Als u de informatie op kanker-actueel waardeert wilt u misschien donateur worden van onze Stichting Gezondheid Actueel. Wij zijn ook een ANBI organisatie. Als donateur kunt u korting krijgen op voedingssupplementen bij verschillende bedrijven.
Als u melatonine wilt gaan gebruiken doe een consult bij een complementair werkende arts. Raadpleeg ook de literatuurlijsten niet-toxische middelen en behandelingen van arts-bioloog drs. Engelbert Valstar.
31 december 2018: Bronnen: Int J Mol Sci. 2018 Aug; 19(8): 2205 en Onco Targets Ther. 2018; 11: 7895–7908.
In gerelateerde artikelen, (zie hiernaast of hieronder) kunt u veel lezen over melatonine bij kanker en preventief. Ook arts-bioloog drs. Engelbert Valstar heeft verschillende artikelen hierover geschreven zoals u ziet.
Aanvullend op al die artikelen hier weer twee reviewstudies die de waarde van melatonine aantonen. Zowel aanvullend bij andere behandelingen als preventief in het voorkomen van kanker.
Hier een afbeelding hoe melatonine werkt (tekst loopt verder onder afbeelding):
Source: Int J Mol Sci
De onderzoekers van de studie: Therapeutic strategies of melatonin in cancer patients: a systematic review and meta-analysis maakten na het doorzoeken van verschillende belangrijke literatuurdatabases, een meta analyse van in totaal 5.057 artikelen verkregen en gescreend op opname- en exclusiecriteria.
Met deze doelen: De remissie van de tumor, de totale overlevingskans en de incidentie van bijwerkingen werden geregistreerd en geanalyseerd bij de aan de studie deelnemende patiënten.
Met deze resultaten uit de studie gepubliceerd in Oncotargets:
De tumorvermindering in de melatoninegroepen (MLT groep) was statistisch significant hoger dan dat in de controle groepen (relative risk =2.25; 95% CI, 1.86–2.71; P<0.00001; I2=9%).
Ook hadden de melatoninegroepen een betere overall overleving van 28.24% (n=294/1,041), welke veel beter was in vergelijking met de controle groepen (RR =2.07; 95% CI, 1.55–2.76; P<0.00001; I2=55%).
Bv. een studie met melatonine bij longkankerpatiënten verbeterde de overall overleving statistisch significant (RR =2.13; 95% CI, 1.41–3.24; P=0.0004; I2=0%) zo ook bij verschillende patientengroepen met solide tumoren (RR =2.31; 95% CI, 1.78–2.99; P<0.00001; I2=0%).
Verder werd bewezen dat melatonine de bijwerkingen sterk verminderde indien gegeven naast chemo. O.a. neurotoxiciteit (RR =0.30, 95% CI, 0.19–0.45; P<0.00001), thrombocytopenie (lagere witte bloedplaatjes) (RR =0.23; 95% CI, 0.16–0.33; P<0.00001), en vermoeidheid en lichamelijke verzwakking (RR =0.43, 95% CI, 0.38–0.49; P<0.00001).
In de studie: Mechanisms Underlying Tumor Suppressive Properties of Melatonin komen de onderzoekers tot deze slotzin in de conclusie:
De zeer lage toxiciteit van melatonine, samen met de lage kosten en de gemakkelijke beschikbaarheid, maken het een goede kandidaat voor wijdverspreid gebruik als een potentiële preventieve maatregel tegen kanker.
Source: Int J Mol Sci
Conclusie:
Hier de conclusie vertaald met hulp van google translate maar is wellicht te medisch technisch voor leken. Maar als u melatonine wilt gaan gebruiken doe een consult bij een complementair werkende arts.
Melatonine kan niet worden omschreven als een eenvoudige, willekeurige antioxiderende of ontstekingsremmende chemische stof.De gecompliceerde aard van de eigenschappen van melatonine wordt geïllustreerd door het feit dat melatonine in reguliere cellen de expressie van het anti-apoptotische gen Bcl-2 verhoogt [123] terwijl in getransformeerde cellen; expressie van Bcl-2 wordt verminderd waardoor apoptose wordt bevorderd[124].
De manier waarop melatonine zijn beschermende effect uitoefent, is divers. Er is geen enkele gebeurtenis die ten grondslag ligt aan alle metabole gevolgen veroorzaakt door dit neurohormoon. Het is waarschijnlijk dat de algemene volgorde van stappen in het mogelijk maken van melatonine om zijn karakteristieke invloeden uit te oefenen, aanvankelijk zijn binding aan verschillende van zijn bekende receptoren omvat. Hoewel hieruit een breed scala aan consequenties voortvloeit, omvatten de reacties na receptorstimulatie in grote lijnen signaleringsroutes die worden gemedieerd door transcriptiefactoren. De uiteindelijke uitkomst hiervan is niet alleen rechtstreeks van invloed op genexpressie, maar ook op epigenetische gebeurtenissen die de initiatie en progressie van carcinogene pathways verder reguleren.
Er is een grote hoeveelheid bewijs dat aantoont dat de progressie van een reeds aanwezige tumor kan worden verzwakt maar niet volledig kan worden gestopt door melatonine. Door deze gegevens kan melatonine het best beschouwd worden als eenvoudigweg een hulpmiddel voor conventionele behandelingen. Er is echter een sterk argument voor het vermogen van melatonine om het begin van kritieke stappen van de vorming van kankercellen te voorkomen en zo het begin van tumoren te blokkeren. Dit kan met name het geval zijn bij personen van middelbare leeftijd die mogelijk nog niet voldoende hoeveelheid transformaties hebben verzameld die noodzakelijk zijn voor carcinogenese. Dus melatonine modulatie van epigenetische factoren kan het meest gunstig zijn in deze populatie van individuen. De mogelijkheid is dan dat melatonine mogelijk een significante vermindering van de algehele kankerincidentie kan bewerkstelligen indien gebruikt in de juiste dosis en in een juiste fase van menselijke ontwikkeling en veroudering. De zeer lage toxiciteit van melatonine, samen met de lage kosten en de gemakkelijke beschikbaarheid, maken het een goede kandidaat voor wijdverspreid gebruik als een potentiële preventieve maatregel tegen kanker.
Hieronder de twee abstracten van bovengenoemde studies met referentielijsten
The very low toxicity of melatonin together with its low cost and ready availability make it a good candidate for widespread usage as a potential preventive measure against cancer.
Mechanisms Underlying Tumor Suppressive Properties of Melatonin
Abstract
There is considerable evidence that melatonin may be of use in the prevention and treatment of cancer. This manuscript will review some of the human, animal and cellular studies that provide evidence that melatonin has oncostatic properties. Confirmation that melatonin mitigates pathogenesis of cancer will be described from both direct study of its effects on carcinogenesis, and from indirect findings implicating disruption of the circadian cycle. A distinction is made between the role of melatonin in preventing the initiation of the tumorigenic pathway and the ability of melatonin to retard the progression of cancer. Melatonin appears to slow down the rate of advancement of established tumors and there is evidence that it constitutes a valuable complement to standard pharmacological and radiation treatment modalities. There are instances of the beneficial outcomes in cancer treatment which utilize a range of hormones and vitamins, melatonin being among the constituents of the mix. While these complex blends are empirically promising, they are only briefly mentioned here in view of the confounding influence of a multiplicity of agents studied simultaneously. The last section of this review examines the molecular mechanisms that potentially underlie the oncostatic effects of melatonin. Alterations in gene expression following activation of various transcription factors, are likely to be an important mediating event. These changes in gene activity not only relate to cancer but also to the aging process which underlies the onset of most tumors. In addition, epigenetic events such as modulation of histone acetylation and DNA methylation patterns throughout the lifespan of organisms need to be considered. The antioxidant and immunoregulatory roles of melatonin may also contribute to its cancer modulatory properties. Naturally, these mechanisms overlap and interact extensively. Nevertheless, in the interest of clarity and ease of reading, each is discussed as a separate topic section. The report ends with some general conclusions concerning the clinical value of melatonin which has been rather overlooked and understudied.
