Aan onderstaand artikel is enkele uren gewerkt. Mocht u deze informatie waarderen dan wilt u ons misschien ondersteunen met een donatie? Onze IBANcode is NL79 RABO 0372 9311 38 t.n.v. Stichting Gezondheid Actueel in Terneuzen.
Als donateur kunt u ook korting krijgen bij verschillende bedrijven.
En we hebben een ANBI status
22 september 2023: Bronnen: NIH - National Library of Medicine (met dank aan Pascale en eigen onderzoek)
Photo Immuno Therapie (PIT) is een vorm van immuuntherapie die PDT - Foto Dynamische Therapie combineert met immuuntherapie op basis van het injecteren van een samengestelde behandeling van een fotosensitizer - lichtgevoelige stof en een monoklonaal antilichaam (mAb) om deze op een tot expressie gebracht antigeen op het tumoroppervlak van de kwaadaardige tumorcel richt. Deze combinatiebehandeling kan het vermogen van de immuunreactie versterken, waardoor het een goed effect heeft op de behandeling van resterende tumoren die niet weggehaald konden worden en uitgezaaide kanker.
De kern van Photo Immuno Therapie (PIT) is dat het necrotisch weefsel dat ontstaat door de laser behandeling (of soms wordt Ultra Sound gebruikt) de T-cellen van de kankerpatiënt activeert om deze uit het lichaam te verwijderen. Risico is wel dat er een overreactie kan ontstaan in de vorm van het cytokine release syndrome (CRS), zeker als de kankerpatiënt nog een grote tumorload heeft.
Hoe PIT - Photo Immuno Therapy in z'n werk gaat toont deze video: Killing cancer cells with Infrared Light, waarin gewerkt is met de Irdey 700DX. Ook met andere fotosensitizers zou in principe PIT - Photo Immuno Therapy uitgevoerd kunnen worden. Zo doen ze in het Erasmus MC onderzoek met bremachlorin (eerder werd dit radachlorin genoemd) als fotosensitiser, maar hun onderzoek is nog beperkt tot dier- en laboratoriumstudies.
Een stukje uit een beschrijving van een reviewstudie (abstract staat verderop in dit artikel) naar Photo Immuno Therapie (PIT) vertaalt in het Nederlands. De nummers verwijzen naar de studiepublicaties in de referentielijst.
Photo-immunotherapie (PIT) is een therapie om ziekten te behandelen door specifieke antilichamen te koppelen aan fotosensitizers om foto-immuunconjugaten (PIC's) te vormen.2,8
Photo-immunotherapie (PIT) heeft niet alleen de voordelen van traditionele PDT - Foto Dynamische Therapie, maar heeft ook het nauwkeurige doelgerichte vermogen van antilichamen.9
Het is bekend dat deze therapie een groot potentieel heeft bij de preventie, behandeling en diagnose van tumoren. Deze combinatie van fotodynamische tumortherapie en immunotherapie kan de immuunrespons versterken en heeft daarmee een goed effect op de behandeling van uitgezaaide kanker.
Door fototherapie geïnduceerde celapoptose,10,11 autofagie,12,13 of necrose 14 kunnen resulteren in uitstekende tumorantigeenbronnen.
Immunotherapie gecombineerd met fototherapie maakt gebruik van tumorantigenen om een antitumorale immuunrespons op te wekken. PIT kan dus zowel resterende tumoren als metastasen behandelen ().
Schematic diagrams of photoimmunotherapy for treating residual tumors and metastases. Note. DAMPs, danger-associated molecular patterns; PDT, photodynamic therapy; PTT, photothermal therapy.
In de eerste menselijke studie van PIT werd de combinatie van cetuximab en IR700 gebruikt, gericht op de epidermale groeifactorreceptor (EGFR) om inoperabele hoofd- en nekkanker te behandelen. (NCT03769506) zie 15 Dit medicijn werd in 2018 goedgekeurd door de Amerikaanse Food and Drug Administration (FDA) voor versnelde wereldwijde fase III klinische onderzoeken.8,16
Op 25 september 2020 keurde het Japanse ministerie van Volksgezondheid, Arbeid en Welzijn een foto-immunotherapie medicijn goed voor de behandeling van hoofd- en nekkanker, het eerste medicijn dat wereldwijd is goedgekeurd. Het BioBlade-lasersysteem werd op 2 september goedgekeurd voor gebruik in combinatie met Akalux, een nieuw kankermedicijn voor patiënten met hoofd- en nekkanker die niet operatief kunnen worden verwijderd.
Een monoklonaal antilichaam wordt toegediend door intraveneuze injectie van een doelwit op het oppervlak van de tumor. MAb is een antilichaam-fotoabsorber 700DX (IR700) conjugaat (APC) voor gelokaliseerde nabij-infrarood beeldvorming op de tumorplaats. NIR-licht induceert selectief snelle tumorceldood, waardoor zeer gerichte tumortherapie wordt bereikt met minimale normale weefselschade.
IR700 is een in water oplosbare optische kleurstof. Vrij IR700 gescheiden van APC kan met goede bioveiligheid rechtstreeks uit de urine worden uitgescheiden. In tegenstelling tot andere traditionele therapieën schaadt PIT de antitumorale immuunrespons van de gastheer niet, maar activeert het de specifieke antitumorale immuunrespons.
Het induceert immunogene celdood (ICD) en geeft snel tumorspecifieke antigeen- en membraanbeschadigingsgevaarsignalen vrij, waardoor dendritische cellen worden aangetrokken. DC's migreren naar de tumorplaats en presenteren tumorspecifieke antigenen, activeren tumorspecifieke T-cellen om hun proliferatie te induceren en bemiddelen tumorceldood. Daarom kan PIT de problemen overwinnen van ongelijkmatige of inadequate afgifte die bestaan bij traditionele antilichaamtherapie.17
Bovendien wordt PIT niet beperkt door de frequentie van de behandeling, en herhaalde PIT is ook een effectieve strategie om de insufficiëntie van antilichaamtherapie op te lossen.17
Gezien de unieke voordelen en het grote potentieel van PIT bij de klinische behandeling van tumoren, bespreekt dit artikel foto-immunoconjugaten (PIC's), immunogene activeringsmechanismen voor celdood, combinatietherapiemodi en vooruitzichten. Het raamwerk van deze review wordt weergegeven in .
Deze review heeft tot doel een referentie te bieden voor het klinische transformatieonderzoek en de toepassingen ervan.
Hier achtereenvolgens een paar studies over Photo Immuno Therapie (PIT). Te beginnen met deze:
Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy
Reviewed by , PhD,1,* , MD,2,* and , PhD3
Abstract
In recent years, the incidence of cancer has been increasing worldwide. Conventional cancer treatments include surgery, chemotherapy, and radiation, which mostly kill tumor cells at the expense of normal and immune cells. Although immunotherapy is an accurate, rapid, efficient tumor immune treatment, it causes serious adverse reactions, such as cytokine release syndrome (CRS) and neurotoxicity. Therefore, there is an urgent need to develop an effective and nontoxic procedure for immunotherapy. The clinical combination of phototherapy and immunoadjuvant therapy can induce immunogenic cell death and enhance antigen presentation synergy. It also causes a systemic antitumor immune response to manage residual tumors and distant metastases. Photoimmunotherapy (PIT) is a tumor treatment combining phototherapy with immunotherapy based on injecting a conjugate photosensitizer (IR700) and a monoclonal antibody (mAb) to target an expressed antigen on the tumor surface. This combination can enhance the immune response ability, thus having a good effect on the treatment of residual tumor and metastatic cancer. In this review, we summarize the recent progress in photoimmunotherapy, including photoimmunoconjugate (PIC), the activation mechanism of immunogenic cell death (ICD), the combination therapy model, opportunities and prospects. Specifically, we aim to provide a promising clinical therapy for solid tumor clinical transformation.
