostate cancer patients with ORCA-010, a potency enhanced oncolytic replication competent adenovirus. Brachtlova T, Abramovitch A, Giddens J, et al. J Immunother Cancer. 2021;9 [Google Scholar]
93.A first in human phase 1 study of CG0070, a GM-CSF expressing oncolytic adenovirus, for the treatment of nonmuscle invasive bladder cancer. Burke JM, Lamm DL, Meng MV, et al. J Urol. 2012;188:2391–2397. doi: 10.1016/j.juro.2012.07.097. [DOI] [PubMed] [Google Scholar]
94.An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Packiam VT, Lamm DL, Barocas DA, et al. Urol Oncol. 2018;36:440–447. doi: 10.1016/j.urolonc.2017.07.005. [DOI] [PubMed] [Google Scholar]
95.MP43-02 CG0070, an oncolytic adenovirus, for BCG-unresponsive non-muscle-invasive bladder cancer (NMIBC): 18 month follow-up from a multicenter phase II trial. Packiam* VT, Barocas DA, Chamie K, et al. J Urol. 2019;201:0. [Google Scholar]
96.CORE1: phase 2, single-arm study of CG0070 combined with pembrolizumab in patients with nonmuscle-invasive bladder cancer (NMIBC) unresponsive to bacillus Calmette-Guerin (BCG) Li R, Steinberg GD, Uchio EM, et al. J Clin Oncol. 2022;16:4597. [Google Scholar]
97.Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Boorjian SA, Alemozaffar M, Konety BR, et al. Lancet Oncol. 2021;22:107–117. doi: 10.1016/S1470-2045(20)30540-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
98.Phase II trial of pexa-vec (pexastimogene devacirepvec; JX-594), an oncolytic and immunotherapeutic vaccinia virus, in patients with metastatic, refractory renal cell carcinoma (RCC) Kim SG, Ha HK, Lim SN, et al. J Clin Oncol. 2018;36:671. [Google Scholar]
99.Abstract CT121: A phase Ib study of recombinant vaccinia virus in combination with immune checkpoint inhibition (ICI) in advanced renal cell carcinoma (RCC) Rha SY, Merchan J, Oh SY, et al. Cancer Res. 2020;80:0. [Google Scholar]
100.A case of stage iv chromophobe renal cell carcinoma treated with the oncolytic echo-7 virus, Rigvir®. Ismailov Z, Rasa A, Bandere K, et al. Am J Case Rep. 2019;20:48–52. doi: 10.12659/AJCR.912115. [DOI] [PMC free article] [PubMed] [Google Scholar]
101.Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Dispenzieri A, Tong C, LaPlant B, et al. Leukemia. 2017;31:2791–2798. doi: 10.1038/leu.2017.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
102.A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Sborov DW, Nuovo GJ, Stiff A, et al. Clin Cancer Res. 2014;20:5946–5955. doi: 10.1158/1078-0432.CCR-14-1404. [DOI] [PMC free article] [PubMed] [Google Scholar]
103.TG1042 (adenovirus-interferon-γ) in primary cutaneous B-cell lymphomas: a phase II clinical trial. Dreno B, Urosevic-Maiwald M, Kim Y, et al. PLoS One. 2014;9:0. doi: 10.1371/journal.pone.0083670. [DOI] [PMC free article] [PubMed] [Google Scholar]
104.Clinical activity of single-dose systemic oncolytic VSV virotherapy in patients with relapsed refractory T-cell lymphoma. Cook J, Peng KW, Witzig TE, et al. Blood Adv. 2022;6:3268–3279. doi: 10.1182/bloodadvances.2021006631. [DOI] [PMC free article] [PubMed] [Google Scholar]
105.Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Castro JE, Melo-Cardenas J, Urquiza M, Barajas-Gamboa JS, Pakbaz RS, Kipps TJ. Cancer Res. 2012;72:2937–2948. doi: 10.1158/0008-5472.CAN-11-3368. [DOI] [PMC free article] [PubMed] [Google Scholar]
106.Phase 1 study of intravenous oncolytic poxvirus (vvDD) in patients with advanced solid cancers. Downs-Canner S, Guo ZS, Ravindranathan R, et al. Mol Ther. 2016;24:1492–1501. doi: 10.1038/mt.2016.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
107.Abstract CT103: A phase 1 first-in-human study of MEM-288 oncolytic virus in solid tumors including non-small cell lung cancer (NSCLC): impact on tumor and systemic T cell immunity. Saltos AN, Arrowood C, Beasley G, et al. Clin Cancer Res. 2023;83:0. [Google Scholar]
108.Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase ib study. Mahalingam D, Wilkinson GA, Eng KH, et al. Clin Cancer Res. 2020;26:71–81. doi: 10.1158/1078-0432.CCR-19-2078. [DOI] [PMC free article] [PubMed] [Google Scholar]
109.A randomized phase II study of weekly paclitaxel with or without pelareorep in patients with metastatic breast cancer: final analysis of Canadian Cancer Trials Group IND.213. Bernstein V, Ellard SL, Dent SF, et al. Breast Cancer Res Treat. 2018;167:485–493. doi: 10.1007/s10549-017-4538-4. [DOI] [PubMed] [Google Scholar]
110.Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy. Zhang B, Cheng P. Mol Cancer. 2020;19:158. doi: 10.1186/s12943-020-01275-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
111.Targeting tumor microenvironment for cancer therapy. Roma-Rodrigues C, Mendes R, Baptista PV, Fernandes AR. Int J Mol Sci. 2019;20:840. doi: 10.3390/ijms20040840. [DOI] [PMC free article] [PubMed] [Google Scholar]
112.Oncolytic viruses and immune checkpoint inhibitors: preclinical developments to clinical trials. Hwang JK, Hong J, Yun CO. Int J Mol Sci. 2020;21:8627. doi: 10.3390/ijms21228627. [DOI] [PMC free article] [PubMed] [Google Scholar]
113.Application of CAR T cells for the treatment of solid tumors. Khan JF, Khan AS, Brentjens RJ. Prog Mol Biol Transl Sci. 2019;164:293–327. doi: 10.1016/bs.pmbts.2019.07.004. [DOI] [PubMed] [Google Scholar]
114.Combining oncolytic viruses with chimeric antigen receptor T cell therapy. McGrath K, Dotti G. Hum Gene Ther. 2021;32:150–157. doi: 10.1089/hum.2020.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
115.Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Wing A, Fajardo CA, Posey AD Jr, et al. Cancer Immunol Res. 2018;6:605–616. doi: 10.1158/2326-6066.CIR-17-0314. [DOI] [PMC free article] [PubMed] [Google Scholar]
116.Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Nishio N, Diaconu I, Liu H, et al. Cancer Res. 2014;74:5195–5205. doi: 10.1158/0008-5472.CAN-14-0697. [DOI] [PMC free article] [PubMed] [Google Scholar]
117.Engineering and combining oncolytic measles virus for cancer therapy. Leber MF, Neault S, Jirovec E, Barkley R, Said A, Bell JC, Ungerechts G. Cytokine Growth Factor Rev. 2020;56:39–48. doi: 10.1016/j.cytogfr.2020.07.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
118.Preclinical evaluation of AdVince, an oncolytic adenovirus adapted for treatment of liver metastases from neuroendocrine cancer. Yu D, Leja-Jarblad J, Loskog A, Hellman P, Giandomenico V, Oberg K, Essand M. Neuroendocrinology. 2017;105:54–66. doi: 10.1159/000448430. [DOI] [PubMed] [Google Scholar]
119.Efficacy and safety of oncolytic viruses in randomized controlled trials: a systematic review and meta-analysis. Li Z, Jiang Z, Zhang Y, Huang X, Liu Q. Cancers (Basel) 2020;12:1416. doi: 10.3390/cancers12061416. [DOI] [PMC free article] [PubMed] [Google Scholar]
120.Oncolytic HSV-1 G207 immunovirotherapy for pediatric high-grade gliomas. Friedman GK, Johnston JM, Bag AK, et al. N Engl J Med. 2021;384:1613–1622. doi: 10.1056/NEJMoa2024947. [DOI] [PMC free article] [PubMed] [Google Scholar]
121.ONCR-177, an oncolytic HSV-1 designed to potently activate systemic antitumor immunity. Haines BB, Denslow A, Grzesik P, et al. Cancer Immunol Res. 2021;9:291–308. doi: 10.1158/2326-6066.CIR-20-0609. [DOI] [PubMed] [Google Scholar]
122.Oncolytic herpes virus rRp450 shows efficacy in orthotopic xenograft group 3/4 medulloblastomas and atypical teratoid/rhabdoid tumors. Studebaker AW, Hutzen BJ, Pierson CR, Haworth KB, Cripe TP, Jackson EM, Leonard JR. Mol Ther Oncolytics. 2017;6:22–30. doi: 10.1016/j.omto.2017.05.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
123.Virotherapy research in Germany: from engineering to translation. Ungerechts G, Engeland CE, Buchholz CJ, et al. Hum Gene Ther. 2017;28:800–819. doi: 10.1089/hum.2017.138. [DOI] [PubMed] [Google Scholar]