Funding
This research received no external funding.
Conflicts of Interest
The authors declare no conflict of interest.
References
1.
Bertrand P.P., Polglaze K.E., Bertrand R.L., Sandow S.L., Pozo M.J. Detection of melatonin production from the intestinal epithelium using electrochemical methods. Curr. Pharm. Des. 2014;20:4802–4806. doi: 10.2174/1381612819666131119105421. [PubMed] [CrossRef]
2.
Tan D.X., Manchester L.C., Qin L., Reiter R.J. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 2016;17:2124 doi: 10.3390/ijms17122124. [PMC free article] [PubMed] [CrossRef]
3.
Hardeland R., Cardinali D.P., Srinivasan V., Spence D.W., Brown G.M., Pandi-Perumal S.R. Melatonin-a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 2011;93:350–384. doi: 10.1016/j.pneurobio.2010.12.004. [PubMed] [CrossRef]
4.
Miranda A., Sousa N. Maternal hormonal milieu influence on fetal brain development. Brain Behav. 2018;8:e00920. doi: 10.1002/brb3.920. [PMC free article] [PubMed] [CrossRef]
5.
Tamura H., Nakamura Y., Terron M.P., Flores L.J., Manchester L.C., Tan D.X., Sugino N., Reiter R.J. Melatonin and pregnancy in the human. Reprod. Toxicol. 2008;25:291–303. doi: 10.1016/j.reprotox.2008.03.005. [PubMed] [CrossRef]
6.
Iwasaki S., Nakazawa K., Sakai J., Kometani K., Iwashita M., Yoshimura Y., Maruyama T. Melatonin as a local regulator of human placental function. J. Pineal Res. 2005;39:261–265. doi: 10.1111/j.1600-079X.2005.00244.x. [PubMed] [CrossRef]
7.
Nakazawa K., Kanakura Y., Kometani K., Iwasaki S., Yosimura Y. Study on melatonin in human and rat placental tissue. Trophoblast Res. 1999;13:467–474. doi: 10.1016/S0143-4004(99)80035-6. [CrossRef]
8.
Tordjman S., Chokron S., Delorme R., Charrier A., Bellissant E., Jaafari N., Fougerou C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 2017;15:434–443. doi: 10.2174/1570159X14666161228122115. [PMC free article] [PubMed] [CrossRef]
9.
Wakatsuki A., Okatani Y., Shinohara K., Ikenoue N., Kaneda C., Fukaya T. Melatonin protects fetal rat brain against oxidative mitochondrial damage. J. Pineal Res. 2001;30:22–28. doi: 10.1034/j.1600-079X.2001.300103.x. [PubMed] [CrossRef]
10.
Sadeh A. Sleep and melatonin in infants: A preliminary study. Sleep. 1997;20:185–191. [PubMed]
11.
Gropman A.L., Duncan W.C., Smith A.C. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2) Pediatr. Neurol. 2006;34:337–350. doi: 10.1016/j.pediatrneurol.2005.08.018. [PubMed] [CrossRef]
12.
Kohyama J. The possible long-term effects of early-life circadian rhythm disturbance on social behavior. Expert Rev. Neurother. 2008;14:745–755. doi: 10.1586/14737175.2014.927735. [PubMed] [CrossRef]
13.
Maldonado M.D., Pérez-San-Gregorio M.A., Reiter R.J. The role of melatonin in the immune-neuro-psychology of mental disorders. Recent Pat CAN Drug Discov. 2009;4:61–69. doi: 10.2174/157488909787002564. [PubMed] [CrossRef]
14.
Thorpy M.J., Korman E., Spielman A.J., Glovinsky P.B. Delayed sleep phase syndrome in adolescents. J. Adolesc. Health Care. 1988;9:22–27. doi: 10.1016/0197-0070(88)90014-9. [PubMed] [CrossRef]
15.
Crowley S.J., Van Reen E., LeBourgeois M.K., Acebo C., Tarokh L., Seifer R., Barker D.H., Carskadon M.A. A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence. PLoS ONE. 2014;7:e112199 doi: 10.1371/journal.pone.0112199. [PMC free article] [PubMed] [CrossRef]
16.
Crowley S.J., Acebo C., Carskadon M.A. Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med. 2007;8:602–612. doi: 10.1016/j.sleep.2006.12.002. [PubMed] [CrossRef]
17.
Carskadon M.A., Acebo C., Jenni O.G. Regulation of adolescent sleep: Implications for behavior. Ann. N. Y. Acad. Sci. 2004;1021:276–291. doi: 10.1196/annals.1308.032. [PubMed] [CrossRef]
18.
Onaolapo O.J., Onaolapo A. Melatonin, adolescence, and the brain: An insight into the period-specific influences of a multifunctional signaling molecule. Birth Defects Res. 2017;109:1659–1671. doi: 10.1002/bdr2.1171. [PubMed] [CrossRef]
19.
Wiesner C.D., Davoli V., Schurger D., Prehn-Kristensen A., Baving L. Melatonin secretion during a short nap fosters subsequent feedback learning. Front. Hum. Neurosci. 2018;11:648. doi: 10.3389/fnhum.2017.00648. [PMC free article] [PubMed] [CrossRef]
20.
Harman D. Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 1956;11:298–300. doi: 10.1093/geronj/11.3.298. [PubMed] [CrossRef]
21.
Tresguerres J.A., Kireev R., Forman K., Cuesta S., Tresguerres A.F., Vara E. Effect of chronic melatonin administration on several physiological parameters from old Wistar rats and SAMP8 mice. Curr. Aging Sci. 2012;5:242–253. doi: 10.2174/1874609811205030012. [PubMed] [CrossRef]
22.
Brugger P., Marktl W., Herold M. Impaired nocturnal secretion of melatonin in coronary heart disease. Lancet. 1995;345:1408. doi: 10.1016/S0140-6736(95)92600-3. [PubMed] [CrossRef]
23.
Blask D.E. Melatonin, sleep disturbance and cancer risk. Sleep Med. Rev. 2009;13:257–264. doi: 10.1016/j.smrv.2008.07.007. [PubMed] [CrossRef]
24.
Liu R.Y., Zhou J.N., van Heerikhuize J., Hofman M.A., Swaab D.F. Decreased melatonin levels in postmortem cerebrospinal fluid in relation to aging, Alzheimer’s disease, and apolipoprotein E-epsilon4/4 genotype. J. Clin. Endocrinol. Metab. 1999;84:323–327. [PubMed]
25.