Near Infrared Photoimmunotherapy: A Review of Recent Progress and Their Target Molecules for Cancer Therapy
Alfonso Baldi, Academic Editor
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a newly developed molecular targeted cancer treatment, which selectively kills cancer cells or immune-regulatory cells and induces therapeutic host immune responses by administrating a cancer targeting moiety conjugated with IRdye700. The local exposure to near-infrared (NIR) light causes a photo-induced ligand release reaction, which causes damage to the target cell, resulting in immunogenic cell death (ICD) with little or no side effect to the surrounding normal cells. Moreover, NIR-PIT can generate an immune response in distant metastases and inhibit further cancer attack by combing cancer cells targeting NIR-PIT and immune regulatory cells targeting NIR-PIT or other cancer treatment modalities. Several recent improvements in NIR-PIT have been explored such as catheter-driven NIR light delivery, real-time monitoring of cancer, and the development of new target molecule, leading to NIR-PIT being considered as a promising cancer therapy. In this review, we discuss the progress of NIR-PIT, their mechanism and design strategies for cancer treatment. Furthermore, the overall possible targeting molecules for NIR-PIT with their application for cancer treatment are briefly summarised.
Fluorescence Imaging of Tumor-Accumulating Antibody-IR700 Conjugates Prior to Near-Infrared Photoimmunotherapy (NIR-PIT) Using a Commercially Available Camera Designed for Indocyanine Green
Mol Pharm. Author manuscript; available in PMC 2022 Jul 6.
Published in final edited form as:
PMCID: PMC9258243
NIHMSID: NIHMS1814060
The publisher's final edited version of this article is available at
Mol Pharm
Abstract
Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses antibody-IRDye700DX (IR700) conjugates and was recently approved in Japan for patients with inoperable head and neck cancer. Exposure of the tumor with NIR light at a wavelength of 690 nm leads to physicochemical changes in the antibody-IR700 conjugate–cell receptor complex, resulting in increased hydrophobicity and damage to the integrity of the cell membrane. However, it is important that the tumor be completely exposed to light during NIR-PIT, and thus, a method to provide real-time information on tumor location would help clinicians direct light more accurately. IR700 is a fluorophore that emits at 702 nm; however, there is no clinically available device optimized for detecting this fluorescence. On the other hand, many indocyanine green (ICG) fluorescence imaging devices have been approved for clinical use in operating rooms. Therefore, we investigated whether LIGHTVISION, one of the clinically available ICG cameras, could be employed for NIR-PIT target tumor detection. Due to the limited benefits of adding IR700 molecules, the additional conjugation of IRDye800CW (IR800) or ICG-EG4-Sulfo-OSu (ICG-EG4), which has an overlapping spectrum with ICG, to trastuzumab-IR700 conjugates was performed. Conjugation of second NIR dyes did not interfere the efficacy of NIR-PIT. The dual conjugation of IR800 and IR700 to trastuzumab clearly visualized target tumors with LIGHTVISION by detecting emission light of IR800. We demonstrated that the conjugation of second NIR dyes enables us to provide a real-time feedback of tumor locations prior to NIR-PIT.
Keywords: near-infrared photoimmunotherapy, optical imaging, IR700, near-infrared camera, indocyanine green
Referenties review studie Photo Immuno Therapy (PIT)
References
1.
Twomey J.D., Zhang B. Cancer Immunotherapy Update: FDA-Approved Checkpoint Inhibitors and Companion Diagnostics. AAPS J. 2021;23:39. doi: 10.1208/s12248-021-00574-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3.
Li X., Lovell J.F., Yoon J., Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020;17:657–674. doi: 10.1038/s41571-020-0410-2. [PubMed] [CrossRef] [Google Scholar]
4.
Baskaran R., Lee J., Yang S.G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 2018;22:25. doi: 10.1186/s40824-018-0140-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6.
Liu Z., Xie Z., Li W., Wu X., Jiang X., Li G., Cao L., Zhang D., Wang Q., Xue P., et al. Photodynamic immunotherapy of cancers based on nanotechnology: Recent advances and future challenges. J. Nanobiotechnol. 2021;19:160. doi: 10.1186/s12951-021-00903-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
7.
Wang M., Rao J., Wang M., Li X., Liu K., Naylor M.F., Nordquist R.E., Chen W.R., Zhou F.J.T. Cancer photo-immunotherapy: From bench to bedside. Theranostics. 2021;11:2218. doi: 10.7150/thno.53056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8.
Shafirstein G., Bellnier D., Oakley E., Hamilton S., Potasek M., Beeson K., Parilov E.J.C. Interstitial photodynamic therapy—A focused review. Cancers. 2017;9:12. doi: 10.3390/cancers9020012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
9.
Zou J., Li L., Yang Z., Chen X.J.N. Phototherapy meets immunotherapy: A win–win strategy to fight against cancer. Nanophotonics. 2021;10:3229–3245. doi: 10.1515/nanoph-2021-0209. [CrossRef] [Google Scholar]
10.
Kobayashi H., Furusawa A., Rosenberg A., Choyke P.L. Near-infrared photoimmunotherapy of cancer: A new approach that kills cancer cells and enhances anti-cancer host immunity. Int. Immunol. 2021;33:7–15. doi: 10.1093/intimm/dxaa037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
11.
Monaco H., Yokomizo S., Choi H.S., Kashiwagi S.J.V. Quickly evolving near-infrared photoimmunotherapy provides multifaceted approach to modern cancer treatment. VIEW. 2022;3:20200110. doi: 10.1002/VIW.20200110. [CrossRef] [Google Scholar]
12.
Ogawa M., Takakura H.J.B., Chemistry M. Photoimmunotherapy: A new cancer treatment using photochemical reactions. Bioorg. Med. Chem. 2021;43:116274. doi: 10.1016/j.bmc.2021.116274. [PubMed] [CrossRef] [Google Scholar]
13.
Mussini A., Uriati E., Bianchini P., Diaspro A., Cavanna L., Abbruzzetti S., Viappiani C.J.B.C. Targeted photoimmunotherapy for cancer. Biomol. Concepts. 2022;13:126–147. doi: 10.1515/bmc-2022-0010. [PubMed] [CrossRef] [Google Scholar]
15.
Chen Z., Liu L., Liang R., Luo Z., He H., Wu Z., Tian H., Zheng M., Ma Y., Cai L. Bioinspired hybrid protein oxygen nanocarrier amplified photodynamic therapy for eliciting anti-tumor immunity and abscopal effect. ACS Nano. 2018;12:8633–8645. doi: 10.1021/acsnano.8b04371. [PubMed] [CrossRef] [Google Scholar]
16.
Shen Z., Ma Q., Zhou X., Zhang G., Hao G., Sun Y., Cao J. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 2021;13:39. doi: 10.1038/s41427-021-00303-1. [CrossRef] [Google Scholar]
18.
Paraboschi I., Turnock S., Kramer-Marek G., Musleh L., Barisa M., Anderson J., Giuliani S. Near-InfraRed PhotoImmunoTherapy (NIR-PIT) for the local control of solid cancers: Challenges and potentials for human applications. Crit. Rev. Oncol. Hematol. 2021;161:103325. doi: 10.1016/j.critrevonc.2021.103325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19.
Liu Y., Zhang L., Chang R., Yan X. Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chem. Commun. 2022;58:2247–2258. doi: 10.1039/D1CC06355C. [PubMed] [CrossRef] [Google Scholar]
20.
Peng Z., Lv X., Huang S. Photoimmunotherapy: A New Paradigm in Solid Tumor Immunotherapy. Cancer Control. 2022;29:10732748221088825. doi: 10.1177/10732748221088825. [CrossRef] [Google Scholar]
23.
Von Felbert V., Bauerschlag D., Maass N., Bräutigam K., Meinhold-Heerlein I., Woitok M., Barth S., Hussain A.F.J. A specific photoimmunotheranostics agent to detect and eliminate skin cancer cells expressing EGFR. J. Cancer Res. Clin. Oncol. 2016;142:1003–1011. doi: 10.1007/s00432-016-2122-7. [PubMed] [CrossRef] [Google Scholar]
24.