124.A phase I/II study of JX-594 oncolytic virus in combination with immune checkpoint inhibition in refractory colorectal cancer. Monge C, Xie C, Brar G, et al. Eur J Cancer. 2020;138:57–58. [Google Scholar]
125.Abstract CT244: A phase 1 study of IV MEDI5395, an oncolytic virus, in combination with durvalumab in patients with advanced solid tumors. Dy GK, Davar D, Galanis E, et al. Cancer Res. 2020;15:0. [Google Scholar]
references
Papers of special note have been highlighted as: • of interest; •• of considerable interest
References
1.Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14(9), 642–662 (2015).Crossref, Medline, CAS, Google Scholar
2.Marchini A, Bonifati S, Scott EM, Angelova AL, Rommelaere J. Oncolytic parvoviruses: from basic virology to clinical applications. Virol. J. 12(1), 6 (2015).Crossref, Medline, Google Scholar
3.Kumar AR, Devan AR, Nair B, Vinod BS, Nath LR. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets. Mol. Biol. Rep. 48(12), 8075–8095 (2021).Crossref, Medline, CAS, Google Scholar
4.Rahman MM, McFadden G. Oncolytic viruses: newest frontier for cancer immunotherapy. Cancers (Basel) 13(21), 5452 (2021).Crossref, Medline, CAS, Google Scholar
5.Maroun J, Muñoz-Alía M, Ammayappan A, Schulze A, Peng K-W, Russell S. Designing and building oncolytic viruses. Future Virol. 12(4), 193–213 (2017).Link, CAS, Google Scholar
6.Kurokawa C, Iankov ID, Anderson SKet al.Constitutive interferon pathway activation in tumors as an efficacy determinant following oncolytic virotherapy. J. Natl Cancer Inst. 110(10), 1123–1132 (2018).Crossref, Medline, Google Scholar
7.Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J. Gen. Virol. 93(Pt 12), 2529–2545 (2012).Crossref, Medline, CAS, Google Scholar
8.Sborov DW, Nuovo GJ, Stiff Aet al.A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin. Cancer Res. 20(23), 5946–5955 (2014).Crossref, Medline, CAS, Google Scholar
9.Quetglas JI, Labiano S, Aznar MÁet al.Virotherapy with a semliki forest virus–based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol. Res. 3(5), 449–454 (2015).Crossref, Medline, CAS, Google Scholar
10.May V, Berchtold S, Berger Aet al.Chemovirotherapy for pancreatic cancer: gemcitabine plus oncolytic measles vaccine virus. Oncol. Lett. 18(5), 5534–5542 (2019).Medline, CAS, Google Scholar
11.Puzanov I, Milhem MM, Minor Det al.Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable Stage IIIB-IV melanoma. J. Clin. Oncol. 34(22), 2619–2626 (2016).Crossref, Medline, CAS, Google Scholar
12.Cunliffe TG, Bates EA, Parker AL. Hitting the target but missing the point: recent progress towards adenovirus-based precision virotherapies. Cancers (Basel). 12(11), 3327–3351 (2020).Crossref, CAS, Google Scholar
13.Singh PK, Doley J, Kumar GR, Sahoo AP, Tiwari AK. Oncolytic viruses & their specific targeting to tumour cells. Indian J. Med. Res. 136(4), 571–584 (2012).Medline, Google Scholar
14.Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses: interaction of virus and tumor cells in the battle to eliminate cancer. Front. Oncol. 7, 195–195 (2017).Crossref, Medline, Google Scholar
15.Russell SJ, Peng K-W, Bell JC. Oncolytic virotherapy. Nat. Biotechnol. 30(7), 658–670 (2012).Crossref, Medline, CAS, Google Scholar
16.Stojdl DF, Lichty BD, tenOever BRet al.VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4(4), 263–275 (2003).Crossref, Medline, CAS, Google Scholar
17.Moaven O, Mangieri CW, A Stauffer J, Anastasiadis PZ, Borad MJ. Evolving role of oncolytic virotherapy: challenges and prospects in clinical practice. JCO Precis. Oncol. 5, 432–441 (2021).Crossref, Google Scholar
18.Yang L, Gu X, Yu J, Ge S, Fan X. Oncolytic virotherapy: from bench to bedside. Front. Cell Dev. Biol. 9, 790150 (2021).Crossref, Medline, Google Scholar
20.McNamara MA, Nair SK, Holl EK. RNA-based vaccines in cancer immunotherapy. J. Immunol. Res. 2015, 794528–794528 (2015).Crossref, Medline, Google Scholar
21.Macedo N, Miller DM, Haq R, Kaufman HL. Clinical landscape of oncolytic virus research in 2020. J. Immunother. Cancer. 8(2), e001486 (2020). • A systematic review of 119 oncolytic virus (OV) publications reporting the most frequent adverse events.Crossref, Medline, Google Scholar
22.Engeland CE, Ungerechts G. Measles virus as an oncolytic immunotherapy. Cancers (Basel). 13(3), 544 (2021).Crossref, Medline, CAS, Google Scholar
23.Watanabe M, Nishikawaji Y, Kawakami H, Kosai KI. Adenovirus biology, recombinant adenovirus, and adenovirus usage in gene therapy. Viruses 13(12), 2502 (2021).Crossref, Medline, CAS, Google Scholar
24.Menotti L, Avitabile E. Herpes simplex virus oncolytic immunovirotherapy: the blossoming branch of multimodal therapy. Int. J. Mol. Sci. 21(21), 8301 (2020).Crossref, Google Scholar
25.Bowman BR, Baker ML, Rixon FJ, Chiu W, Quiocho FA. Structure of the herpesvirus major capsid protein. EMBO J. 22(4), 757–765 (2003).Crossref, Medline, CAS, Google Scholar
26.Martinez WM, Spear PG. Structural features of nectin-2 (HveB) required for herpes simplex virus entry. J. Virol. 75(22), 11185–11195 (2001).Crossref, Medline, CAS, Google Scholar
27.Song K, Viskovska M. Design and engineering of deimmunized vaccinia viral vectors. Biomedicines 8(11), 491 (2020).Crossref, CAS, Google Scholar
28.Burman B, Pesci G, Zamarin D. Newcastle disease virus at the forefront of cancer immunotherapy. Cancers (Basel) 12(12), 3552 (2020).Crossref, CAS, Google Scholar
29.Pol JG, Atherton MJ, Bridle BWet al.Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother. 7, 117–128 (2018).Crossref, Medline, CAS, Google Scholar
30.Gong J, Sachdev E, Mita AC, Mita MM. Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J. Methodol. 6(1), 25–42 (2016).Crossref, Medline, Google Scholar
31.Munis AM, Bentley EM, Takeuchi Y. A tool with many applications: vesicular stomatitis virus in research and medicine. Expert Opin. Biol. Ther. 20(10), 1187–1201 (2020).Crossref, Medline, CAS, Google Scholar
32.Burrill CP, Strings VR, Schulte MB, Andino R. Poliovirus: generation and characterization of mutants. Curr. Protoc. Microbiol. 15, 42 (2013).Google Scholar
33.Garmaroudi FS, Marchant D, Hendry Ret al.Coxsackievirus B3 replication and pathogenesis. Future Microbiol. 10(4), 629–653 (2015).Link, CAS, Google Scholar
34.Ganar K, Das M, Sinha S, Kumar S. Newcastle disease virus: current status and our understanding. Virus Res. 184, 71–81 (2014).Crossref, Medline, CAS, Google Scholar
35.Tong JG, Valdes YR, Sivapragasam Met al.Spatial and temporal epithelial ovarian cancer cell heterogeneity impacts Maraba virus oncolytic potential. BMC Cancer 17(1), 594 (2017).Crossref, Medline, Google Scholar
36.Tong JG, Valdes YR, Barrett JWet al.Evidence for differential viral oncolytic efficacy in an in vitro model of epithelial ovarian cancer metastasis. Mol. Ther. – Oncolytics 2, 15013 (2015).Crossref, Medline, Google Scholar
37.Guglielmi KM, Johnson EM, Stehle T, Dermody TS. Attachment and cell entry of mammalian orthoreovirus. In: Reoviruses: Entry, Assembly and Morphogenesis.Roy P (Ed.). Springer, Berlin, Heidelberg, 1–38 (2006).Crossref, Google Scholar
38.Wollmann G, Paglino JC, Maloney PR, Ahmadi SA, van den Pol AN. Attenuation of vesicular stomatitis virus infection of brain using antiviral drugs and an adeno-associated virus-interferon vector. Virology 475, 1–14 (2015).Crossref, Medline, CAS, Google Scholar
39.Muik A, Stubbert LJ, Jahedi RZet al.Re-engineering vesicular stomatitis virus to abrogate neurotoxicity, circumvent humoral immunity, and enhance oncolytic potency. Cancer Res. 74(13), 3567–3578 (2014).Crossref, Medline, CAS, Google Scholar