Sharman E.H., Sharman K.G., Bondy S.C. Extended exposure to dietary melatonin reduces tumor number and size in aged male mice. Exp. Gerontol. 2011;46:18–22. doi: 10.1016/j.exger.2010.09.004. [PMC free article] [PubMed] [CrossRef]
26.
Li Y., Li S., Zhou Y., Meng X., Zhang J.J., Xu D.P., Li H. Melatonin in the prevention and treatment of cancer. Oncotarget. 2017;8:39896–39921. doi: 10.18632/oncotarget.16379. [PMC free article] [PubMed] [CrossRef]
27.
Hill S.M., Belancio V.P., Dauchy R.T., Xiang S., Brimer S., Mao L., Hauch A., Lundberg P.W., Summers W., Yuan L., et al. Melatonin: An inhibitor of breast cancer. Endocr. Relat. Cancer. 2015;22:R183–R204. doi: 10.1530/ERC-15-0030. [PMC free article] [PubMed] [CrossRef]
28.
Tamarkin L., Cohen M., Roselle D., Reichert C., Lippman M., Chabner B. Melatonin inhibition and pinealectomy enhancement of 7,12-dimethylbenz(a)anthracene-induced mammary tumors in the rat. Cancer Res. 1981;41:4432–4436. [PubMed]
29.
Shah P.N., Mhatre M.C., Kothari L.S. Effect of melatonin on mammary carcinogenesis in intact and pinealectomized rats in varying photoperiods. Cancer Res. 1984;44:3403–3407. [PubMed]
30.
Anisimov V.N., Alimova I.N., Baturin D.A., Popovich I.G., Zabezhinski M.A., Rosenfeld S.V., Manton K.G., Semenchenko A.V., Yashin A.I. Dose-dependent effect of melatonin on life span and spontaneous tumor incidence in female SHR mice. Exp. Gerontol. 2003;38:449–461. doi: 10.1016/S0531-5565(02)00240-1. [PubMed] [CrossRef]
31.
Subramanian P., Mirunalini S., Dakshayani K.B., Pandi-Perumal S.R., Trakht I., Cardinali D.P. Prevention by melatonin of hepatocarcinogenesis in rats injected with N-nitrosodiethylamine. J. Pineal Res. 2007;43:305–312. doi: 10.1111/j.1600-079X.2007.00478.x. [PubMed] [CrossRef]
32.
Blask D.E., Sauer L.A., Dauchy R.T., Holowachuk E.W., Ruhoff M.S., Kopff H.S. Melatonin inhibition of cancer growth in vivo involves suppression of tumor fatty acid metabolism via melatonin receptor-mediated signal transduction events. Cancer Res. 1999;15:4693–4701. [PubMed]
33.
Ruiz-Rabelo J.F., Vázquez R., Perea M.D., Cruz A., González R., Romero A., Muñoz-Villanueva M.C., Túnez I., Montilla P., Muntané J., et al. Beneficial properties of melatonin in an experimental model of pancreatic cancer. J. Pineal Res. 2007;43:270–275. doi: 10.1111/j.1600-079X.2007.00472.x. [PubMed] [CrossRef]
34.
Chuffa L.G., Fioruci-Fontanelli B.A., Mendes L.O., Fávaro W.J., Pinheiro P.F., Martinez M., Martinez F.E. Characterization of chemically induced ovarian carcinomas in an ethanol-preferring rat model: Influence of long-term melatonin treatment. PLoS ONE. 2013;8:e81676 doi: 10.1371/journal.pone.0081676. [PMC free article] [PubMed] [CrossRef]
35.
Lee S.E., Kim S.J., Youn J.P., Hwang S.Y., Park C.S., Park Y.S. MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect. J. Pineal Res. 2011;51:345–352. doi: 10.1111/j.1600-079X.2011.00896.x. [PubMed] [CrossRef]
36.
Lee S.E., Kim S.J., Yoon H.J., Yu S.Y., Yang H., Jeong S.I., Hwang S.Y., Park C.S., Park Y.S. Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J. Pineal Res. 2013;54:80–88. doi: 10.1111/j.1600-079X.2012.01027.x. [PubMed] [CrossRef]
37.
Sainz R.M., Mayo J.C., Tan D.X., León J., Manchester L., Reiter R.J. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate. 2005;63:29–43. doi: 10.1002/pros.20155. [PubMed] [CrossRef]
38.
Carbajo-Pescador S., García-Palomo A., Martín-Renedo J., Piva M., González-Gallego J., Mauriz J.L. Melatonin modulation of intracellular signaling pathways in hepatocarcinoma HepG2 cell line: Role of the MT1 receptor. J. Pineal Res. 2011;51:463–471. doi: 10.1111/j.1600-079X.2011.00910.x. [PubMed] [CrossRef]
39.
Jung-Hynes B., Reiter R.J., Ahmad N. Sirtuins, melatonin, and circadian rhythms: Building a bridge between aging and cancer. J. Pineal Res. 2010;48:9–19. doi: 10.1111/j.1600-079X.2009.00729.x. [PMC free article] [PubMed] [CrossRef]
40.
Schernhammer E.S., Schulmeister K. Melatonin and cancer risk: Does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Br. J. Cancer. 2007;90:941–943. doi: 10.1038/sj.bjc.6601626. [PMC free article] [PubMed] [CrossRef]
41.
Kantermann T., Roenneberg T. Is light-at-night a health risk factor or a health risk predictor? Chronobiol. Int. 2009;2:1069–1074. doi: 10.3109/07420520903223984. [PubMed] [CrossRef]
42.
Song G., Yoon K.A., Chi H., Roh J., Kim J.H. Decreased concentration of serum melatonin in nighttime compared with daytime female medical technologists in South Korea. Chronobiol. Int. 2016;33:1305–1310. doi: 10.1080/07420528.2016.1199562. [PubMed] [CrossRef]
43.
Leung M., Tranmer J., Hung E., Korsiak J., Day A.G., Aronson K.J. Shift Work, Chronotype, and Melatonin Patterns among Female Hospital Employees on Day and Night Shifts. Cancer Epidemiol. Biomark. Prev. 2016;25:830–838. doi: 10.1158/1055-9965.EPI-15-1178. [PubMed] [CrossRef]
44.
James P., Bertrand K.A., Hart J.E., Schernhammer E.S., Tamimi R.M., Laden F. Outdoor light at night and breast cancer incidence in the Nurses’ Health Study II. Environ. Health Perspect. 2017;125:087010. doi: 10.1289/EHP935. [PMC free article] [PubMed] [CrossRef]
45.
Papantoniou K., Pozo O.J., Espinosa A., Marcos J., Castaño-Vinyals G., Basagaña X., Juanola Pagès E., Mirabent J., Martín J., Such Faro P., et al. Increased and mistimed sex hormone production in night shift workers. Cancer Epidemiol. Biomark. Prev. 2015;24:854–863. doi: 10.1158/1055-9965.EPI-14-1271. [PubMed] [CrossRef]
46.
Benabu J.C., Stoll F., Gonzalez M., Mathelin C. Night work, shift work: Breast cancer risk factor? Gynecol. Obstet. Fertil. 2015;43:791–799. doi: 10.1016/j.gyobfe.2015.10.004. [PubMed] [CrossRef]
47.