Fernandes S.R., Fernandes R., Sarmento B., Pereira P.M., Tomé J.P.J.O., Chemistry B. Photoimmunoconjugates: Novel synthetic strategies to target and treat cancer by photodynamic therapy. Org. Biomol. Chem. 2019;17:2579–2593. doi: 10.1039/C8OB02902D. [PubMed] [CrossRef] [Google Scholar]
25.
Mitsunaga M., Ogawa M., Kosaka N., Rosenblum L.T., Choyke P.L., Kobayashi H. Cancer cell–selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011;17:1685–1691. doi: 10.1038/nm.2554. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26.
Wollschlaeger C., Meinhold-Heerlein I., Cong X., Bräutigam K., Di Fiore S., Zeppernick F., Klockenbring T., Stickeler E., Barth S., Hussain A.F. Simultaneous and independent dual site-specific self-labeling of recombinant antibodies. Bioconjug. Chem. 2018;29:3586–3594. doi: 10.1021/acs.bioconjchem.8b00545. [PubMed] [CrossRef] [Google Scholar]
27.
Wakiyama H., Kato T., Furusawa A., Choyke P.L., Kobayashi H.J.N. Near infrared photoimmunotherapy of cancer; possible clinical applications. Nanophotonics. 2021;10:3135–3151. doi: 10.1515/nanoph-2021-0119. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28.
Okada R., Kato T., Furusawa A., Inagaki F., Wakiyama H., Fujimura D., Okuyama S., Furumoto H., Fukushima H., Choyke P.L. Immunotherapy. Selection of antibody and light exposure regimens alters therapeutic effects of EGFR-targeted near-infrared photoimmunotherapy. Cancer Immunol. Immunother. 2022;71:1877–1887. doi: 10.1007/s00262-021-03124-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29.
Nagaya T., Nakamura Y., Sato K., Harada T., Choyke P.L., Kobayashi H.J. Improved micro-distribution of antibody-photon absorber conjugates after initial near infrared photoimmunotherapy (NIR-PIT) J. Control. Release. 2016;232:1–8. doi: 10.1016/j.jconrel.2016.04.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30.
Ogawa M., Tomita Y., Nakamura Y., Lee M.-J., Lee S., Tomita S., Nagaya T., Sato K., Yamauchi T., Iwai H.J.O. Immunogenic cancer cell death selectively induced by near infrared photoimmunotherapy initiates host tumor immunity. Oncotarget. 2017;8:10425. doi: 10.18632/oncotarget.14425. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31.
Sato K., Watanabe R., Hanaoka H., Harada T., Nakajima T., Kim I., Paik C.H., Choyke P.L., Kobayashi H. Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol. Oncol. 2014;8:620–632. doi: 10.1016/j.molonc.2014.01.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32.
Nakajima T., Sano K., Choyke P.L., Kobayashi H.J.T. Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics. 2013;3:357. doi: 10.7150/thno.5908. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
33.
Okada R., Furusawa A., Vermeer D.W., Inagaki F., Wakiyama H., Kato T., Nagaya T., Choyke P.L., Spanos W.C., Allen C.T. Near-infrared photoimmunotherapy targeting human-EGFR in a mouse tumor model simulating current and future clinical trials. EBioMedicine. 2021;67:103345. doi: 10.1016/j.ebiom.2021.103345. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
34.
Nishimura T., Mitsunaga M., Ito K., Kobayashi H., Saruta M. Cancer neovasculature-targeted near-infrared photoimmunotherapy (NIR-PIT) for gastric cancer: Different mechanisms of phototoxicity compared to cell membrane-targeted NIR-PIT. Gastric Cancer. 2020;23:82–94. doi: 10.1007/s10120-019-00988-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35.
Sato K., Nakajima T., Choyke P.L., Kobayashi H. Selective cell elimination in vitro and in vivo from tissues and tumors using antibodies conjugated with a near infrared phthalocyanine. RSC Adv. 2015;5:25105–25114. doi: 10.1039/C4RA13835J. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
36.
Sato K., Nagaya T., Mitsunaga M., Choyke P.L., Kobayashi H. Near infrared photoimmunotherapy for lung metastases. Cancer Lett. 2015;365:112–121. doi: 10.1016/j.canlet.2015.05.018. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37.
Hirata H., Kuwatani M., Nakajima K., Kodama Y., Yoshikawa Y., Ogawa M., Sakamoto N. Near-infrared photoimmunotherapy (NIR-PIT) on cholangiocarcinoma using a novel catheter device with light emitting diodes. Cancer Sci. 2021;112:828–838. doi: 10.1111/cas.14780. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38.
Kim K.S., Kim J., Kim D.H., Hwang H.S., Na K. Multifunctional trastuzumab-chlorin e6 conjugate for the treatment of HER2-positive human breast cancer. Biomater. Sci. 2018;6:1217–1226. doi: 10.1039/C7BM01084B. [PubMed] [CrossRef] [Google Scholar]
39.
Korsak B., Almeida G.M., Rocha S., Pereira C., Mendes N., Osório H., Pereira P.M.R., Rodrigues J.M.M., Schneider R.J., Sarmento B., et al. Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. Int. J. Cancer. 2017;141:1478–1489. doi: 10.1002/ijc.30844. [PubMed] [CrossRef] [Google Scholar]
40.
Nagaya T., Nakamura Y., Sato K., Harada T., Choyke P.L., Kobayashi H. Near infrared photoimmunotherapy of B-cell lymphoma. Mol. Oncol. 2016;10:1404–1414. doi: 10.1016/j.molonc.2016.07.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41.
Nagaya T., Nakamura Y., Okuyama S., Ogata F., Maruoka Y., Choyke P.L., Kobayashi H. Near-Infrared Photoimmunotherapy Targeting Prostate Cancer with Prostate-Specific Membrane Antigen (PSMA) Antibody. Mol. Cancer Res. 2017;15:1153–1162. doi: 10.1158/1541-7786.MCR-17-0164. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42.
Isoda Y., Piao W., Taguchi E., Iwano J., Takaoka S., Uchida A., Yoshikawa K., Enokizono J., Arakawa E., Tomizuka K., et al. Development and evaluation of a novel antibody-photon absorber conjugate reveals the possibility of photoimmunotherapy-induced vascular occlusion during treatment in vivo. Oncotarget. 2018;9:31422–31431. doi: 10.18632/oncotarget.25831. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43.
Han Y., An Y., Jia G., Wang X., He C., Ding Y., Tang Q. Theranostic micelles based on upconversion nanoparticles for dual-modality imaging and photodynamic therapy in hepatocellular carcinoma. Nanoscale. 2018;10:6511–6523. doi: 10.1039/C7NR09717D. [PubMed] [CrossRef] [Google Scholar]
44.
Maruoka Y., Furusawa A., Okada R., Inagaki F., Fujimura D., Wakiyama H., Kato T., Nagaya T., Choyke P.L., Kobayashi H. Combined CD44- and CD25-Targeted Near-Infrared Photoimmunotherapy Selectively Kills Cancer and Regulatory T Cells in Syngeneic Mouse Cancer Models. Cancer Immunol. Res. 2020;8:345–355. doi: 10.1158/2326-6066.CIR-19-0517. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45.
Kiss B., van den Berg N.S., Ertsey R., McKenna K., Mach K.E., Zhang C.A., Volkmer J.P., Weissman I.L., Rosenthal E.L., Liao J.C. CD47-Targeted Near-Infrared Photoimmunotherapy for Human Bladder Cancer. Clin. Cancer Res. 2019;25:3561–3571. doi: 10.1158/1078-0432.CCR-18-3267. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46.