40.Schreiber LM, Urbiola C, Das Ket al.The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br. J. Cancer 121(8), 647–658 (2019).Crossref, Medline, CAS, Google Scholar
41.Cristi F, Gutiérrez T, Hitt MM, Shmulevitz M. Genetic modifications that expand oncolytic virus potency. Front. Mol. Biosci. 9, 831091 (2022).Crossref, Medline, CAS, Google Scholar
42.Ranki T, Särkioja M, Hakkarainen T, Smitten Kv, Kanerva A, Hemminki A. Systemic efficacy of oncolytic adenoviruses in imagable orthotopic models of hormone refractory metastatic breast cancer. Int. J. Cancer 121(1), 165–174 (2007).Crossref, Medline, CAS, Google Scholar
43.Tomita Y, Kurozumi K, Yoo JYet al.Oncolytic herpes virus armed with vasculostatin in combination with bevacizumab abrogates glioma invasion via the CCN1 and AKT signaling pathways. Mol. Cancer Ther. 18(8), 1418–1429 (2019).Crossref, Medline, CAS, Google Scholar
44.Filley AC, Dey M. Immune system, friend or foe of oncolytic virotherapy?Front. Oncol. 7, 106 (2017).Crossref, Medline, Google Scholar
45.Shin DH, Nguyen T, Ozpolat Bet al.Current strategies to circumvent the antiviral immunity to optimize cancer virotherapy. J. Immunother. Cancer 9(4), e002086 (2021).Crossref, Medline, Google Scholar
46.Nemunaitis J, Cunningham C, Tong AWet al.Pilot trial of intravenous infusion of a replication-selective adenovirus (ONYX-015) in combination with chemotherapy or IL-2 treatment in refractory cancer patients. Cancer Gene Ther. 10(5), 341–352 (2003).Crossref, Medline, CAS, Google Scholar
47.Altomonte J, Wu L, Chen Let al.Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo. Mol. Ther. 16(1), 146–153 (2008).Crossref, Medline, CAS, Google Scholar
48.Bonaventura P, Shekarian T, Alcazer Vet al.Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10, 168 (2019).Crossref, Medline, CAS, Google Scholar
49.Alonso MM, Gomez-Manzano C, Bekele BN, Yung WKA, Fueyo J. Adenovirus-based strategies overcome temozolomide resistance by silencing the O6-methylguanine-DNA methyltransferase promoter. Cancer Res. 67(24), 11499–11504 (2007).Crossref, Medline, CAS, Google Scholar
50.Touchefeu Y, Franken P, Harrington K. Radiovirotherapy: principles and prospects in oncology. Curr. Pharm. Des. 18, 8 (2012).Crossref, Google Scholar
51.Zhang B, Cheng P. Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy. Mol. Cancer 19(1), 158 (2020).Crossref, Medline, Google Scholar
52.Oh CM, Chon HJ, Kim C. Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors. Int. J. Mol. Sci. 21(20), 7743 (2020).Crossref, CAS, Google Scholar
53.Ribas A, Dummer R, Puzanov Iet al.Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6), 1109–1119.e1110 (2017).Crossref, Medline, CAS, Google Scholar
54.Huang J, Zheng M, Zhang Zet al.Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma. Cancer Immunol. Immunother. 70(9), 2453–2465 (2021).Crossref, Medline, CAS, Google Scholar
55.Heidbuechel JPW, Engeland CE. Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies. J. Hemat. Oncol. 14(1), 63 (2021).Crossref, Medline, Google Scholar
57.Islam SMBU, Lee B, Jiang F, Kim E-K, Ahn SC, Hwang T-H. Engineering and characterization of oncolytic vaccinia virus expressing truncated herpes simplex virus thymidine kinase. Cancers (Basel). 12(1), 228 (2020).Crossref, Google Scholar
58.Battram AM, Bachiller M, Martín-Antonio B. Senescence in the development and response to cancer with immunotherapy: a double-edged sword. Int. J. Mol. Sci. 21(12), 4346 (2020).Crossref, CAS, Google Scholar
59.Weiland T, Lampe J, Essmann Fet al.Enhanced killing of therapy-induced senescent tumor cells by oncolytic measles vaccine viruses. Int. J. Cancer 134(1), 235–243 (2014).Crossref, Medline, Google Scholar
60.Kimpel J, Urbiola C, Koske Iet al.The oncolytic virus VSV-GP is effective against malignant melanoma. Viruses. 10(3), 108 (2018).Crossref, Google Scholar
62.Holl EK, Brown MC, Boczkowski Det al.Recombinant oncolytic poliovirus, PVSRIPO, has potent cytotoxic and innate inflammatory effects, mediating therapy in human breast and prostate cancer xenograft models. Oncotarget 7(48), 79828–79841 (2016).Crossref, Medline, Google Scholar
63.Roy DG, Bell JC. Cell carriers for oncolytic viruses: current challenges and future directions. Oncolytic Virother. 2, 47–56 (2013).Medline, Google Scholar
64.Raman SS, Hecht JR, Chan E. Talimogene laherparepvec: review of its mechanism of action and clinical efficacy and safety. Immunotherapy 11(8), 705–723 (2019).Link, CAS, Google Scholar
66.de Souza N. Method of the Year 2017: organoids. Nature Methods 15, 23 (2018).Crossref, CAS, Google Scholar
67.Raimondi G, Mato-Berciano A, Pascual-Sabater Set al.Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine 56, 102786 (2020).Crossref, Medline, Google Scholar
68.Hamdan F, Ylösmäki E, Chiaro Jet al.Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. J. Immunother. Cancer 9(8), e003000 (2021).Crossref, Medline, Google Scholar
69.Zhu Z, Gorman MJ, McKenzie LDet al.Zika virus has oncolytic activity against glioblastoma stem cells. J. Exp. Med. 214(10), 2843–2857 (2017).Crossref, Medline, CAS, Google Scholar
70.Li Z, Jiang Z, Zhang Y, Huang X, Liu Q. Efficacy and safety of oncolytic viruses in randomized controlled trials: a systematic review and meta-analysis. Cancers 12(6), 1416 (2020). • A systematic review and meta-analysis of 11 OV studies reporting the safety results.Crossref, CAS, Google Scholar
71.Harrington KJ, Kong A, Mach Net al.Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): a multicenter, phase Ib study. Clin Cancer Res. 26(19), 5153–5161 (2020).Crossref, Medline, CAS, Google Scholar
72.Park B-H, Hwang T, Liu T-Cet al.Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 9(6), 533–542 (2008).Crossref, Medline, CAS, Google Scholar
73.Ogino M, Fedorov Y, Adams DJet al.Vesiculopolins, a new class of anti-vesiculoviral compounds, inhibit transcription initiation of vesiculoviruses. Viruses 11(9), 856 (2019).Crossref, CAS, Google Scholar
74.Bauzon M, Jin F, Kretschmer P, Hermiston T. In vitro analysis of cidofovir and genetically engineered TK expression as potential approaches for the intervention of ColoAd1-based treatment of cancer. Gene Ther. 16, 1169–1174 (2009).Crossref, Medline, CAS, Google Scholar
75.Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D. The advent of oncolytic virotherapy in oncology: The Rigvir® story. Eur. J. Pharmacol. 837, 117–126 (2018).Crossref, Medline, CAS, Google Scholar
76.Wei D, Xu J, Liu X-Y, Chen Z-N, Bian H. Fighting cancer with viruses: oncolytic virus therapy in China. Human Gene Ther. 29(2), 151–159 (2017).Crossref, Google Scholar
77.Conry RM, Westbrook B, McKee S, Norwood TG. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum. Vaccin. Immunother. 14(4), 839–846 (2018).Crossref, Medline, Google Scholar
78.Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Mol. Ther. Oncol. 22, 129–142 (2021).Crossref, CAS, Google Scholar
79.Zeng J, Li X, Sander M, Zhang H, Yan G, Lin Y. Oncolytic viro-immunotherapy: an emerging option in the treatment of gliomas. Front. Immunol. 12, 4108 (2021).Crossref, Google Scholar
80.Andtbacka RHI, Kaufman HL, Collichio Fet al.Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J. Clin. Oncol. 33(25), 2780–2788 (2015). • Results of the phase III trial investigating T-VEC compared with GM-CSF in patients with advanced melanoma which supported the FDA approval of T-VEC.Crossref, Medline, CAS, Google Scholar
81.Andtbacka RHI, Collichio F, Harrington KJet al.Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J. Immunother. Cancer 7(1), 145–145 (2019).Crossref, Medline, Google Scholar
82.Ressler JM, Karasek M, Koch Let al.Real-life use of talimogene laherparepvec (T-VEC) in melanoma patients in centers in Austria, Switzerland and Germany. J. Immunother. Cancer 9(2), e001701 (2021).Crossref, Medline, Google Scholar