Kubatka P., Zubor P., Busselberg D., Kwon T.K., Adamek M., Petrovic D., Opatrilova R., Gazdikova K., Caprnda M., Rodrigo L., et al. Melatonin and breast cancer: Evidences from preclinical and human studies. Crit. Rev. Oncol. Hematol. 2018;122:133–143. doi: 10.1016/j.critrevonc.2017.12.018. [PubMed] [CrossRef]
48.
Wirth M.D., Andrew M.E., Burchfiel C.M., Burch J.B., Fekedulegn D., Hartley T.A., Charles L.E., Violanti J.M. Association of shiftwork and immune cells among police officers from the Buffalo Cardio-metabolic occupational police stress study. Chronobiol. Int. 2017;34:721–731. doi: 10.1080/07420528.2017.1316732. [PubMed] [CrossRef]
49.
Van Dycke K.C., Rodenburg W., van Oostrom C.T., van Kerkhof L.W., Pennings J.L., Roenneberg T., van Steeg H., van der Horst G.T. Chronically alternating light cycles Increase breast cancer risk in mice. Curr. Biol. 2015;25:1932–1937. doi: 10.1016/j.cub.2015.06.012. [PubMed] [CrossRef]
50.
Otálora B.B., Madrid J.A., Alvarez N., Vicente V., Rol M.A. Effects of exogenous melatonin and circadian synchronization on tumor progression in melanoma-bearing C57BL6 mice. J. Pineal Res. 2008;44:307–315. doi: 10.1111/j.1600-079X.2007.00531.x. [PubMed] [CrossRef]
51.
Venegas C., García J.A., Escames G., Ortiz F., López A., Doerrier C., García-Corzo L., López L.C., Reiter R.J., Acuña-Castroviejo D. Extrapineal melatonin: Analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 2012;52:217–227. doi: 10.1111/j.1600-079X.2011.00931.x. [PubMed] [CrossRef]
52.
Dauchy R.T., Xiang S., Mao L., Brimer S., Wren M.A., Yuan L., Anbalagan M., Hauch A., Frasch T., Rowan B.G., et al. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 2014;74:4099–4110. doi: 10.1158/0008-5472.CAN-13-3156. [PMC free article] [PubMed] [CrossRef]
53.
Xiang S., Dauchy R.T., Hauch A., Mao L., Yuan L., Wren M.A., Belancio V.P., Mondal D., Frasch T., Blask D.E., et al. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J. Pineal Res. 2015;59:60–69. doi: 10.1111/jpi.12239. [PMC free article] [PubMed] [CrossRef]
54.
Zou Z.W., Liu T., Li Y., Chen P., Peng X., Ma C., Zhang W.J., Li P.D. Melatonin suppresses thyroid cancer growth and overcomes radioresistance via inhibition of p65 phosphorylation and induction of ROS. Redox Biol. 2018;16:226–236. doi: 10.1016/j.redox.2018.02.025. [PMC free article] [PubMed] [CrossRef]
55.
Borin T.F., Arbab A.S., Gelaleti G.B., Ferreira L.C., Moschetta M.G., Jardim-Perassi B.V., Iskander A.S., Varma N.R., Shankar A., Coimbra V.B., et al. Melatonin decreases breast cancer metastasis by modulating Rho-associated kinase protein-1 expression. J. Pineal Res. 2016;60:3–15. doi: 10.1111/jpi.12270. [PMC free article] [PubMed] [CrossRef]
56.
Wu S.M., Lin W.Y., Shen C.C., Pan H.C., Keh-Bin W., Chen Y.C., Jan Y.J., Lai D.W., Tang S.C., Tien H.R., et al. Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPβ and NFκB cleavage. J. Pineal Res. 2016;60:142–154. doi: 10.1111/jpi.12295. [PubMed] [CrossRef]
57.
Lin Y.W., Lee L.M., Lee W.J., Chu C.Y., Tan P., Yang Y.C., Chen W.Y., Yang S.F., Hsiao M., Chien M.H. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-κB DNA-binding activity. J. Pineal Res. 2016;60:277–290. doi: 10.1111/jpi.12308. [PubMed] [CrossRef]
58.
Ma H., Wang Z., Hu L., Zhang S., Zhao C., Yang H., Wang H., Fang Z., Wu L., Chen X. The melatonin-MT1 receptor axis modulates tumor growth in PTEN-mutated gliomas. Biochem. Biophys. Res. Commun. 2018;496:1322–1330. doi: 10.1016/j.bbrc.2018.02.010. [PubMed] [CrossRef]
59.
Gonçalves Ndo N., Colombo J., Lopes J.R., Gelaleti G.B., Moschetta M.G., Sonehara N.M., Hellmén E., Zanon Cde F., Oliani S.M., Zuccari D.A. Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PLoS ONE. 2016;11:e0150407 doi: 10.1371/journal.pone.0150407. [PMC free article] [PubMed] [CrossRef]
60.
Zhou Q., Gui S., Zhou Q., Wang Y. Melatonin inhibits the migration of human lung adenocarcinoma A549 cell lines involving JNK/MAPK pathway. PLoS ONE. 2014;9:e101132 doi: 10.1371/journal.pone.0101132. [PMC free article] [PubMed] [CrossRef]
61.
Zhelev Z., Ivanova D., Bakalova R., Aoki I., Higashi T. Synergistic cytotoxicity of melatonin and new-generation anticancer drugs against leukemia lymphocytes but not normal lymphocytes. Anticancer Res. 2017;37:149–159. doi: 10.21873/anticanres.11300. [PubMed] [CrossRef]
62.
Gelaleti G.B., Borin T.F., Maschio-Signorini L.B., Moschetta M.G., Jardim-Perassi B.V., Calvinho G.B., Facchini M.C., Viloria-Petit A.M., de Campos Zuccari D.A.P. Efficacy of melatonin, IL-25 and siIL-17B in tumorigenesis-associated properties of breast cancer cell lines. Life Sci. 2017;183:98–109. doi: 10.1016/j.lfs.2017.06.013. [PubMed] [CrossRef]
63.
Kim E.J., Um S.J. SIRT1: Roles in aging and cancer. BMB Rep. 2008;41:751–756. doi: 10.5483/BMBRep.2008.41.11.751. [PubMed] [CrossRef]
64.
Mayo J.C., Sainz R.M., González Menéndez P., Cepas V., Tan D.X., Reiter R.J. Melatonin and sirtuins: A “not-so unexpected” relationship. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12391. [PubMed] [CrossRef]
65.
Mills E., Wu P., Seely D., Guyatt G. Melatonin in the treatment of cancer: A systematic review of randomized controlled trials and meta-analysis. J. Pineal Res. 2005;39:360–366. doi: 10.1111/j.1600-079X.2005.00258.x. [PubMed] [CrossRef]
66.
Lissoni P., Brivio F., Fumagalli L., Messina G., Vigoré L., Parolini D., Colciago M., Rovelli F. Neuroimmunomodulation in medical oncology: Application of psychoneuroimmunology with subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid tumors. Anticancer Res. 2008;28:1377–1381. [PubMed]
67.
Lissoni P. Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol. Biol. (Paris) 2007;55:201–204. doi: 10.1016/j.patbio.2006.12.025. [PubMed] [CrossRef]
68.