Yang Y., Yan X., Li J., Liu C., Yang X. CD47-targeted optical molecular imaging and near-infrared photoimmunotherapy in the detection and treatment of bladder cancer. Mol. Ther. Oncolytics. 2022;24:319–330. doi: 10.1016/j.omto.2021.12.020. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47.
Maruoka Y., Wakiyama H., Choyke P.L., Kobayashi H. Near infrared photoimmunotherapy for cancers: A translational perspective. EBioMedicine. 2021;70:103501. doi: 10.1016/j.ebiom.2021.103501. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
48.
Nishimura T., Mitsunaga M., Sawada R., Saruta M., Kobayashi H., Matsumoto N., Kanke T., Yanai H., Nakamura K. Photoimmunotherapy targeting biliary-pancreatic cancer with humanized anti-TROP2 antibody. Cancer Med. 2019;8:7781–7792. doi: 10.1002/cam4.2658. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49.
Jing H., Weidensteiner C., Reichardt W., Gaedicke S., Zhu X., Grosu A.L., Kobayashi H., Niedermann G. Imaging and Selective Elimination of Glioblastoma Stem Cells with Theranostic Near-Infrared-Labeled CD133-Specific Antibodies. Theranostics. 2016;6:862–874. doi: 10.7150/thno.12890. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
50.
Nagaya T., Nakamura Y., Okuyama S., Ogata F., Maruoka Y., Choyke P.L., Allen C., Kobayashi H. Syngeneic Mouse Models of Oral Cancer Are Effectively Targeted by Anti-CD44-Based NIR-PIT. Mol. Cancer Res. 2017;15:1667–1677. doi: 10.1158/1541-7786.MCR-17-0333. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51.
Nagaya T., Friedman J., Maruoka Y., Ogata F., Okuyama S., Clavijo P.E., Choyke P.L., Allen C., Kobayashi H. Host Immunity Following Near-Infrared Photoimmunotherapy Is Enhanced with PD-1 Checkpoint Blockade to Eradicate Established Antigenic Tumors. Cancer Immunol. Res. 2019;7:401–413. doi: 10.1158/2326-6066.CIR-18-0546. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
52.
Wakiyama H., Furusawa A., Okada R., Inagaki F., Kato T., Maruoka Y., Choyke P.L., Kobayashi H. Increased Immunogenicity of a Minimally Immunogenic Tumor after Cancer-Targeting Near Infrared Photoimmunotherapy. Cancers. 2020;12:3747. doi: 10.3390/cancers12123747. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
53.
Bauerschlag D., Meinhold-Heerlein I., Maass N., Bleilevens A., Bräutigam K., Al Rawashdeh W., Di Fiore S., Haugg A.M., Gremse F., Steitz J., et al. Detection and Specific Elimination of EGFR(+) Ovarian Cancer Cells Using a Near Infrared Photoimmunotheranostic Approach. Pharm. Res. 2017;34:696–703. doi: 10.1007/s11095-017-2096-4. [PubMed] [CrossRef] [Google Scholar]
54.
Amoury M., Bauerschlag D., Zeppernick F., von Felbert V., Berges N., Di Fiore S., Mintert I., Bleilevens A., Maass N., Bräutigam K., et al. Photoimmunotheranostic agents for triple-negative breast cancer diagnosis and therapy that can be activated on demand. Oncotarget. 2016;7:54925–54936. doi: 10.18632/oncotarget.10705. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
55.
Sato K., Sato N., Xu B., Nakamura Y., Nagaya T., Choyke P.L., Hasegawa Y., Kobayashi H. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci. Transl. Med. 2016;8:352ra110. doi: 10.1126/scitranslmed.aaf6843. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56.
Okada R., Maruoka Y., Furusawa A., Inagaki F., Nagaya T., Fujimura D., Choyke P.L., Kobayashi H. The Effect of Antibody Fragments on CD25 Targeted Regulatory T Cell Near-Infrared Photoimmunotherapy. Bioconjug. Chem. 2019;30:2624–2633. doi: 10.1021/acs.bioconjchem.9b00547. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57.
Okada R., Kato T., Furusawa A., Inagaki F., Wakiyama H., Choyke P.L., Kobayashi H. Local Depletion of Immune Checkpoint Ligand CTLA4 Expressing Cells in Tumor Beds Enhances Antitumor Host Immunity. Adv. Ther. 2021;4:2000269. doi: 10.1002/adtp.202000269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58.
Taki S., Matsuoka K., Nishinaga Y., Takahashi K., Yasui H., Koike C., Shimizu M., Sato M., Sato K. Spatiotemporal depletion of tumor-associated immune checkpoint PD-L1 with near-infrared photoimmunotherapy promotes antitumor immunity. J. Immunother. Cancer. 2021;9:e003036. doi: 10.1136/jitc-2021-003036. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
59.
Jin J., Sivakumar I., Mironchik Y., Krishnamachary B., Wildes F., Barnett J.D., Hung C.F., Nimmagadda S., Kobayashi H., Bhujwalla Z.M., et al. PD-L1 near Infrared Photoimmunotherapy of Ovarian Cancer Model. Cancers. 2022;14:619. doi: 10.3390/cancers14030619. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
60.
Nagaya T., Nakamura Y., Sato K., Harada T., Choyke P.L., Hodge J.W., Schlom J., Kobayashi H. Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget. 2017;8:8807–8817. doi: 10.18632/oncotarget.12410. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61.
Sioud M., Westby P., Vasovic V., Fløisand Y., Peng Q. Development of a new high-affinity human antibody with antitumor activity against solid and blood malignancies. Faseb J. 2018;32:5063–5077. doi: 10.1096/fj.201701544R. [PubMed] [CrossRef] [Google Scholar]
62.
Sioud M., Juzenas P., Zhang Q., Kleinauskas A., Peng Q. Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models. Cancers. 2021;13:3356. doi: 10.3390/cancers13133356. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63.
Watanabe R., Hanaoka H., Sato K., Nagaya T., Harada T., Mitsunaga M., Kim I., Paik C.H., Wu A.M., Choyke P.L., et al. Photoimmunotherapy targeting prostate-specific membrane antigen: Are antibody fragments as effective as antibodies? J. Nucl. Med. 2015;56:140–144. doi: 10.2967/jnumed.114.149526. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
65.
De Groof T.W.M., Mashayekhi V., Fan T.S., Bergkamp N.D., Sastre Toraño J., van Senten J.R., Heukers R., Smit M.J., Oliveira S. Nanobody-Targeted Photodynamic Therapy Selectively Kills Viral GPCR-Expressing Glioblastoma Cells. Mol. Pharm. 2019;16:3145–3156. doi: 10.1021/acs.molpharmaceut.9b00360. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
67.
Ståhl S., Gräslund T., Eriksson Karlström A., Frejd F.Y., Nygren P., Löfblom J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol. 2017;35:691–712. doi: 10.1016/j.tibtech.2017.04.007. [PubMed] [CrossRef] [Google Scholar]
68.
Tolmachev V., Orlova A., Nilsson F.Y., Feldwisch J., Wennborg A., Abrahmsén L. Affibody molecules: Potential for in vivo imaging of molecular targets for cancer therapy. Expert Opin. Biol. Ther. 2007;7:555–568. doi: 10.1517/14712598.7.4.555. [PubMed] [CrossRef] [Google Scholar]
69.
Mączyńska J., Da Pieve C., Burley T.A., Raes F., Shah A., Saczko J., Harrington K.J., Kramer-Marek G. Immunomodulatory activity of IR700-labelled affibody targeting HER2. Cell Death Dis. 2020;11:886. doi: 10.1038/s41419-020-03077-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
70.
Yamaguchi H., On J., Morita T., Suzuki T., Okada Y., Ono J., Evdokiou A. Combination of Near-Infrared Photoimmunotherapy Using Trastuzumab and Small Protein Mimetic for HER2-Positive Breast Cancer. Int. J. Mol. Sci. 2021;22:12213. doi: 10.3390/ijms222212213. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
71.