83.Kleemann J, Jäger M, Valesky E, Kippenberger S, Kaufmann R, Meissner M. Real-world experience of talimogene laherparepvec (T-VEC) in old and oldest-old patients with melanoma: a retrospective single center study. Cancer Manage Res. 13, 5699–5709 (2021).Crossref, Medline, Google Scholar
84.Perez MC, Miura JT, Naqvi SMHet al.Talimogene Laherparepvec (TVEC) for the treatment of advanced melanoma: a single-institution experience. Ann. Surg. Oncol. 25(13), 3960–3965 (2018).Crossref, Medline, Google Scholar
85.Louie RJ, Perez MC, Jajja MRet al.Real-World outcomes of talimogene laherparepvec therapy: a multi-institutional experience. J. Am. Coll. Surg. 228(4), 644–649 (2019). • Observational study of a real-world cohort receiving T-VEC in clinical practice in USA. Crossref, Medline, Google Scholar
86.Perez MC, Zager JS, Amatruda Tet al.Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS-1). Melanoma Manage. 6(2), MMT19 (2019).Link, Google Scholar
87.Franke V, Berger DMS, Klop WMCet al.High response rates for T-VEC in early metastatic melanoma (stage IIIB/C-IVM1a). Int. J. Cancer 145(4), 974–978 (2019).Crossref, Medline, CAS, Google Scholar
88.Zhou AY, Wang DY, McKee Set al.Correlates of response and outcomes with talimogene laherperpvec. J. Surg. Oncol. 120(3), 558–564 (2019).Crossref, Medline, Google Scholar
89.Yajima S, Sugawara K, Iwai M, Tanaka M, Seto Y, Todo T. Efficacy and safety of a third-generation oncolytic herpes virus G47Δ in models of human esophageal carcinoma. Mol. Ther. – Oncolytics. 23, 402–411 (2021).Crossref, Medline, CAS, Google Scholar
90.Todo T, Feigenbaum F, Rabkin SDet al.Viral shedding and biodistribution of G207, a muitimutated, conditionally replicating herpes simplex virus type 1, after intracerebral inoculation in Aotus. Mol. Ther. 2(6), 588–595 (2000).Crossref, Medline, CAS, Google Scholar
92.Zadeh G, Daras M, Cloughesy TFet al.LTBK-04: phase II multicenter study of the oncolytic adenovirus DNX-2401 (tasadenoturev) in combination with pembrolizumab for recurrent glioblastoma; captive study (KEYNOTE-192). Neuro-oncology 22(Suppl. 2), ii237 (2020).Crossref, Google Scholar
93.Packiam VT, Lamm DL, Barocas DAet al.An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non–muscle-invasive bladder cancer: interim results. Urol. Oncol. 36(10), 440–447 (2018).Crossref, Medline, CAS, Google Scholar
95.Holloway R, Mendivil A, Kendrick Jet al.Oncolytic vaccinia (Olvi-Vec) primed immunochemotherapy in platinum-resistant/refractory ovarian cancer. Int. J. Gynecol. Cancer 30(Suppl. 3), A1–A210 (2020).Medline, Google Scholar
97.Powell SF, Patel MR, Merchan Jet al.VSV-IFNβ-NIS intratumoral (IT) injection: a first-in-human (FIH), phase I study of an innovative oncolytic virotherapy, alone and with an anti-PD-L1 antibody, in patients with refractory solid tumors. Ann. Oncol. 29, viii439 (2018).Crossref, Google Scholar
98.Malogolovkin A, Gasanov N, Egorov A, Weener M, Ivanov R, Karabelsky A. Combinatorial approaches for cancer treatment using oncolytic viruses: projecting the perspectives through clinical trials outcomes. Viruses 13(7), 1271 (2021).Crossref, Medline, CAS, Google Scholar
99.Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic vesicular stomatitis virus as a viro-immunotherapy: defeating cancer with a “hammer” and “anvil”. Biomedicines 5(1), 8 (2017).Crossref, Google Scholar
100.Dold C, Rodriguez Urbiola C, Wollmann Get al.Application of interferon modulators to overcome partial resistance of human ovarian cancers to VSV-GP oncolytic viral therapy. Mol. Ther. Oncolytics 3, 16021 (2016).Crossref, Medline, CAS, Google Scholar
101.Patel M, Powell S, Strauss Jet al.505 Relationship of infusion duration and dose to safety, efficacy and pharmacodynamics: second part of a phase I–II study using VSV-IFNβ-NIS (VV1) oncolytic virus in patients with refractory solid tumors. J. Immunother. Cancer 9(Suppl. 2), A537–A537 (2021).Crossref, Google Scholar
102.Merchan JR, Patel M, Cripe TPet al.Relationship of infusion duration to safety, efficacy, and pharmacodynamics (PD): second part of a phase I-II study using VSV-IFNβ-NIS (VV1) oncolytic virus in patients with refractory solid tumors. J. Clin. Oncol. 38(Suppl. 15), 3090–3090 (2020).Crossref, Google Scholar
103.Porosnicu M, Quinson AM, Crossley K, Luecke S, Lauer UM. Phase I study of VSV-GP (BI 1831169) as monotherapy or combined with ezabenlimab in advanced and refractory solid tumors. Future Oncol. 18(24), 2627–2638 (2022). •• A clinical trial protocol describing the first-in-human trial of VSV-GP alone and in combination with ezabenlimab in solid tumors.Link, Google Scholar
106.Breitbach CJ. Considerations for Clinical Translation of MG1 Maraba Virus. In: Oncolytic Viruses. Methods in Molecular Biology.Engeland C (Ed.). Humana, NY, USA, 285–293 (2020).Crossref, Google Scholar
107.Jonker DJ, Hotte SJ, Razak ARAet al.Phase I study of oncolytic virus (OV) MG1 maraba/MAGE-A3 (MG1MA3), with and without transgenic MAGE-A3 adenovirus vaccine (AdMA3) in incurable advanced/metastatic MAGE-A3-expressing solid tumours: CCTG IND.214. J. Clin. Oncol. 35(Suppl. 15), e14637–e14637 (2017).Crossref, Google Scholar
108.Dispenzieri A, Tong C, LaPlant Bet al.Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 31(12), 2791–2798 (2017).Crossref, Medline, CAS, Google Scholar
109.Lin LT, Richardson CD. The host cell receptors for measles virus and their interaction with the viral hemagglutinin (H) protein. Viruses 8(9), 250 (2016).Crossref, Google Scholar
110.Ong HT, Timm MM, Greipp PRet al.Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp. Hematol. 34(6), 713–720 (2006).Crossref, Medline, CAS, Google Scholar
111.ClinicalTrials.gov. Recombinant measles virus vaccine therapy and oncolytic virus therapy in treating patients with progressive, recurrent, or refractory ovarian epithelial cancer or primary peritoneal cancer (2022). https://clinicaltrials.gov/ct2/show/NCT00408590Google Scholar
112.Peikert T, Mandrekar S, Mansfield Aet al.OA13.07 intrapleural modified vaccine strain measles virus therapy for patients with malignant pleural mesothelioma. J. Thorac. Oncol. 12(1), S296 (2017).Crossref, Google Scholar
113.Naik S, Leibovich BC, Miest Tet al.Safety and efficacy of neoadjuvant intravesical oncolytic MV-NIS in patients with urothelial carcinoma. J. Clin. Oncol. 40(Suppl. 6), 509–509 (2022).Crossref, Google Scholar
114.Galanis E, Atherton P, Dowdy Set al.17. Intraperitoneal (IP) administration of an oncolytic measles virus (MV) strain expressing the sodium iodine symporter gene in patients (pts) with advanced ovarian cancer (OvCa). Mol. Ther. 21, S6–S7 (2013).Crossref, Google Scholar
115.Liu M, Peng K-W, Federspiel Met al.Abstract P6-21-03: phase I trial of intratumoral (IT) administration of a NIS-expressing derivative manufactured from a genetically engineered strain of measles virus (MV). Cancer Res. 79(Supplement 4), P6-21-03-P26-21-03 (2019).Google Scholar
116.Desjardins A, Gromeier M, Herndon JEet al.Recurrent glioblastoma treated with recombinant poliovirus. N. Engl. J. Med. 379(2), 150–161 (2018). • Results of a phase I trial where PVSRIPO treatment resulted in durable responses in patients with recurrent gliobastoma.Crossref, Medline, CAS, Google Scholar
117.Beasley GM, Nair SK, Farrow NEet al.Phase I trial of intratumoral PVSRIPO in patients with unresectable, treatment-refractory melanoma. J. Immunother. Cancer 9(4), e002203 (2021).Crossref, Medline, Google Scholar
118.Au GG, Lincz LF, Enno A, Shafren DR. Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br. J. Haematol. 137(2), 133–141 (2007).Crossref, Medline, CAS, Google Scholar