Lissoni P., Chilelli M., Villa S., Cerizza L., Tancini G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: A randomized trial. J. Pineal Res. 2003;35:12–15. doi: 10.1034/j.1600-079X.2003.00032.x. [PubMed] [CrossRef]
69.
Seely D., Wu P., Fritz H., Kennedy D.A., Tsui T., Seely A.J., Mills E. Melatonin as adjuvant cancer care with and without chemotherapy: A systematic review and meta-analysis of randomized trials. Integr. Cancer Ther. 2012;11:293–303. doi: 10.1177/1534735411425484. [PubMed] [CrossRef]
70.
Tomov B., Popov D., Tomova R., Vladov N., Den Otter W., Krastev Z. Therapeutic response of untreatable hepatocellular carcinoma after application of the immune modulators IL-2, BCG and melatonin. Anticancer Res. 2013;33:4531–4535. [PubMed]
71.
Onseng K., Johns N.P., Khuayjarernpanishk T., Subongkot S., Priprem A., Hurst C., Johns J. Beneficial effects of adjuvant melatonin in minimizing oral mucositis complications in head and neck cancer patients receiving concurrent chemoradiation. J. Altern. Complement. Med. 2017;23:957–963. doi: 10.1089/acm.2017.0081. [PubMed] [CrossRef]
72.
Lund Rasmussen C., Klee Olsen M., Thit Johnsen A., Petersen M.A., Lindholm H., Andersen L., Villadsen B., Groenvold M., Pedersen L. Effects of melatonin on physical fatigue and other symptoms in patients with advanced cancer receiving palliative care: A double-blind placebo-controlled crossover trial. Cancer. 2015;121:3727–3736. doi: 10.1002/cncr.29563. [PubMed] [CrossRef]
73.
Grant S.G., Melan M.A., Latimer J.J., Witt-Enderby P.A. Melatonin and breast cancer: Cellular mechanisms, clinical studies and future perspectives. Expert Rev. Mol. Med. 2009;11:e5. doi: 10.1017/S1462399409000982. [PMC free article] [PubMed] [CrossRef]
74.
Norsa A., Martino V. Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status. Cancer Biother. Radiopharm. 2006;21:68–73. doi: 10.1089/cbr.2006.21.68. [PubMed] [CrossRef]
75.
Di Bella G., Leci J., Ricchi A., Toscano R. Recurrent glioblastoma multiforme (grade IV—WHO 2007): A case of complete objective response—Concomitant administration of somatostatin/octreotide, retinoids, Vit E, Vit D3, Vit C, melatonin, D2 R agonists (Di Bella Method) Neuro Endocrinol. Lett. 2015;36:127–132. [PubMed]
76.
Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 2016;17:487–500. doi: 10.1038/nrg.2016.59. [PubMed] [CrossRef]
77.
Korkmaz A., Reiter R.J. Epigenetic regulation: A new research area for melatonin? J. Pineal Res. 2008;44:41–44. doi: 10.1111/j.1600-079X.2007.00509.x. [PubMed] [CrossRef]
78.
Yeh C.M., Lin C.W., Yang J.S., Yang W.E., Su S.C., Yang S.F. Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget. 2016;7:21952–21967. doi: 10.18632/oncotarget.8009. [PMC free article] [PubMed] [CrossRef]
79.
Wei J.Y., Li W.M., Zhou L.L., Lu Q.N., He W. Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J. Pineal Res. 2015;58:429–438. doi: 10.1111/jpi.12226. [PubMed] [CrossRef]
80.
Pan Y., Niles L.P. Epigenetic mechanisms of melatonin action in human SH-SY5Y neuroblastoma cells. Mol. Cell. Endocrinol. 2015;402:57–63. doi: 10.1016/j.mce.2015.01.003. [PubMed] [CrossRef]
81.
Yang C.Y., Lin C.K., Tsao C.H., Hsieh C.C., Lin G.J., Ma K.H., Shieh Y.S., Sytwu H.K., Chen Y.W. Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models. Oncotarget. 2017;8:33756–33769. doi: 10.18632/oncotarget.16808. [PMC free article] [PubMed] [CrossRef]
82.
Schwimmer H., Metzer A., Pilosof Y., Szyf M., Machnes Z.M., Fares F., Harel O., Haim A. Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol. Int. 2014;31:144–150. doi: 10.3109/07420528.2013.842925. [PubMed] [CrossRef]
83.
Martín V., Sanchez-Sanchez A.M., Herrera F., Gomez-Manzano C., Fueyo J., Alvarez-Vega M.A., Antolín I., Rodriguez C. Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br. J. Cancer. 2013;108:2005–2012. doi: 10.1038/bjc.2013.188. [PMC free article] [PubMed] [CrossRef]
84.
Mori F., Ferraiuolo M., Santoro R., Sacconi A., Goeman F., Pallocca M., Pulito C., Korita E., Fanciulli M., Muti P., et al. Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget. 2016;7:20532–20548. doi: 10.18632/oncotarget.7978. [PMC free article] [PubMed] [CrossRef]
85.
Sohn E.J., Won G., Lee J., Lee S., Kim S.H. Upregulation of miRNA3195 and miRNA374b mediates the anti-angiogenic properties of melatonin in hypoxic PC-3 prostate cancer cells. J. Cancer. 2015;6:19–28. doi: 10.7150/jca.9591. [PMC free article] [PubMed] [CrossRef]
86.
Zhu C., Huang Q., Zhu H. Melatonin inhibits the proliferation of gastric cancer cells through regulating the miR-16-5p- and Smad3 Pathway. DNA Cell Biol. 2018 doi: 10.1089/dna.2017.4040. [PubMed] [CrossRef]
87.
Gu J., Lu Z., Ji C., Chen Y., Liu Y., Lei Z., Wang L., Zhang H.T., Li X. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed. Pharmacother. 2017;93:969–975. doi: 10.1016/j.biopha.2017.07.010. [PubMed] [CrossRef]
88.
Poland G.A., Ovsyannikova I.G., Kennedy R.B., Lambert N.D., Kirkland J.L. A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr. Opin. Immunol. 2014;29:62–68. doi: 10.1016/j.coi.2014.04.005. [PMC free article] [PubMed] [CrossRef]
89.
Müller L., Pawelec G. As we age: Does slippage of quality control in the immune system lead to collateral damage? Ageing Res. Rev. 2015;23:116–123. doi: 10.1016/j.arr.2015.01.005. [PubMed] [CrossRef]
90.
Sharman E.H., Bondy S.C., Sharman K.Z., Lahiri D., Cotman C., Perreau V.M. Effects of melatonin and age on gene expression in mouse CNS using microarray analysis. Neurochem. Int. 2007;50:336–344. doi: 10.1016/j.neuint.2006.09.001. [PMC free article] [PubMed] [CrossRef]
91.
Yancik R., Ries L.A. Cancer in older persons: An international issue in an aging world. Semin. Oncol. 2004;31:128–136. doi: 10.1053/j.seminoncol.2003.12.024. [PubMed] [CrossRef]
92. Bondy S.C. Melatonin: Beneficial Aspects and Underlying Mechanisms. In: Correia L., Meyers G., editors. Melatonin: Medical Uses and Role in Health and Disease. Nova Press; Hauppauge, NY, USA: 2018. pp. 277–294.
93.