Shi Q., Tao Z., Yang H., Fan Q., Wei D., Wan L., Lu X. PDGFRβ-specific affibody-directed delivery of a photosensitizer, IR700, is efficient for vascular-targeted photodynamic therapy of colorectal cancer. Drug Deliv. 2017;24:1818–1830. doi: 10.1080/10717544.2017.1407011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
72.
Burley T.A., Mączyńska J., Shah A., Szopa W., Harrington K.J., Boult J.K.R., Mrozek-Wilczkiewicz A., Vinci M., Bamber J.C., Kaspera W., et al. Near-infrared photoimmunotherapy targeting EGFR-Shedding new light on glioblastoma treatment. Int. J. Cancer. 2018;142:2363–2374. doi: 10.1002/ijc.31246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73.
Mączyńska J., Raes F., Da Pieve C., Turnock S., Boult J.K.R., Hoebart J., Niedbala M., Robinson S.P., Harrington K.J., Kaspera W., et al. Triggering anti-GBM immune response with EGFR-mediated photoimmunotherapy. BMC Med. 2022;20:16. doi: 10.1186/s12916-021-02213-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
74.
Li F., Zhao Y., Mao C., Kong Y., Ming X. RGD-Modified Albumin Nanoconjugates for Targeted Delivery of a Porphyrin Photosensitizer. Mol. Pharm. 2017;14:2793–2804. doi: 10.1021/acs.molpharmaceut.7b00321. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75.
Zhao Y., Li F., Mao C., Ming X. Multiarm Nanoconjugates for Cancer Cell-Targeted Delivery of Photosensitizers. Mol. Pharm. 2018;15:2559–2569. doi: 10.1021/acs.molpharmaceut.8b00088. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76.
Dou X., Nomoto T., Takemoto H., Matsui M., Tomoda K., Nishiyama N. Effect of multiple cyclic RGD peptides on tumor accumulation and intratumoral distribution of IRDye 700DX-conjugated polymers. Sci. Rep. 2018;8:8126. doi: 10.1038/s41598-018-26593-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77.
Liu H., Zhao Z., Zhang L., Li Y., Jain A., Barve A., Jin W., Liu Y., Fetse J., Cheng K. Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy. J. Immunother. Cancer. 2019;7:270. doi: 10.1186/s40425-019-0705-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78.
Sasikumar P.G., Ramachandra M. Small-molecule antagonists of the immune checkpoint pathways: Concept to clinic. Future Med. Chem. 2017;9:1305–1308. doi: 10.4155/fmc-2017-0107. [PubMed] [CrossRef] [Google Scholar]
79.
Nakajima K., Miyazaki F., Terada K., Takakura H., Suzuki M., Ogawa M. Comparison of low-molecular-weight ligand and whole antibody in prostate-specific membrane antigen targeted near-infrared photoimmunotherapy. Int. J. Pharm. 2021;609:121135. doi: 10.1016/j.ijpharm.2021.121135. [PubMed] [CrossRef] [Google Scholar]
80.
Sato K., Ando K., Okuyama S., Moriguchi S., Ogura T., Totoki S., Hanaoka H., Nagaya T., Kokawa R., Takakura H., et al. Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies: A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent. Sci. 2018;4:1559–1569. doi: 10.1021/acscentsci.8b00565. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81.
Kobayashi H., Griffiths G.L., Choyke P.L. Near-Infrared Photoimmunotherapy: Photoactivatable Antibody-Drug Conjugates (ADCs) Bioconjug. Chem. 2020;31:28–36. doi: 10.1021/acs.bioconjchem.9b00546. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
82.
Nakajima K., Ogawa M. Phototoxicity in near-infrared photoimmunotherapy is influenced by the subcellular localization of antibody-IR700. Photodiagnosis Photodyn. Ther. 2020;31:101926. doi: 10.1016/j.pdpdt.2020.101926. [PubMed] [CrossRef] [Google Scholar]
83.
Mitsunaga M., Nakajima T., Sano K., Choyke P.L., Kobayashi H. Near-infrared theranostic photoimmunotherapy (PIT): Repeated exposure of light enhances the effect of immunoconjugate. Bioconjug. Chem. 2012;23:604–609. doi: 10.1021/bc200648m. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
84.
Perez H.L., Cardarelli P.M., Deshpande S., Gangwar S., Schroeder G.M., Vite G.D., Borzilleri R.M. Antibody-drug conjugates: Current status and future directions. Drug Discov. Today. 2014;19:869–881. doi: 10.1016/j.drudis.2013.11.004. [PubMed] [CrossRef] [Google Scholar]
85.
Hussain A.F., Heppenstall P.A., Kampmeier F., Meinhold-Heerlein I., Barth S. One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology. Nat. Protoc. 2019;14:3101–3125. doi: 10.1038/s41596-019-0214-y. [PubMed] [CrossRef] [Google Scholar]
86.
Chouman K., Woitok M., Mladenov R., Kessler C., Weinhold E., Hanz G., Fischer R., Meinhold-Heerlein I., Bleilevens A., Gresch G., et al. Fine Tuning Antibody Conjugation Methods using SNAP-tag Technology. Anticancer Agents Med. Chem. 2017;17:1434–1440. doi: 10.2174/1871520617666170213123737. [PubMed] [CrossRef] [Google Scholar]
87.
Henderson T.A., Morries L.D. Near-infrared photonic energy penetration: Can infrared phototherapy effectively reach the human brain? Neuropsychiatr. Dis. Treat. 2015;11:2191–2208. doi: 10.2147/NDT.S78182. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88.
Nagaya T., Okuyama S., Ogata F., Maruoka Y., Choyke P.L., Kobayashi H. Endoscopic near infrared photoimmunotherapy using a fiber optic diffuser for peritoneal dissemination of gastric cancer. Cancer Sci. 2018;109:1902–1908. doi: 10.1111/cas.13621. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
89.
Nagaya T., Okuyama S., Ogata F., Maruoka Y., Choyke P.L., Kobayashi H. Near infrared photoimmunotherapy using a fiber optic diffuser for treating peritoneal gastric cancer dissemination. Gastric Cancer. 2019;22:463–472. doi: 10.1007/s10120-018-0871-5. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
90.
Okada R., Furusawa A., Inagaki F., Wakiyama H., Kato T., Okuyama S., Furumoto H., Fukushima H., Choyke P.L., Kobayashi H. Endoscopic near-infrared photoimmunotherapy in an orthotopic head and neck cancer model. Cancer Sci. 2021;112:3041–3049. doi: 10.1111/cas.15013. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
91.
Tsukamoto T., Fujita Y., Shimogami M., Kaneda K., Seto T., Mizukami K., Takei M., Isobe Y., Yasui H., Sato K. Inside-the-body light delivery system using endovascular therapy-based light illumination technology. EBioMedicine. 2022;85:104289. doi: 10.1016/j.ebiom.2022.104289. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92.
Zhang X., Nakajima T., Mizoi K., Tsushima Y., Ogihara T. Imaging modalities for monitoring acute therapeutic effects after near-infrared photoimmunotherapy in vivo. J. Biophotonics. 2022;15:e202100266. doi: 10.1002/jbio.202100266. [PubMed] [CrossRef] [Google Scholar]
93.
Nakajima T., Sato K., Hanaoka H., Watanabe R., Harada T., Choyke P.L., Kobayashi H. The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity. BMC Cancer. 2014;14:389. doi: 10.1186/1471-2407-14-389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94.
Sano K., Mitsunaga M., Nakajima T., Choyke P.L., Kobayashi H. Acute cytotoxic effects of photoimmunotherapy assessed by 18F-FDG PET. J. Nucl. Med. 2013;54:770–775. doi: 10.2967/jnumed.112.112110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
95.
Liang C.P., Nakajima T., Watanabe R., Sato K., Choyke P.L., Chen Y., Kobayashi H. Real-time monitoring of hemodynamic changes in tumor vessels during photoimmunotherapy using optical coherence tomography. J. Biomed. Opt. 2014;19:98004. doi: 10.1117/1.JBO.19.9.098004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
96.