119.Andtbacka RHI, Curti B, Daniels GAet al.Clinical responses of oncolytic coxsackievirus A21 (V937) in patients with unresectable melanoma. J. Clin. Oncol. 39(34), 3829–3838 (2021).Crossref, Medline, CAS, Google Scholar
120.Curti B, Richards J, Faries Met al.The MITCI (phase Ib) study: a novel immunotherapy combination of coxsackievirus A21 and ipilimumab in patients with advanced melanoma. Ann. Oncol. 27, vi360 (2016).Crossref, Google Scholar
121.Pandha HS, Annels N, Arif Met al.Phase I/II CANON study: oncolytic immunotherapy for the treatment of non-muscle invasive bladder (NMIBC) cancer using intravesical coxsackievirus A21. Ann. Oncol. 27, vi361 (2016).Crossref, Google Scholar
122.Chakrabarty R, Tran H, Selvaggi G, Hagerman A, Thompson B, Coffey M. The oncolytic virus, pelareorep, as a novel anticancer agent: a review. Invest. New Drugs 33(3), 761–774 (2015).Crossref, Medline, CAS, Google Scholar
123.Short S, Kendall J, Chalmers Aet al.Combination of reovirus (Pelareorep) and granulocyte-macrophage colony-stimulating factor (GM-CSF) alongside standard chemoradiotherapy and adjuvant chemotherapy (temozolomide) for patients with glioblastoma multiforme (GBM): long term follow up results of the ReoGlioPhase Ibtrial. American Association for Cancer Research, LA, USA (8 April 2022).Google Scholar
124.Mahalingam D, Fountzilas C, Moseley Jet al.A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother. Pharmacol. 79(4), 697–703 (2017).Crossref, Medline, CAS, Google Scholar
125.Mahalingam D, Wilkinson GA, Eng KHet al.Pembrolizumab in combination with the oncolytic virus pelareorep and chemotherapy in patients with advanced pancreatic adenocarcinoma: a phase Ib study. Clin. Cancer Res. 26(1), 71–81 (2020).Crossref, Medline, CAS, Google Scholar
126.Goel S, Ocean AJ, Parakrama RYet al.Elucidation of pelareorep pharmacodynamics in a phase I trial in patients with KRAS-mutated colorectal cancer. Mol. Cancer Ther. 19(5), 1148–1156 (2020).Crossref, Medline, CAS, Google Scholar
127.Jonker DJ, Tang PA, Kennecke Het al.A randomized phase II study of FOLFOX6/bevacizumab with or without pelareorep in patients with metastatic colorectal cancer: IND.210, a Canadian Cancer Trials Group trial. Clin. Colorectal Cancer. 17(3), 231–239.e237 (2018).Crossref, Medline, Google Scholar
128.Bradbury PA, Morris DG, Nicholas Get al.Canadian Cancer Trials Group (CCTG) IND211: a randomized trial of pelareorep (Reolysin) in patients with previously treated advanced or metastatic non-small-cell lung cancer receiving standard salvage therapy. Lung Cancer 120, 142–148 (2018).Crossref, Medline, Google Scholar
129.Cohn DE, Sill MW, Walker JLet al.Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin®) in recurrent ovarian, tubal, or peritoneal cancer: an NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 146(3), 477–483 (2017).Crossref, Medline, CAS, Google Scholar
130.George M, Williams N, Lustberg Met al.Abstract OT-32-02: Irene study: phase II study of incmga00012 (retifanlimab)and the oncolytic virus pelareorep in metastatic triple negative breast cancer. Cancer Res. 81(Supplement 4), OT-32-02-OT-32-02 (2021).Medline, Google Scholar
131.Arnold D, Collienne M, Wilkinson GA, Loghmani H, Heineman TC. GOBLET: a phase I/2 multiple-indication biomarker, safety, and efficacy study in advanced or metastatic gastrointestinal cancers exploring treatment combinations with pelareorep and atezolizumab. J. Clin. Oncol. 40(Suppl. 4), TPS216–TPS216 (2022).Crossref, Google Scholar
132.Hofmeister CC, Sborov DW, Viola Det al.Oncolytics virus replication using pelareorep (Reolysin) and carfilzomib in relapsed myeloma patients increases PD-L1 expression with clinical responses. Blood 132(Suppl. 1), 2655–2655 (2018).Crossref, Google Scholar
133.Lauer UM, Schell M, Beil Jet al.Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin. Cancer Res. 24(18), 4388–4398 (2018).Crossref, Medline, CAS, Google Scholar
134.Kloker LD, Berchtold S, Smirnow Iet al.Oncolytic vaccinia virus GLV-1h68 exhibits profound antitumoral activities in cell lines originating from neuroendocrine neoplasms. BMC Cancer 20(1), 628 (2020).Crossref, Medline, CAS, Google Scholar
References
K. Esfahani, L. Roudaia, N. Buhlaiga, S. V. del Rincon, N. Papneja, and W. H. Miller, “A review of cancer immunotherapy: from the past, to the present, to the future,” Current Oncology, vol. 27, no. 12, pp. 87–97, 2020.
M. E. Davola and K. L. Mossman, “Oncolytic viruses: how “Lytic” must they be for therapeutic efficacy?” Oncoimmunology, vol. 8, no. 6, article e1581528, 2019.
A. Muhammad, H. Ameer, S. Adnan Haider, and I. Ali, “Detection of SARS-CoV-2 using real-time polymerase chain reaction in different clinical specimens: a critical review,” Allergologia et Immunopathologia, vol. 49, no. 1, pp. 159–164, 2021.
P. K. Bommareddy, M. Shettigar, and H. L. Kaufman, “Integrating oncolytic viruses in combination cancer immunotherapy,” Nature Reviews Immunology, vol. 18, no. 8, pp. 498–513, 2018.
J. De Graaf, L. de Vor, R. A. M. Fouchier, and B. G. van den Hoogen, “Armed oncolytic viruses: a kick-start for anti-tumor immunity,” Cytokine & Growth Factor Reviews, vol. 41, pp. 28–39, 2018.
M. Bauzon and T. Hermiston, “Armed therapeutic viruses–a disruptive therapy on the horizon of cancer immunotherapy,” Frontiers in Immunology, vol. 5, p. 74, 2014.
L. Pelner, G. A. Fowler, and H. C. Nauts, “Effects of concurrent infections and their toxins on the course of leukemia,” Acta Medica Scandinavica Supplementum, vol. 338, pp. 1–47, 1958.
C. Heise, A. Sampson-Johannes, A. Williams, F. Mccormick, D. D. Von Hoff, and D. H. Kirn, “ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents,” Nature Medicine, vol. 3, no. 6, pp. 639–645, 1997.
Z.-J. Xia, J. H. Chang, L. Zhang et al., “Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus,” Ai zheng = Aizheng = Chinese Journal of Cancer, vol. 23, no. 12, pp. 1666–1670, 2004.
K. Garber, “China approves world's first oncolytic virus therapy for cancer treatment,” JNCI: Journal of the National Cancer Institute, vol. 98, no. 5, p. 298, 2006.
R. Coffin, “Interview with Robert Coffin, inventor of T-VEC: the first oncolytic immunotherapy approved for the treatment of cancer,” Immunotherapy, vol. 8, no. 2, pp. 103–106, 2016.
R. Andtbacka, H. L. Kaufman, F. Collichio et al., “Talimogene laherparepvec improves durable response rate in patients with advanced melanoma,” Journal of Clinical Oncology, vol. 33, no. 25, pp. 2780–2788, 2015.
M. Cook and A. Chauhan, “Clinical application of oncolytic viruses: a systematic review,” International Journal of Molecular Sciences, vol. 21, no. 20, p. 7505, 2020.
M. Aghi, T. Visted, R. A. DePinho, and E. A. Chiocca, “Oncolytic herpes virus with defective ICP6 specifically replicates in quiescent cells with homozygous genetic mutations in p16,” Oncogene, vol. 27, no. 30, pp. 4249–4254, 2008.
M. C. Coffey, J. E. Strong, P. A. Forsyth, and P. W. K. Lee, “Reovirus therapy of tumors with activated Ras pathway,” Science, vol. 282, no. 5392, pp. 1332–1334, 1998.
D. F. Stojdl, B. Lichty, S. Knowles et al., “Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus,” Nature Medicine, vol. 6, no. 7, pp. 821–825, 2000.
K. Guse, J. D. Dias, G. J. Bauerschmitz et al., “Luciferase imaging for evaluation of oncolytic adenovirus replication _in vivo_,” Gene Therapy, vol. 14, no. 11, pp. 902–911, 2007.
K. Guse, V. Cerullo, and A. Hemminki, “Oncolytic vaccinia virus for the treatment of cancer,” Expert Opinion on Biological Therapy, vol. 11, no. 5, pp. 595–608, 2011.
K. Geletneky, J. P. F. Nüesch, A. Angelova, I. Kiprianova, and J. Rommelaere, “Double-faceted mechanism of parvoviral oncosuppression,” Current Opinion in Virology, vol. 13, pp. 17–24, 2015.