Sharman E.H., Sharman K.G., Bondy S.C. Melatonin causes gene expression in aged animals to respond to inflammatory stimuli in a manner differing from that of young animals. Curr. Aging Sci. 2008;1:152–158. doi: 10.2174/1874609810801030152. [PubMed] [CrossRef]
94.
Chovancova B., Hudecova S., Lencesova L., Babula P., Rezuchova I., Penesova A., Grman M., Moravcik R., Zeman M., Krizanova O. Melatonin-Induced Changes in Cytosolic Calcium Might be Responsible for Apoptosis Induction in Tumour Cells. Cell Physiol. Biochem. 2017;44:763–777. doi: 10.1159/000485290. [PubMed] [CrossRef]
95.
Bu L.J., Yu H.Q., Fan L.L., Li X.Q., Wang F., Liu J.T., Zhong F., Zhang C.J., Wei W., Wang H., et al. Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation. World J. Gastroenterol. 2017;23:986–998. doi: 10.3748/wjg.v23.i6.986. [PMC free article] [PubMed] [CrossRef]
96.
Lin S., Hoffmann K., Gao C., Petrulionis M., Herr I., Schemmer P. Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12398. [PubMed] [CrossRef]
97.
Gao Y., Xiao X., Zhang C., Yu W., Guo W., Zhang Z., Li Z., Feng X., Hao J., Zhang K., et al. Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J. Pineal Res. 2017;62 doi: 10.1111/jpi.12380. [PubMed] [CrossRef]
98.
Trivedi P.P., Jena G.B., Tikoo K.B., Kumar V. Melatonin modulated autophagy and Nrf2 signaling pathways in mice with colitis-associated colon carcinogenesis. Mol. Carcinog. 2016;55:255–267. doi: 10.1002/mc.22274. [PubMed] [CrossRef]
99.
Santofimia-Castaño P., Clea Ruy D., Garcia-Sanchez L., Jimenez-Blasco D., Fernandez-Bermejo M., Bolaños J.P., Salido G.M., Gonzalez A. Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells. Free Radic. Biol. Med. 2015;87:226–236. doi: 10.1016/j.freeradbiomed.2015.06.033. [PubMed] [CrossRef]
100.
Lahiri D.K., Ge Y.W., Sharman E.H., Bondy S.C. Age-related changes in serum melatonin in mice: Higher levels of combined melatonin and 6-hydroxymelatonin sulfate in the cerebral cortex than serum, heart, liver and kidney tissues. J. Pineal Res. 2004;36:217–223. doi: 10.1111/j.1600-079X.2004.00120.x. [PubMed] [CrossRef]
101.
Sánchez-Moreno C., Dorfman S.E., Lichtenstein A.H., Martin A. Dietary fat type affects vitamins C and E and biomarkers of oxidative status in peripheral and brain tissues of golden Syrian hamsters. J. Nutr. 2004;134:655–660. doi: 10.1093/jn/134.3.655. [PubMed] [CrossRef]
102.
Lewczuk B., Ziółkowska N., Prusik M., Przybylska-Gornowicz B. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ. Int. J. Mol. Sci. 2014;15:12604–12630. doi: 10.3390/ijms150712604. [PMC free article] [PubMed] [CrossRef]
103.
Janjetovic Z., Jarrett S.G., Lee E.F., Duprey C., Reiter R.J., Slominski A.T. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci. Rep. 2017;7:1274. doi: 10.1038/s41598-017-01305-2. [PMC free article] [PubMed] [CrossRef]
104.
Goradel N.H., Asghari M.H., Moloudizargari M., Negahdari B., Haghi-Aminjan H., Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol. Appl. Pharmacol. 2017;335:56–63. doi: 10.1016/j.taap.2017.09.022. [PubMed] [CrossRef]
105.
González A., González-González A., Alonso-González C., Menéndez-Menéndez J., Martínez-Campa C., Cos S. Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGF. Oncol. Rep. 2017;37:2433–2440. doi: 10.3892/or.2017.5446. [PubMed] [CrossRef]
106.
Maschio-Signorini L.B., Gelaleti G.B., Moschetta M.G., Borin T.F., Jardim-Perassi B.V., Lopes J.R., Lacerda J.Z., Roela R.A., Bordin N.A., Corrêa L.A., et al. Melatonin regulates angiogenic and inflammatory proteins in MDA-MB-231 cell line and in co-culture with cancer-associated fibroblasts. Anticancer Agents Med. Chem. 2016;16:1474–1484. doi: 10.2174/1871520616666160422105920. [PubMed] [CrossRef]
107.
Lin Z.Y., Chuang W.L. High therapeutic concentration of prazosin up-regulates angiogenic IL6 and CCL2 genes in hepatocellular carcinoma cells. Biomed. Pharmacother. 2012;66:583–586. doi: 10.1016/j.biopha.2011.09.006. [PubMed] [CrossRef]
108.
Osanai K., Kobayashi Y., Otsu M., Izawa T., Sakai K., Iwashita M. Ramelteon, a selective MT1/T2 receptor agonist, suppresses the proliferation and invasiveness of endometrial cancer cells. Hum. Cell. 2017;30:209–215. doi: 10.1007/s13577-017-0169-7. [PubMed] [CrossRef]
109.
Bourboulia D., Stetler-Stevenson W.G. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion. Semin. Cancer Biol. 2010;20:161–168. doi: 10.1016/j.semcancer.2010.05.002. [PMC free article] [PubMed] [CrossRef]
110.
Winczyk K., Fuss-Chmielewska J., Lawnicka H., Pawlikowski M., Karasek M. Luzindole but not 4-phenyl-2-propionamidotetralin (4P-PDOT) diminishes the inhibitory effect of melatonin on murine Colon 38 cancer growth in vitro. Neuro Endocrinol. Lett. 2009;30:657–662. [PubMed]
111.
Cutando A., López-Valverde A., De Vicente J., Gimenez J.L., Carcía I.A., De Diego R.G. Action of melatonin on squamous cell carcinoma and other tumors of the oral cavity. Oncol. Lett. 2014;7:923–926. doi: 10.3892/ol.2014.1813. [PMC free article] [PubMed] [CrossRef]
112.
Lopes J.R., Maschio L.B., Jardim-Perassi B.V., Moschetta M.G., Ferreira L.C., Martins G.R., Gelaleti G.B., De Campos Zuccari D.A. Evaluation of melatonin treatment in primary culture of canine mammary tumors. Oncol. Rep. 2015;33:311–339. doi: 10.3892/or.2014.3596. [PubMed] [CrossRef]
113.
Girgert R., Hanf V., Emons G., Gründker C. Membrane-bound melatonin receptor MT1 down-regulates estrogen responsive genes in breast cancer cells. J. Pineal Res. 2009;47:23–31. doi: 10.1111/j.1600-079X.2009.00684.x. [PubMed] [CrossRef]
114.
Hill S.M., Cheng C., Yuan L., Mao L., Jockers R., Dauchy B., Blask D.E. Age-related decline in melatonin and its MT1 receptor are associated with decreased sensitivity to melatonin and enhanced mammary tumor growth. Curr. Aging Sci. 2013;6:125–133. doi: 10.2174/1874609811306010016. [PubMed] [CrossRef]
115.