Tang Q., Nagaya T., Liu Y., Lin J., Sato K., Kobayashi H., Chen Y. Real-time monitoring of microdistribution of antibody-photon absorber conjugates during photoimmunotherapy in vivo. J. Control. Release. 2017;260:154–163. doi: 10.1016/j.jconrel.2017.06.004. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
97.
Inagaki F.F., Fujimura D., Furusawa A., Okada R., Wakiyama H., Kato T., Choyke P.L., Kobayashi H. Diagnostic imaging in near-infrared photoimmunotherapy using a commercially available camera for indocyanine green. Cancer Sci. 2021;112:1326–1330. doi: 10.1111/cas.14809. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
98.
Kishimoto S., Oshima N., Yamamoto K., Munasinghe J., Ardenkjaer-Larsen J.H., Mitchell J.B., Choyke P.L., Krishna M.C. Molecular imaging of tumor photoimmunotherapy: Evidence of photosensitized tumor necrosis and hemodynamic changes. Free Radic. Biol. Med. 2018;116:1–10. doi: 10.1016/j.freeradbiomed.2017.12.034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
99.
Nakamura Y., Ohler Z.W., Householder D., Nagaya T., Sato K., Okuyama S., Ogata F., Daar D., Hoa T., Choyke P.L., et al. Near Infrared Photoimmunotherapy in a Transgenic Mouse Model of Spontaneous Epidermal Growth Factor Receptor (EGFR)-expressing Lung Cancer. Mol. Cancer Ther. 2017;16:408–414. doi: 10.1158/1535-7163.MCT-16-0663. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
100.
Siddiqui M.R., Railkar R., Sanford T., Crooks D.R., Eckhaus M.A., Haines D., Choyke P.L., Kobayashi H., Agarwal P.K. Targeting Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor 2 (HER2) Expressing Bladder Cancer Using Combination Photoimmunotherapy (PIT) Sci. Rep. 2019;9:2084. doi: 10.1038/s41598-019-38575-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
101.
Sato K., Hanaoka H., Watanabe R., Nakajima T., Choyke P.L., Kobayashi H. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol. Cancer. Ther. 2015;14:141–150. doi: 10.1158/1535-7163.MCT-14-0658. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
102.
Sato K., Nagaya T., Choyke P.L., Kobayashi H. Near infrared photoimmunotherapy in the treatment of pleural disseminated NSCLC: Preclinical experience. Theranostics. 2015;5:698–709. doi: 10.7150/thno.11559. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
103.
Takahashi K., Taki S., Yasui H., Nishinaga Y., Isobe Y., Matsui T., Shimizu M., Koike C., Sato K. HER2 targeting near-infrared photoimmunotherapy for a CDDP-resistant small-cell lung cancer. Cancer Med. 2021;10:8808–8819. doi: 10.1002/cam4.4381. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
104.
Takahashi K., Yasui H., Taki S., Shimizu M., Koike C., Taki K., Yukawa H., Baba Y., Kobayashi H., Sato K.J.B., et al. Near-infrared-induced drug release from antibody–drug double conjugates exerts a cytotoxic photo-bystander effect. Bioeng. Transl. Med. 2022;7:e10388. doi: 10.1002/btm2.10388. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
105.
Maruoka Y., Furusawa A., Okada R., Inagaki F., Wakiyama H., Kato T., Nagaya T., Choyke P.L., Kobayashi H. Interleukin-15 after Near-Infrared Photoimmunotherapy (NIR-PIT) Enhances T Cell Response against Syngeneic Mouse Tumors. Cancers. 2020;12:2575. doi: 10.3390/cancers12092575. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
106.
Maruoka Y., Furusawa A., Okada R., Inagaki F., Fujimura D., Wakiyama H., Kato T., Nagaya T., Choyke P.L., Kobayashi H. Near-Infrared Photoimmunotherapy Combined with CTLA4 Checkpoint Blockade in Syngeneic Mouse Cancer Models. Vaccines. 2020;8:528. doi: 10.3390/vaccines8030528. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
107.
Katsube R., Noma K., Ohara T., Nishiwaki N., Kobayashi T., Komoto S., Sato H., Kashima H., Kato T., Kikuchi S., et al. Fibroblast activation protein targeted near infrared photoimmunotherapy (NIR PIT) overcomes therapeutic resistance in human esophageal cancer. Sci. Rep. 2021;11:1693. doi: 10.1038/s41598-021-81465-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108.
Shirasu N., Yamada H., Shibaguchi H., Kuroki M., Kuroki M. Potent and specific antitumor effect of CEA-targeted photoimmunotherapy. Int. J. Cancer. 2014;135:2697–2710. doi: 10.1002/ijc.28907. [PubMed] [CrossRef] [Google Scholar]
109.
Maawy A.A., Hiroshima Y., Zhang Y., Heim R., Makings L., Garcia-Guzman M., Luiken G.A., Kobayashi H., Hoffman R.M., Bouvet M. Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer. PLoS ONE. 2015;10:e0121989. doi: 10.1371/journal.pone.0121989. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
110.
Wei W., Jiang D., Ehlerding E.B., Barnhart T.E., Yang Y., Engle J.W., Luo Q.Y., Huang P., Cai W. CD146-Targeted Multimodal Image-Guided Photoimmunotherapy of Melanoma. Adv. Sci. 2019;6:1801237. doi: 10.1002/advs.201801237. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
111.
Wei D., Tao Z., Shi Q., Wang L., Liu L., She T., Yi Q., Wen X., Liu L., Li S., et al. Selective Photokilling of Colorectal Tumors by Near-Infrared Photoimmunotherapy with a GPA33-Targeted Single-Chain Antibody Variable Fragment Conjugate. Mol. Pharm. 2020;17:2508–2517. doi: 10.1021/acs.molpharmaceut.0c00210. [PubMed] [CrossRef] [Google Scholar]
112.
Hanaoka H., Nakajima T., Sato K., Watanabe R., Phung Y., Gao W., Harada T., Kim I., Paik C.H., Choyke P.L., et al. Photoimmunotherapy of hepatocellular carcinoma-targeting Glypican-3 combined with nanosized albumin-bound paclitaxel. Nanomedicine. 2015;10:1139–1147. doi: 10.2217/nnm.14.194. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
113.
Isobe Y., Sato K., Nishinaga Y., Takahashi K., Taki S., Yasui H., Shimizu M., Endo R., Koike C., Kuramoto N., et al. Near infrared photoimmunotherapy targeting DLL3 for small cell lung cancer. EBioMedicine. 2020;52:102632. doi: 10.1016/j.ebiom.2020.102632. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
114.
Lum Y.L., Luk J.M., Staunton D.E., Ng D.K.P., Fong W.P. Cadherin-17 Targeted Near-Infrared Photoimmunotherapy for Treatment of Gastrointestinal Cancer. Mol. Pharm. 2020;17:3941–3951. doi: 10.1021/acs.molpharmaceut.0c00700. [PubMed] [CrossRef] [Google Scholar]
115.
Fujimoto S., Muguruma N., Okamoto K., Kurihara T., Sato Y., Miyamoto Y., Kitamura S., Miyamoto H., Taguchi T., Tsuneyama K., et al. A Novel Theranostic Combination of Near-infrared Fluorescence Imaging and Laser Irradiation Targeting c-KIT for Gastrointestinal Stromal Tumors. Theranostics. 2018;8:2313–2328. doi: 10.7150/thno.22027. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
116.
Nishinaga Y., Sato K., Yasui H., Taki S., Takahashi K., Shimizu M., Endo R., Koike C., Kuramoto N., Nakamura S., et al. Targeted Phototherapy for Malignant Pleural Mesothelioma: Near-Infrared Photoimmunotherapy Targeting Podoplanin. Cells. 2020;9:1019. doi: 10.3390/cells9041019. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
117.