S. Jhawar, A. Thandoni, P. K. Bommareddy et al., “Oncolytic viruses—natural and genetically engineered cancer immunotherapies,” Frontiers in Oncology, vol. 7, no. 202, 2017.
I. Puzanov, M. M. Milhem, D. Minor et al., “Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma,” Journal of Clinical Oncology, vol. 34, no. 22, pp. 2619–2626, 2016.
R. J. Prestwich, K. J. Harrington, H. S. Pandha, R. G. Vile, A. A. Melcher, and F. Errington, “Oncolytic viruses: a novel form of immunotherapy,” Expert Review of Anticancer Therapy, vol. 8, no. 10, pp. 1581–1588, 2008.
V. Kemp, M. L. M. Lamfers, G. van der Pluijm, B. G. van den Hoogen, and R. C. Hoeben, “Developing oncolytic viruses for clinical use: a consortium approach,” Cytokine & Growth Factor Reviews, vol. 56, pp. 133–140, 2020.
A. L. De Matos, L. S. Franco, and G. McFadden, “Oncolytic viruses and the immune system: the dynamic duo,” Molecular Therapy-Methods & Clinical Development, vol. 17, pp. 349–358, 2020.
D. F. Stojdl, B. D. Lichty, B. R. tenOever et al., “VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents,” Cancer Cell, vol. 4, no. 4, pp. 263–275, 2003.
J. P. Heidbuechel and C. E. Engeland, “Oncolytic viruses encoding bispecific T cell engagers: a blueprint for emerging immunovirotherapies,” Journal of Hematology & Oncology, vol. 14, no. 1, pp. 1–24, 2021.
S. Gujar, R. Dielschneider, D. Clements et al., “Multifaceted therapeutic targeting of ovarian peritoneal carcinomatosis through virus-induced immunomodulation,” Molecular Therapy, vol. 21, no. 2, pp. 338–347, 2013.
Y. Endo, R. Sakai, M. Ouchi et al., “Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation,” Oncogene, vol. 27, no. 17, pp. 2375–2381, 2008.
Y. Sun, A. J. Sijts, M. Song et al., “Expression of the proteasome activator PA28 rescues the presentation of a cytotoxic T lymphocyte epitope on melanoma cells,” Cancer Research, vol. 62, no. 10, pp. 2875–2882, 2002.
O. Hemminki, J. M. Dos Santos, and A. Hemminki, “Oncolytic viruses for cancer immunotherapy,” Journal of Hematology & Oncology, vol. 13, no. 1, pp. 1–15, 2020.
D. Zamarin, R. B. Holmgaard, S. K. Subudhi et al., “Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy,” Science Translational Medicine, vol. 6, no. 226, article 226ra32, 2014.
M. J. Wilderman, J. Sun, A. S. Jassar et al., “Intrapulmonary IFN-β gene therapy using an adenoviral vector is highly effective in a murine orthotopic model of bronchogenic adenocarcinoma of the lung,” Cancer Research, vol. 65, no. 18, pp. 8379–8387, 2005.
F. Errington, L. Steele, R. Prestwich et al., “Reovirus activates human dendritic cells to promote innate antitumor immunity,” The Journal of Immunology, vol. 180, no. 9, pp. 6018–6026, 2008.
P. Wongthida, R. M. Diaz, F. Galivo et al., “Type III IFN interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immune-competent mouse models of cancer,” Cancer Research, vol. 70, no. 11, pp. 4539–4549, 2010.
Y. Yang, J. Guo, and L. Huang, “Tackling TAMs for cancer immunotherapy: it's nano time,” Trends in Pharmacological Sciences, vol. 41, no. 10, pp. 701–714, 2020.
F. Cao, P. Nguyen, B. Hong et al., “Engineering oncolytic vaccinia virus to redirect macrophages to tumor cells,” Advances in Cell and Gene Therapy, vol. 4, no. 2, article e99, 2021.
D. Q. Tan, L. F. Zhang, K. Ohba, M. Ye, K. Ichiyama, and N. Yamamoto, “Macrophage response to oncolytic paramyxoviruses potentiates virus-mediated tumor cell killing,” European Journal of Immunology, vol. 46, no. 4, pp. 919–928, 2016.
D. Saha, R. L. Martuza, and S. D. Rabkin, “Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade,” Cancer Cell, vol. 32, no. 2, pp. 253–267.e5, 2017.
K. Sugawara, M. Iwai, S. Yajima et al., “Efficacy of a third-generation oncolytic herpes virus G47Δ in advanced stage models of human gastric cancer,” Molecular Therapy-Oncolytics, vol. 17, pp. 205–215, 2020.
R. Wesolowski, J. Markowitz, and W. E. Carson, “Myeloid derived suppressor cells–a new therapeutic target in the treatment of cancer,” Journal for Immunotherapy of Cancer, vol. 1, no. 1, pp. 10-11, 2013.
V. Umansky, C. Blattner, C. Gebhardt, and J. Utikal, “The role of myeloid-derived suppressor cells (MDSC) in cancer progression,” Vaccine, vol. 4, no. 4, p. 36, 2016.
Y. Katayama, M. Tachibana, N. Kurisu et al., “Oncolytic reovirus inhibits immunosuppressive activity of myeloid-derived suppressor cells in a TLR3-dependent manner,” The Journal of Immunology, vol. 200, no. 8, pp. 2987–2999, 2018.
S. Eisenstein, B. A. Coakley, K. Briley-Saebo et al., “Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy,” Cancer Research, vol. 73, no. 16, pp. 5003–5015, 2013.
T. M. Pearl, J. M. Markert, K. A. Cassady, and M. G. Ghonime, “Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors,” Molecular Therapy-Oncolytics, vol. 13, pp. 14–21, 2019.
C. A. Biron, K. B. Nguyen, G. C. Pien, L. P. Cousens, and T. P. Salazar-Mather, “Natural killer cells in antiviral defense: function and regulation by innate cytokines,” Annual Review of Immunology, vol. 17, no. 1, pp. 189–220, 1999.
G. Marelli, A. Howells, N. R. Lemoine, and Y. Wang, “Oncolytic viral therapy and the immune system: a double-edged sword against cancer,” Frontiers in Immunology, vol. 9, p. 866, 2018.
A. Ribas, R. Dummer, I. Puzanov et al., “Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy,” Cell, vol. 170, no. 6, pp. 1109–1119.e10, 2017.
N. Packiriswamy, D. Upreti, Y. Zhou et al., “Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma,” Leukemia, vol. 34, no. 12, pp. 3310–3322, 2020.
K. Twumasi-Boateng, J. L. Pettigrew, Y. Y. E. Kwok, J. C. Bell, and B. H. Nelson, “Oncolytic viruses as engineering platforms for combination immunotherapy,” Nature Reviews Cancer, vol. 18, no. 7, pp. 419–432, 2018.
P. Dai, W. Wang, N. Yang et al., “Intratumoral delivery of inactivated modified vaccinia virus Ankara (iMVA) induces systemic antitumor immunity via STING and Batf3-dependent dendritic cells,” Science Immunology, vol. 2, no. 11, 2017.
A. Schietinger, M. Philip, R. B. Liu, K. Schreiber, and H. Schreiber, “Bystander killing of cancer requires the cooperation of CD4+ and CD8+ T cells during the effector phase,” Journal of Experimental Medicine, vol. 207, no. 11, pp. 2469–2477, 2010.
B. Zhang and P. Cheng, “Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy,” Molecular Cancer, vol. 19, no. 1, p. 158, 2020.
P. Liu, L. Zhao, J. Pol et al., “Crizotinib-induced immunogenic cell death in non-small cell lung cancer,” Nature Communications, vol. 10, no. 1, pp. 1–17, 2019.
S. Demaria, E. B. Golden, and S. C. Formenti, “Role of local radiation therapy in cancer immunotherapy,” JAMA Oncology, vol. 1, no. 9, pp. 1325–1332, 2015.
C. A. Koks, A. D. Garg, M. Ehrhardt et al., “Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death,” International Journal of Cancer, vol. 136, no. 5, pp. E313–E325, 2015.
Z. Asadzadeh, E. Safarzadeh, S. Safaei et al., “Current approaches for combination therapy of cancer: the role of immunogenic cell death,” Cancers, vol. 12, no. 4, p. 1047, 2020.
O. G. Donnelly, F. Errington-Mais, L. Steele et al., “Measles virus causes immunogenic cell death in human melanoma,” Gene Therapy, vol. 20, no. 1, pp. 7–15, 2013.
S. Miyamoto, H. Inoue, T. Nakamura et al., “Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma,” Cancer Research, vol. 72, no. 10, pp. 2609–2621, 2012.
D. Dingli, S. J. Russell, and J. C. Morris III, “In vivo imaging and tumor therapy with the sodium iodide symporter,” Journal of Cellular Biochemistry, vol. 90, no. 6, pp. 1079–1086, 2003.