Suofu Y., Li W., Jean-Alphonse F.G., Jia J., Khattar N.K., Li J., Baranov S.V., Leronni D., Mihalik A.C., He Y., et al. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA. 2017;114:E7997–E8006. doi: 10.1073/pnas.1705768114. [PMC free article] [PubMed] [CrossRef]
116.
Pariente R., Bejarano I., Espino J., Rodríguez A.B., Pariente J.A. Participation of MT3 melatonin receptors in the synergistic effect of melatonin on cytotoxic and apoptotic actions evoked by chemotherapeutics. Cancer Chemother. Pharmacol. 2017;80:985–998. doi: 10.1007/s00280-017-3441-3. [PubMed] [CrossRef]
117.
Slominski R.M., Reiter R.J., Schlabritz-Loutsevitch N., Ostrom R.S., Slominski A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. Endocrinol. 2012;351:152–166. doi: 10.1016/j.mce.2012.01.004. [PMC free article] [PubMed] [CrossRef]
118.
Wang Z., Xiong F., Wang X., Qi Y., Yu H., Zhu Y., Zhu H. Nuclear receptor retinoid-related orphan receptor alpha promotes apoptosis but is reduced in human gastric cancer. Oncotarget. 2017;8:11105–11113. doi: 10.18632/oncotarget.14364. [PMC free article] [PubMed] [CrossRef]
119.
García J.A., Volt H., Venegas C., Doerrier C., Escames G., López L.C., Acuña-Castroviejo D. Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J. 2015;29:3863–3875. doi: 10.1096/fj.15-273656. [PubMed] [CrossRef]
120.
García-Navarro A., González-Puga C., Escames G., López L.C., López A., López-Cantarero M., Camacho E., Espinosa A., Gallo M.A., Acuña-Castroviejo D. Cellular mechanisms involved in the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J. Pineal Res. 2007;43:195–205. doi: 10.1111/j.1600-079X.2007.00463.x. [PubMed] [CrossRef]
121.
Wang R.X., Liu H., Xu L., Zhang H., Zhou R.X. Melatonin downregulates nuclear receptor RZR/RORγ expression causing growth-inhibitory and anti-angiogenesis activity in human gastric cancer cells in vitro and in vivo. Oncol. Lett. 2016;12:897–903. doi: 10.3892/ol.2016.4729. [PMC free article] [PubMed] [CrossRef]
122.
Liljevald M., Rehnberg M., Söderberg M., Ramnegård M., Börjesson J., Luciani D., Krutrök N., Brändén L., Johansson C., Xu X., et al. Retinoid-related orphan receptor γ (RORγ) adult induced knockout mice develop lymphoblastic lymphoma. Autoimmun. Rev. 2016;15:1062–1070. doi: 10.1016/j.autrev.2016.07.036. [PubMed] [CrossRef]
123.
Guo X.H., Li Y.H., Zhao Y.S., Zhai Y.Z., Zhang L.C. Anti-aging effects of melatonin on the myocardial mitochondria of rats and associated mechanisms. Mol. Med. Rep. 2017;15:403–410. doi: 10.3892/mmr.2016.6002. [PubMed] [CrossRef]
124.
Chuffa L.G., Alves M.S., Martinez M., Camargo I.C., Pinheiro P.F., Domeniconi R.F., Júnior L.A., Martinez F.E. Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocr. Relat. Cancer. 2016;23:65–76. doi: 10.1530/ERC-15-0463. [PubMed] [CrossRef]
Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)
Melatonin as an adjuvant for the treatment of tumors, can effectively improve the remission rate and overall survival rate of tumor patients, while reducing the incidence rate of neurotoxicity, thrombocytopenia, and asthenia during chemotherapy
Therapeutic strategies of melatonin in cancer patients: a systematic review and meta-analysis
Abstract
Background
Melatonin (MLT), a kind of neuroendocrine active substance, has been reported to function in the treatment of tumors. However, there remain controversies about the curative effect of MLT in tumors in clinical studies. This study investigates the efficacy of MLT on tumor therapeutic strategies by meta-analysis.
Methods
After searching several main literature databases, a total of 5,057 articles were obtained and screened by inclusion and exclusion criteria. The tumor remission rate, overall survival rate, and incidence of side effects were recorded and analyzed in the included study patients. Group analysis and sensitivity analysis were performed to examine the sources of heterogeneity in the pooled studies.
Results
The tumor remission rate in the MLT group was significantly higher than that in the control group (relative risk =2.25; 95% CI, 1.86–2.71; P<0.00001; I2=9%). Likewise, the MLT group had an overall survival rate of 28.24% (n=294/1,041), which was greatly increased compared with the control group (RR =2.07; 95% CI, 1.55–2.76; P<0.00001; I2=55%). And, MLT could significantly enhance the overall survival rate in non-small-cell lung cancer patients (RR =2.13; 95% CI, 1.41–3.24; P=0.0004; I2=0%) and various solid tumor patients (RR =2.31; 95% CI, 1.78–2.99; P<0.00001; I2=0%). It was further proved that MLT could effectively reduce the incidence of neurotoxicity (RR =0.30, 95% CI, 0.19–0.45; P<0.00001), thrombocytopenia (RR =0.23; 95% CI, 0.16–0.33; P<0.00001), and asthenia (RR =0.43, 95% CI, 0.38–0.49; P<0.00001) during chemotherapy.
Conclusion
MLT exerts positive influence in tumor therapeutic strategies, including improving tumor remission rate and overall survival rate, while reducing the incidence of chemotherapy side effects. Further large-scale randomized clinical trials (RCTs) are urgently required to verify therapeutic effects of MLT in tumors by various clinical research centers
Footnotes
Disclosure
The authors report no conflicts of interest in this work.
References
1.
Tuli HS, Kashyap D, Sharma AK, Sandhu SS. Molecular aspects of melatonin (MLT)-mediated therapeutic effects. Life Sci. 2015;135:147–157. [PubMed]
2.
Su SC, Hsieh MJ, Yang WE, Chung WH, Reiter RJ, Yang SF. Cancer metastasis: Mechanisms of inhibition by melatonin. J Pineal Res. 2017;62(1):e12370. [PubMed]
3.
Innominato PF, Lim AS, Palesh O, et al. The effect of melatonin on sleep and quality of life in patients with advanced breast cancer. Support Care Cancer. 2016;24(3):1097–1105. [PubMed]
4.
Acuña-Castroviejo D, Rahim I, Acuña-Fernández C, et al. Melatonin, clock genes and mitochondria in sepsis. Cell Mol Life Sci. 2017;74(21):3965–3987. [PubMed]
5.
Schernhammer ES, Hankinson SE. Urinary melatonin levels and breast cancer risk. J Natl Cancer Inst. 2005;97(14):1084–1087. [PubMed]
6.
Karasek M, Kowalski AJ, Suzin J, Zylinska K, Swietoslawski J. Serum melatonin circadian profiles in women suffering from cervical cancer. J Pineal Res. 2005;39(1):73–76. [PubMed]
7.
Zhao M, Wan J, Zeng K, et al. The Reduction in Circulating Melatonin Level May Contribute to the Pathogenesis of Ovarian Cancer: A Retrospective Study. J Cancer. 2016;7(7):831–836. [PMC free article] [PubMed]
8.