Nagaya T., Nakamura Y., Sato K., Zhang Y.F., Ni M., Choyke P.L., Ho M., Kobayashi H. Near infrared photoimmunotherapy with an anti-mesothelin antibody. Oncotarget. 2016;7:23361–23369. doi: 10.18632/oncotarget.8025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
118.
Furusawa A., Okada R., Inagaki F., Wakiyama H., Kato T., Furumoto H., Fukushima H., Okuyama S., Choyke P.L., Kobayashi H. CD29 targeted near-infrared photoimmunotherapy (NIR-PIT) in the treatment of a pigmented melanoma model. Oncoimmunology. 2022;11:2019922. doi: 10.1080/2162402X.2021.2019922. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
119.
Yasui H., Nishinaga Y., Taki S., Takahashi K., Isobe Y., Sato K. Near Infrared Photoimmunotherapy for Mouse Models of Pleural Dissemination. J. Vis. Exp. 2021;23:e61593. doi: 10.3791/61593. [PubMed] [CrossRef] [Google Scholar]
120.
Polikarpov D.M., Campbell D.H., Lund M.E., Lu Y., Lu Y., Wu J., Walsh B.J., Zvyagin A.V., Gillatt D.A. The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors. Photodiagnosis Photodyn. Ther. 2020;32:102064. doi: 10.1016/j.pdpdt.2020.102064. [PubMed] [CrossRef] [Google Scholar]
121.
Fukushima H., Kato T., Furusawa A., Okada R., Wakiyama H., Furumoto H., Okuyama S., Kondo E., Choyke P.L., Kobayashi H. Intercellular adhesion molecule-1-targeted near-infrared photoimmunotherapy of triple-negative breast cancer. Cancer Sci. 2022;113:3180–3192. doi: 10.1111/cas.15466. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
122.
Walker E., Turaga S.M., Wang X., Gopalakrishnan R., Shukla S., Basilion J.P., Lathia J.D. Development of near-infrared imaging agents for detection of junction adhesion molecule-A protein. Transl. Oncol. 2021;14:101007. doi: 10.1016/j.tranon.2020.101007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
123.
Bao R., Wang Y., Lai J., Zhu H., Zhao Y., Li S., Li N., Huang J., Yang Z., Wang F., et al. Enhancing Anti-PD-1/PD-L1 Immune Checkpoint Inhibitory Cancer Therapy by CD276-Targeted Photodynamic Ablation of Tumor Cells and Tumor Vasculature. Mol. Pharm. 2019;16:339–348. doi: 10.1021/acs.molpharmaceut.8b00997. [PubMed] [CrossRef] [Google Scholar]
124.
Li F., Mao C., Yeh S., Sun Y., Xin J., Shi Q., Ming X. MRP1-targeted near infrared photoimmunotherapy for drug resistant small cell lung cancer. Int. J. Pharm. 2021;604:120760. doi: 10.1016/j.ijpharm.2021.120760. [PubMed] [CrossRef] [Google Scholar]
125.
Silic-Benussi M., Saponeri A., Michelotto A., Russo I., Colombo A., Pelizzo M.G., Ciminale V., Alaibac M. Near infrared photoimmunotherapy targeting the cutaneous lymphocyte antigen for mycosis fungoides. Expert Opin. Biol. Ther. 2021;21:977–981. doi: 10.1080/14712598.2021.1858791. [PubMed] [CrossRef] [Google Scholar]
126.
Mao C., Zhao Y., Li F., Li Z., Tian S., Debinski W., Ming X. P-glycoprotein targeted and near-infrared light-guided depletion of chemoresistant tumors. J. Control. Release. 2018;286:289–300. doi: 10.1016/j.jconrel.2018.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
127.
Zhang C., Gao L., Cai Y., Liu H., Gao D., Lai J., Jia B., Wang F., Liu Z. Inhibition of tumor growth and metastasis by photoimmunotherapy targeting tumor-associated macrophage in a sorafenib-resistant tumor model. Biomaterials. 2016;84:1–12. doi: 10.1016/j.biomaterials.2016.01.027. [PubMed] [CrossRef] [Google Scholar]
128.
Kato T., Okada R., Furusawa A., Inagaki F., Wakiyama H., Furumoto H., Okuyama S., Fukushima H., Choyke P.L., Kobayashi H. Simultaneously Combined Cancer Cell- and CTLA4-Targeted NIR-PIT Causes a Synergistic Treatment Effect in Syngeneic Mouse Models. Mol. Cancer Ther. 2021;20:2262–2273. doi: 10.1158/1535-7163.MCT-21-0470. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
129.
Kato T., Okada R., Furusawa A., Wakiyama H., Furumoto H., Fukushima H., Okuyama S., Choyke P.L., Kobayashi H. Comparison of the Effectiveness of IgG Antibody versus F(ab′)(2) Antibody Fragment in CTLA4-Targeted Near-Infrared Photoimmunotherapy. Mol. Pharm. 2022;19:3600–3611. doi: 10.1021/acs.molpharmaceut.2c00242. [PubMed] [CrossRef] [Google Scholar]
130.
Wakiyama H., Furusawa A., Okada R., Inagaki F., Kato T., Furumoto H., Fukushima H., Okuyama S., Choyke P.L., Kobayashi H. Opening up new VISTAs: V-domain immunoglobulin suppressor of T cell activation (VISTA) targeted near-infrared photoimmunotherapy (NIR-PIT) for enhancing host immunity against cancers. Cancer Immunol. Immunother. 2022;71:2869–2879. doi: 10.1007/s00262-022-03205-5. [PubMed] [CrossRef] [Google Scholar]
131.
Barnett J.D., Jin J., Penet M.F., Kobayashi H., Bhujwalla Z.M. Phototheranostics of Splenic Myeloid-Derived Suppressor Cells and Its Impact on Spleen Metabolism in Tumor-Bearing Mice. Cancers. 2022;14:3578. doi: 10.3390/cancers14153578. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
132.
Kato T., Fukushima H., Furusawa A., Okada R., Wakiyama H., Furumoto H., Okuyama S., Takao S., Choyke P.L., Kobayashi H. Selective depletion of polymorphonuclear myeloid derived suppressor cells in tumor beds with near infrared photoimmunotherapy enhances host immune response. Oncoimmunology. 2022;11:2152248. doi: 10.1080/2162402X.2022.2152248. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
133.
Martinelli E., De Palma R., Orditura M., De Vita F., Ciardiello F. Anti-epidermal growth factor receptor monoclonal antibodies in cancer therapy. Clin. Exp. Immunol. 2009;158:1–9. doi: 10.1111/j.1365-2249.2009.03992.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
134.
Maennling A.E., Tur M.K., Niebert M., Klockenbring T., Zeppernick F., Gattenlöhner S., Meinhold-Heerlein I., Hussain A.F. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers. 2019;11:1826. doi: 10.3390/cancers11121826. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
135.
Nagaya T., Sato K., Harada T., Nakamura Y., Choyke P.L., Kobayashi H. Near Infrared Photoimmunotherapy Targeting EGFR Positive Triple Negative Breast Cancer: Optimizing the Conjugate-Light Regimen. PLoS ONE. 2015;10:e0136829. doi: 10.1371/journal.pone.0136829. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
136.
Nagaya T., Okuyama S., Ogata F., Maruoka Y., Knapp D.W., Karagiannis S.N., Fazekas-Singer J., Choyke P.L., LeBlanc A.K., Jensen-Jarolim E., et al. Near infrared photoimmunotherapy targeting bladder cancer with a canine anti-epidermal growth factor receptor (EGFR) antibody. Oncotarget. 2018;9:19026–19038. doi: 10.18632/oncotarget.24876. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
137.
Oh D.Y., Bang Y.J. HER2-targeted therapies-A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020;17:33–48. doi: 10.1038/s41571-019-0268-3. [PubMed] [CrossRef] [Google Scholar]
138.