L. Quillien, S. Top, S. Kappler-Gratias et al., “A novel imaging approach for single-cell real-time analysis of oncolytic virus replication and efficacy in cancer cells,” Human Gene Therapy, vol. 32, no. 3-4, pp. 166–177, 2021.
M. Zheng, J. Huang, A. Tong, and H. Yang, “Oncolytic viruses for cancer therapy: barriers and recent advances,” Molecular Therapy-Oncolytics, vol. 15, pp. 234–247, 2019.
Z. Y. Yuan, L. Zhang, S. Li, X. Z. Qian, and Z. Z. Guan, “Safety of an E1B deleted adenovirus administered intratumorally to patients with cancer,” Ai zheng= Aizheng=Chinese Journal of Cancer, vol. 22, no. 3, pp. 310–313, 2003.
H. L. Kaufman, F. J. Kohlhapp, and A. Zloza, “Erratum: oncolytic viruses: a new class of immunotherapy drugs,” Nature Reviews Drug Discovery, vol. 15, no. 2, pp. 143–143, 2016.
C. J. Breitbach, J. M. Paterson, C. G. Lemay et al., “Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow,” Molecular Therapy, vol. 15, no. 9, pp. 1686–1693, 2007.
T.-C. Liu, T. Hwang, B. H. Park, J. Bell, and D. H. Kirn, “The targeted oncolytic poxvirus JX-594 demonstrates antitumoral, antivascular, and anti-HBV activities in patients with hepatocellular carcinoma,” Molecular Therapy, vol. 16, no. 9, pp. 1637–1642, 2008.
A. Melcher, K. Parato, C. M. Rooney, and J. C. Bell, “Thunder and lightning: immunotherapy and oncolytic viruses collide,” Molecular Therapy, vol. 19, no. 6, pp. 1008–1016, 2011.
A. W. Tong, N. Senzer, V. Cerullo, N. S. Templeton, A. Hemminki, and J. Nemunaitis, “Oncolytic viruses for induction of anti-tumor immunity,” Current Pharmaceutical Biotechnology, vol. 13, no. 9, pp. 1750–1760, 2012.
R. Zhang, X. Zhang, B. Ma et al., “Enhanced antitumor effect of combining TRAIL and MnSOD mediated by CEA- controlled oncolytic adenovirus in lung cancer,” Cancer Gene Therapy, vol. 23, no. 6, pp. 168–177, 2016.
X. Yang, B. Huang, L. Deng, and Z. Hu, “Progress in gene therapy using oncolytic vaccinia virus as vectors,” Journal of Cancer Research and Clinical Oncology, vol. 144, no. 12, pp. 2433–2440, 2018.
C. Bressy, E. Hastie, and V. Z. Grdzelishvili, “Combining oncolytic virotherapy with p53 tumor suppressor gene therapy,” Molecular Therapy-Oncolytics, vol. 5, pp. 20–40, 2017.
K. Guse, M. Sloniecka, I. Diaconu et al., “Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models,” Journal of Virology, vol. 84, no. 2, pp. 856–866, 2010.
Y.-A. Kang, H. C. Shin, J. Y. Yoo, J. H. Kim, J. S. Kim, and C. O. Yun, “Novel cancer antiangiotherapy using the VEGF promoter-targeted artificial zinc-finger protein and oncolytic adenovirus,” Molecular Therapy, vol. 16, no. 6, pp. 1033–1040, 2008.
M. Adelfinger, S. Bessler, A. Frentzen et al., “Preclinical testing oncolytic vaccinia virus strain GLV-5b451 expressing an anti-VEGF single-chain antibody for canine cancer therapy,” Viruses, vol. 7, no. 7, pp. 4075–4092, 2015.
J.-W. Choi, S. J. Jung, D. Kasala et al., “pH-sensitive oncolytic adenovirus hybrid targeting acidic tumor microenvironment and angiogenesis,” Journal of Controlled Release, vol. 205, pp. 134–143, 2015.
T. Ye, K. Jiang, L. Wei et al., “Oncolytic Newcastle disease virus induces autophagy-dependent immunogenic cell death in lung cancer cells,” American Journal of Cancer Research, vol. 8, no. 8, pp. 1514–1527, 2018.
S. Liu, J. Q. Hu, J. Gu, A. Ni, W. Tang, and X. Liu, “Combined oncolytic adenovirus carrying MnSOD and mK5 genes both regulated by survivin promoter has synergistic inhibitory effect on gastric cancer,” Neoplasma, vol. 69, no. 1, pp. 36–48, 2022.
S. Abdullahi, M. Jäkel, S. J. Behrend et al., “A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma,” Journal of Virology, vol. 92, no. 23, article e01386, 2018.
M. Zeyaullah, M. Patro, I. Ahmad et al., “Oncolytic viruses in the treatment of cancer: a review of current strategies,” Pathology & Oncology Research, vol. 18, no. 4, pp. 771–781, 2012.
V. Sivanandam, C. J. LaRocca, N. G. Chen, Y. Fong, and S. G. Warner, “Oncolytic viruses and immune checkpoint inhibition: the best of both worlds,” Molecular Therapy-Oncolytics, vol. 13, pp. 93–106, 2019.
Q. Lan, S. Xia, Q. Wang et al., “Development of oncolytic virotherapy: from genetic modification to combination therapy,” Frontiers of Medicine, vol. 14, no. 2, pp. 160–184, 2020.
P. Nokisalmi, S. Pesonen, S. Escutenaire et al., “Oncolytic adenovirus ICOVIR-7 in patients with advanced and refractory solid tumors,” Clinical Cancer Research, vol. 16, no. 11, pp. 3035–3043, 2010.
K. J. Kimball, M. A. Preuss, M. N. Barnes et al., “A phase I study of a tropism-modified conditionally replicative adenovirus for recurrent malignant gynecologic diseases,” Clinical Cancer Research, vol. 16, no. 21, pp. 5277–5287, 2010.
S. Pesonen, I. Diaconu, V. Cerullo et al., “Integrin targeted oncolytic adenoviruses Ad5-D24-RGD and Ad5-RGD-D24-GMCSF for treatment of patients with advanced chemotherapy refractory solid tumors,” International Journal of Cancer, vol. 130, no. 8, pp. 1937–1947, 2012.
J. Chang, X. Zhao, X. Wu et al., “A phase I study of KH901, a conditionally replicating granulocyte-macrophage colony-stimulating factor: armed oncolytic adenovirus for the treatment of head and neck cancers,” Cancer Biology & Therapy, vol. 8, no. 8, pp. 676–682, 2009.
J. Nemunaitis, I. Ganly, F. Khuri et al., “Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial,” Cancer Research, vol. 60, no. 22, pp. 6359–6366, 2000.
E. Galanis, S. H. Okuno, A. G. Nascimento et al., “Phase I-II trial of ONYX-015 in combination with MAP chemotherapy in patients with advanced sarcomas,” Gene Therapy, vol. 12, no. 5, pp. 437–445, 2005.
M. Mondal, J. Guo, P. He, and D. Zhou, “Recent advances of oncolytic virus in cancer therapy,” Human Vaccines & Immunotherapeutics, vol. 16, no. 10, pp. 2389–2402, 2020.
K. Yamamura, H. Kasuya, T. T. Sahin et al., “Combination treatment of human pancreatic cancer xenograft models with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib and oncolytic herpes simplex virus HF10,” Annals of Surgical Oncology, vol. 21, no. 2, pp. 691–698, 2014.
S. Marozin, J. Altomonte, K. A. Muñoz-Álvarez et al., “STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma,” Cancer Gene Therapy, vol. 22, no. 6, pp. 317–325, 2015.
D.-S. Kim, H. Dastidar, C. Zhang et al., “Smac mimetics and oncolytic viruses synergize in driving anticancer T-cell responses through complementary mechanisms,” Nature Communications, vol. 8, no. 1, pp. 1–13, 2017.
D. Mansfield, T. Pencavel, J. N. Kyula et al., “Oncolytic vaccinia virus and radiotherapy in head and neck cancer,” Oral Oncology, vol. 49, no. 2, pp. 108–118, 2013.
E. Simbawa, N. Al-Johani, and S. Al-Tuwairqi, “Modeling the spatiotemporal dynamics of oncolytic viruses and radiotherapy as a treatment for cancer,” Computational and Mathematical Methods in Medicine, vol. 2020, Article ID 3642654, 10 pages, 2020.
Y. Touchefeu, G. Vassaux, and K. J. Harrington, “Oncolytic viruses in radiation oncology,” Radiotherapy and Oncology, vol. 99, no. 3, pp. 262–270, 2011.
H. Gao, X. Zhang, Y. Ding, R. Qiu, Y. Hong, and W. Chen, “Synergistic suppression effect on tumor growth of colorectal cancer by combining radiotherapy with a TRAIL-armed oncolytic adenovirus,” Technology in Cancer Research & Treatment, vol. 18, 2019.