Gravalos C., Jimeno A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. 2008;19:1523–1529. doi: 10.1093/annonc/mdn169. [PubMed] [CrossRef] [Google Scholar]
139.
Zhan N., Dong W.G., Tang Y.F., Wang Z.S., Xiong C.L. Analysis of HER2 gene amplification and protein expression in esophageal squamous cell carcinoma. Med. Oncol. 2012;29:933–940. doi: 10.1007/s12032-011-9850-y. [PubMed] [CrossRef] [Google Scholar]
140.
Ito K., Mitsunaga M., Arihiro S., Saruta M., Matsuoka M., Kobayashi H., Tajiri H. Molecular targeted photoimmunotherapy for HER2-positive human gastric cancer in combination with chemotherapy results in improved treatment outcomes through different cytotoxic mechanisms. BMC Cancer. 2016;16:37. doi: 10.1186/s12885-016-2072-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
141.
Hiroshima Y., Maawy A., Zhang Y., Guzman M.G., Heim R., Makings L., Luiken G.A., Kobayashi H., Tanaka K., Endo I., et al. Photoimmunotherapy Inhibits Tumor Recurrence After Surgical Resection on a Pancreatic Cancer Patient-Derived Orthotopic Xenograft (PDOX) Nude Mouse Model. Ann. Surg. Oncol. 2015;22((Suppl. S3)):S1469–S1474. doi: 10.1245/s10434-015-4553-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
142.
Maawy A.A., Hiroshima Y., Zhang Y., Garcia-Guzman M., Luiken G.A., Kobayashi H., Hoffman R.M., Bouvet M. Photoimmunotherapy lowers recurrence after pancreatic cancer surgery in orthotopic nude mouse models. J. Surg. Res. 2015;197:5–11. doi: 10.1016/j.jss.2015.02.037. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
143.
Ponta H., Sherman L., Herrlich P.A. CD44: From adhesion molecules to signalling regulators. Nat. Rev. Mol. Cell Biol. 2003;4:33–45. doi: 10.1038/nrm1004. [PubMed] [CrossRef] [Google Scholar]
144.
Patel S.P., Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy. Mol. Cancer Ther. 2015;14:847–856. doi: 10.1158/1535-7163.MCT-14-0983. [PubMed] [CrossRef] [Google Scholar]
145.
Colombo M.P., Piconese S. Regulatory-T-cell inhibition versus depletion: The right choice in cancer immunotherapy. Nat. Rev. Cancer. 2007;7:880–887. doi: 10.1038/nrc2250. [PubMed] [CrossRef] [Google Scholar]
146.
Watanabe S., Noma K., Ohara T., Kashima H., Sato H., Kato T., Urano S., Katsube R., Hashimoto Y., Tazawa H., et al. Photoimmunotherapy for cancer-associated fibroblasts targeting fibroblast activation protein in human esophageal squamous cell carcinoma. Cancer Biol. Ther. 2019;20:1234–1248. doi: 10.1080/15384047.2019.1617566. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
147.
Jin J., Barnett J.D., Krishnamachary B., Mironchik Y., Luo C.K., Kobayashi H., Bhujwalla Z.M. Eliminating fibroblast activation protein-α expressing cells by photoimmunotheranostics. bioRxiv. 2021 doi: 10.1101/2021.11.18.469110. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
148.
Yoshida R., Tazawa H., Hashimoto Y., Yano S., Onishi T., Sasaki T., Shirakawa Y., Kishimoto H., Uno F., Nishizaki M., et al. Mechanism of resistance to trastuzumab and molecular sensitization via ADCC activation by exogenous expression of HER2-extracellular domain in human cancer cells. Cancer Immunol. Immunother. 2012;61:1905–1916. doi: 10.1007/s00262-012-1249-x. [PubMed] [CrossRef] [Google Scholar]
149.
Shimoyama K., Kagawa S., Ishida M., Watanabe S., Noma K., Takehara K., Tazawa H., Hashimoto Y., Tanabe S., Matsuoka J., et al. Viral transduction of the HER2-extracellular domain expands trastuzumab-based photoimmunotherapy for HER2-negative breast cancer cells. Breast Cancer Res. Treat. 2015;149:597–605. doi: 10.1007/s10549-015-3265-y. [PubMed] [CrossRef] [Google Scholar]
150.
Ishida M., Kagawa S., Shimoyama K., Takehara K., Noma K., Tanabe S., Shirakawa Y., Tazawa H., Kobayashi H., Fujiwara T. Trastuzumab-Based Photoimmunotherapy Integrated with Viral HER2 Transduction Inhibits Peritoneally Disseminated HER2-Negative Cancer. Mol. Cancer Ther. 2016;15:402–411. doi: 10.1158/1535-7163.MCT-15-0644. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
151.
Hsu M.A., Okamura S.M., De Magalhaes Filho C.D., Bergeron D.M., Rodriguez A., West M., Yadav D., Heim R., Fong J.J., Garcia-Guzman M. Cancer-targeted photoimmunotherapy induces antitumor immunity and can be augmented by anti-PD-1 therapy for durable anticancer responses in an immunologically active murine tumor model. Cancer Immunol. Immunother. 2022;72:151–168. doi: 10.1007/s00262-022-03239-9. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
152.
Shirasu N., Shibaguchi H., Yamada H., Kuroki M., Yasunaga S. Highly versatile cancer photoimmunotherapy using photosensitizer-conjugated avidin and biotin-conjugated targeting antibodies. Cancer Cell Int. 2019;19:299. doi: 10.1186/s12935-019-1034-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
153.
Bullous A.J., Alonso C.M., Boyle R.W. Photosensitiser-antibody conjugates for photodynamic therapy. Photochem. Photobiol. Sci. 2011;10:721–750. doi: 10.1039/c0pp00266f. [PubMed] [CrossRef] [Google Scholar]
154.
Serebrovskaya E.O., Edelweiss E.F., Stremovskiy O.A., Lukyanov K.A., Chudakov D.M., Deyev S.M. Targeting cancer cells by using an antireceptor antibody-photosensitizer fusion protein. Proc. Natl. Acad. Sci. USA. 2009;106:9221–9225. doi: 10.1073/pnas.0904140106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
155.
Matsuoka K., Sato M., Sato K. Hurdles for the wide implementation of photoimmunotherapy. Immunotherapy. 2021;13:1427–1438. doi: 10.2217/imt-2021-0241. [PubMed] [CrossRef] [Google Scholar]
156.
Hoffman R.M. Patient-derived orthotopic xenografts: Better mimic of metastasis than subcutaneous xenografts. Nat. Rev. Cancer. 2015;15:451–452. doi: 10.1038/nrc3972. [PubMed] [CrossRef] [Google Scholar]
157.
Francia G., Cruz-Munoz W., Man S., Xu P., Kerbel R.S. Mouse models of advanced spontaneous metastasis for experimental therapeutics. Nat. Rev. Cancer. 2011;11:135–141. doi: 10.1038/nrc3001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
158.
Furumoto H., Okada R., Kato T., Wakiyama H., Inagaki F., Fukushima H., Okuyama S., Furusawa A., Choyke P.L., Kobayashi H. Optimal Light Dose for hEGFR-Targeted Near-Infrared Photoimmunotherapy. Cancers. 2022;14:4042. doi: 10.3390/cancers14164042. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)
Immuuntherapie, solide tumoren, alvleesklierkanker, darmkanker, borstkanker, prostaatkanker, P.I.T., Photo Immuno Therapy, PDT, infrarood licht, nanodeeltjes, bremachlorin, IRDye 700DX®, solide tumoren
Gerelateerde artikelen
Plaats een reactie ...
Reageer op "Photo Immuno Therapy (PIT) = PDT met infrarood licht blijkt veelbelovende vorm van immuuntherapie voor solide tumoren al of niet in combinatie met andere behandelingen"