A. Bieler, K. Mantwill, R. Holzmüller et al., “Impact of radiation therapy on the oncolytic adenovirus dl520: implications on the treatment of glioblastoma,” Radiotherapy and Oncology, vol. 86, no. 3, pp. 419–427, 2008.
S. Tanabe, T. Kojima, H. Tazawa et al., “554P phase I clinical trial of OBP-301, a novel telomerase-specific oncolytic virus, in combination with radiotherapy in esophageal cancer patients,” Annals of Oncology, vol. 32, p. S612, 2021.
V. Schirrmacher, “From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (review),” International Journal of Oncology, vol. 54, no. 2, pp. 407–419, 2019.
Y. Wang, B. Wang, J. Liang et al., “Oncolytic viro-chemotherapy exhibits antitumor effect in laryngeal squamous cell carcinoma cells and mouse xenografts,” Cancer Management and Research, vol. 11, pp. 3285–3294, 2019.
F. R. Khuri, J. Nemunaitis, I. Ganly et al., “A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer,” Nature Medicine, vol. 6, no. 8, pp. 879–885, 2000.
J. D. Naik, C. J. Twelves, P. J. Selby, R. G. Vile, and J. D. Chester, “Immune recruitment and therapeutic synergy: keys to optimizing oncolytic viral therapy?” Clinical Cancer Research, vol. 17, no. 13, pp. 4214–4224, 2011.
S.-Y. Lu, J. Hua, J. Xu et al., “Microorganisms in chemotherapy for pancreatic cancer: an overview of current research and future directions,” International Journal of Biological Sciences, vol. 17, no. 10, pp. 2666–2682, 2021.
K. Ottolino-Perry, J. S. Diallo, B. D. Lichty, J. C. Bell, and J. Andrea McCart, “Intelligent design: combination therapy with oncolytic viruses,” Molecular Therapy, vol. 18, no. 2, pp. 251–263, 2010.
B. Zhang, Y. Zhang, R. Li, J. Li, X. Lu, and Y. Zhang, “Oncolytic adenovirus Ad11 enhances the chemotherapy effect of cisplatin on osteosarcoma cells by inhibiting autophagy,” American Journal of Translational Research, vol. 12, no. 1, pp. 105–117, 2020.
K. J. Harrington, M. Hingorani, M. A. Tanay et al., “Phase I/II study of oncolytic HSVGM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck,” Clinical Cancer Research, vol. 16, no. 15, pp. 4005–4015, 2010.
L.-j. Mao, M. Ding, K. Xu, J. Pan, H. Yu, and C. Yang, “Oncolytic adenovirus harboring interleukin-24 improves chemotherapy for advanced prostate cancer,” Journal of Cancer, vol. 9, no. 23, pp. 4391–4397, 2018.
L. Li, L. S. You, L. P. Mao, S. H. Jin, X. H. Chen, and W. B. Qian, “Combing oncolytic adenovirus expressing Beclin-1 with chemotherapy agent doxorubicin synergistically enhances cytotoxicity in human CML cells _in vitro_,” Acta Pharmacologica Sinica, vol. 39, no. 2, pp. 251–260, 2018.
C.-M. Oh, H. J. Chon, and C. Kim, “Combination immunotherapy using oncolytic virus for the treatment of advanced solid tumors,” International Journal of Molecular Sciences, vol. 21, no. 20, p. 7743, 2020.
Y. Li, F. Xiao, A. Zhang et al., “Oncolytic adenovirus targeting TGF-β enhances anti-tumor responses of mesothelin-targeted chimeric antigen receptor T cell therapy against breast cancer,” Cellular Immunology, vol. 348, article 104041, 2020.
J. Huang, M. Zheng, Z. Zhang et al., “Interleukin-7-loaded oncolytic adenovirus improves CAR-T cell therapy for glioblastoma,” Cancer Immunology, Immunotherapy, vol. 70, no. 9, pp. 2453–2465, 2021.
J. K. Hwang, J. Hong, and C.-O. Yun, “Oncolytic viruses and immune checkpoint inhibitors: preclinical developments to clinical trials,” International Journal of Molecular Sciences, vol. 21, no. 22, p. 8627, 2020.
M. Chiu, E. J. L. Armstrong, V. Jennings et al., “Combination therapy with oncolytic viruses and immune checkpoint inhibitors,” Expert Opinion on Biological Therapy, vol. 20, no. 6, pp. 635–652, 2020.
A. Marchini, E. M. Scott, and J. Rommelaere, “Overcoming barriers in oncolytic virotherapy with HDAC inhibitors and immune checkpoint blockade,” Viruses, vol. 8, no. 1, p. 9, 2016.
W. Zhu, J. Lv, X. Xie et al., “The oncolytic virus VT09X optimizes immune checkpoint therapy in low immunogenic melanoma,” Immunology Letters, vol. 241, pp. 15–22, 2022.
S. Chaurasiya, A. Yang, S. Kang et al., “Oncolytic poxvirus CF33-hNIS-ΔF14. 5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model,” Oncoimmunology, vol. 9, no. 1, article 1729300, 2020.
M.-C. Bourgeois-Daigneault, D. G. Roy, A. S. Aitken et al., “Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy,” Science Translational Medicine, vol. 10, no. 422, 2018.
Y. Yang, W. Xu, D. Peng et al., “An oncolytic adenovirus targeting transforming growth factor β inhibits protumorigenic signals and produces immune activation: a novel approach to enhance anti-PD-1 and anti-CTLA-4 therapy,” Human Gene Therapy, vol. 30, no. 9, pp. 1117–1132, 2019.
C.-Y. Chen, P. Y. Wang, B. Hutzen et al., “Cooperation of oncolytic herpes virotherapy and PD-1 blockade in murine rhabdomyosarcoma models,” Scientific Reports, vol. 7, no. 1, 2017.
H. Zhang, W. Xie, Y. Zhang et al., “Oncolytic adenoviruses synergistically enhance anti-PD-L1 and anti-CTLA-4 immunotherapy by modulating the tumour microenvironment in a 4T1 orthotopic mouse model,” Cancer Gene Therapy, vol. 29, no. 5, pp. 456–465, 2022.
K. Sugawara, M. Iwai, H. Ito, M. Tanaka, Y. Seto, and T. Todo, “Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation,” Molecular Therapy-Oncolytics, vol. 22, pp. 129–142, 2021.
S. Zuo, M. Wei, B. He et al., “Enhanced antitumor efficacy of a novel oncolytic vaccinia virus encoding a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT),” eBioMedicine, vol. 64, article 103240, 2021.
Trial C, “Safety, Tolerability and Pharmacokinetics Characteristics of Recombinant Oncolytic Vaccinia Virus Injection T601 as a Single Drug or in Combination With Oral Flucytosine (5-FC), in Patients With Advanced Malignant Solid Tumors,” 2020, https://clinicaltrials.gov/ct2/show/NCT04226066.
Trial C, “A Phase I/II Study of Pexa-Vec Oncolytic Virus in Combination With Immune Checkpoint Inhibition in Refractory Colorectal Cancer,” 2021, https://clinicaltrials.gov/ct2/show/NCT03206073.
Trial C, “A Phase I Dose Escalation Study of Intratumoral VCN-01 Injections With Gemcitabine and Abraxane® in Patients With Advanced Pancreatic Cancer,” 2014, https://clinicaltrials.gov/ct2/show/NCT02045589.
Trial C, “Oncolytic MG1-MAGEA3 With Ad-MAGEA3 Vaccine in Combination With Pembrolizumab for Non-Small Cell Lung Cancer Patients,” 2016, https://clinicaltrials.gov/ct2/show/NCT02879760.
Trial C, “Pembrolizumab With Talimogene Laherparepvec or Placebo in Unresected Melanoma (MASTERKEY-265),” 2014, https://clinicaltrials.gov/ct2/show/NCT02263508.
Trial C, “Study of REOLYSIN® in Combination With Paclitaxel and Carboplatin in Patients With Metastatic Melanomahttps://clinicaltrials.gov/ct2/show/NCT00984464,” 2009.
Trial C, “A Study of REOLYSIN® in Combination With Gemcitabine in Patients With Advanced Pancreatic Adenocarcinoma,” 2009, https://clinicaltrials.gov/ct2/show/NCT00998322.
J. Raja, J. M. Ludwig, S. N. Gettinger, K. A. Schalper, and H. S. Kim, “Oncolytic virus immunotherapy: future prospects for oncology,” Journal for Immunotherapy of Cancer, vol. 6, no. 1, pp. 1–13, 2018.
Reageer op "Oncolytische virussen geven uitstekende resultaten in aanpak van kanker. Clemens Dirven en Casper van Eyck vertellen in Op1 over hun nieuwste vinding waarmee patient met hersentumor is genezen"
Plaats een reactie ...
Reageer op "Oncolytische virussen geven uitstekende resultaten in aanpak van kanker. Clemens Dirven en Casper van Eyck vertellen in Op1 over hun nieuwste vinding waarmee patient met hersentumor is genezen"