Turgut M, Uyanikgil Y, Baka M, et al. Pinealectomy exaggerates and melatonin treatment suppresses neuroma formation of transected sciatic nerve in rats: gross morphological, histological and stereological analysis. J Pineal Res. 2005;38(4):284–291. [PubMed]
9.
Bartsch H, Buchberger A, Franz H, et al. Effect of melatonin and pineal extracts on human ovarian and mammary tumor cells in a chemosensitivity assay. Life Sci. 2000;67(24):2953–2960. [PubMed]
10.
Reiter RJ, Rosales-Corral SA, Tan DX, et al. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci. 2017;18(4):E843. [PMC free article] [PubMed]
11.
Asghari MH, Moloudizargari M, Ghobadi E, Fallah M, Abdollahi M. Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer. Life Sci. 2017;185:38–45. [PubMed]
12.
González-González A, Mediavilla MD, Sánchez-Barceló EJ. Melatonin: A Molecule for Reducing Breast Cancer Risk. Molecules. 2018;23(2):E336. [PMC free article] [PubMed]
13.
González A, González-González A, Alonso-González C, Menéndez-Menéndez J, Martínez-Campa C, Cos S. Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGF. Oncol Rep. 2017;37(4):2433–2440. [PubMed]
14.
Zonta YR, Martinez M, Camargo IC, et al. Melatonin Reduces Angiogenesis in Serous Papillary Ovarian Carcinoma of Ethanol-Preferring Rats. Int J Mol Sci. 2017;18(4):E763. [PMC free article] [PubMed]
15.
González A, Alvarez-García V, Martínez-Campa C, et al. In vivo inhibition of the estrogen sulfatase enzyme and growth of DMBA-induced mammary tumors by melatonin. Curr Cancer Drug Targets. 2010;10(3):279–286. [PubMed]
16.
Plaimee P, Khamphio M, Weerapreeyakul N, Barusrux S, Johns NP. Immunomodulatory effect of melatonin in SK-LU-1 human lung adenocarcinoma cells co-cultured with peripheral blood mononuclear cells. Cell Prolif. 2014;47(5):406–415. [PubMed]
17.
Kim TH, Cho SG. Melatonin-induced KiSS1 expression inhibits triple-negative breast cancer cell invasiveness. Oncol Lett. 2017;14(2):2511–2516. [PMC free article] [PubMed]
18.
Akbarzadeh M, Movassaghpour AA, Ghanbari H, et al. The potential therapeutic effect of melatonin on human ovarian cancer by inhibition of invasion and migration of cancer stem cells. Sci Rep. 2017;7(1):17062. [PMC free article] [PubMed]
19.
Sainz RM, Mayo JC, Tan DX, León J, Manchester L, Reiter RJ. Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate. 2005;63(1):29–43. [PubMed]
20.
Suwanjang W, Abramov AY, Charngkaew K, Govitrapong P, Chetsawang B. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells. Neurochem Int. 2016;97:34–41. [PubMed]
21.
Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opin Investig Drugs. 2012;21(6):819–831. [PubMed]
22.
Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M. Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci. 2018;196:143–155. [PubMed]
23.
Wang T, Liu B, Guan Y, et al. Melatonin inhibits the proliferation of breast cancer cells induced by bisphenol A via targeting estrogen receptor-related pathways. Thorac Cancer. 2018;9(3):368–375. [PMC free article] [PubMed]
24.
Proietti S, Catizone A, Masiello MG, et al. Increase in motility and invasiveness of MCF7 cancer cells induced by nicotine is abolished by melatonin through inhibition of ERK phosphorylation. J Pineal Res. 2018;64(4):e12467. [PubMed]
25.
Chuffa LGA, Reiter RJ, Lupi LA. Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis. 2017;38(10):945–952. [PubMed]
26.
Wang YM, Jin BZ, Ai F, et al. The efficacy and safety of melatonin in concurrent chemotherapy or radiotherapy for solid tumors: a meta-analysis of randomized controlled trials. Cancer Chemother Pharmacol. 2012;69(5):1213–1220. [PubMed]
27.
Seely D, Wu P, Fritz H, et al. Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr Cancer Ther. 2012;11(4):293–303. [PubMed]
28.
Sookprasert A, Johns NP, Phunmanee A, et al. Melatonin in patients with cancer receiving chemotherapy: a randomized, double-blind, placebo-controlled trial. Anticancer Res. 2014;34(12):7327–7337. [PubMed]
29.
Harris JD, Quatman CE, Manring MM, Siston RA, Flanigan DC. How to write a systematic review. Am J Sports Med. 2014;42(11):2761–2768. [PubMed]
30.
Jadad AR, Moore RA, Carroll D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12. [PubMed]
31.
Kubatka P, Zubor P, Busselberg D, et al. Melatonin and breast cancer: Evidences from preclinical and human studies. Crit Rev Oncol Hematol. 2018;122:133–143. [PubMed]
32.
Yasueda A, Urushima H, Ito T. Efficacy and Interaction of Antioxidant Supplements as Adjuvant Therapy in Cancer Treatment: A Systematic Review. Integr Cancer Ther. 2016;15(1):17–39. [PMC free article] [PubMed]
33.
Saeidnia S, Abdollahi M. Antioxidants: friends or foe in prevention or treatment of cancer: the debate of the century. Toxicol Appl Pharmacol. 2013;271(1):49–63. [PubMed]
34.
Lissoni P, Barni S, Ardizzoia A, et al. Randomized study with the pineal hormone melatonin versus supportive care alone in advanced nonsmall cell lung cancer resistant to a first-line chemotherapy containing cisplatin. Oncology. 1992;49(5):336–339. [PubMed]
35.
Lissoni P, Brivio F, Fumagalli L, et al. Neuroimmunomodulation in medical oncology: application of psychoneuroimmunology with subcutaneous low-dose IL-2 and the pineal hormone melatonin in patients with untreatable metastatic solid tumors. Anticancer Res. 2008;28(2B):1377–1381. [PubMed]
36.
Lissoni P. Biochemotherapy with immunomodulating pineal hormones other than melatonin: 5-methoxytryptamine as a new oncostatic pineal agent. Pathol Biol (Paris) 2007;55(3–4):198–200. [PubMed]
37.
Lissoni P. Biochemotherapy with standard chemotherapies plus the pineal hormone melatonin in the treatment of advanced solid neoplasms. Pathol Biol. 2007;55(3–4):201–204. [PubMed]
38.
Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G. Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J Pineal Res. 2003;35(1):12–15. [PubMed]
39.
Cerea G, Vaghi M, Ardizzoia A, et al. Biomodulation of cancer chemotherapy for metastatic colorectal cancer: a randomized study of weekly low-dose irinotecan alone versus irinotecan plus the oncostatic pineal hormone melatonin in metastatic colorectal cancer patients progressing on 5-fluorouracil-containing combinations. Anticancer Res. 2003;23(2C):1951–1954. [PubMed]
40.
Lissoni P. Is there a role for melatonin in supportive care? Support Care Cancer. 2002;10(2):110–116. [PubMed]
41. Yan JJ, Song F, Wang K, Wu MC. Co-antitumor effect and hepatic protection of melatonin on advanced primary liver cancer treated by transcatheter arterial chemoembolization. Acad J Sec Mil Med Univ. 2001;22(9):858–861.
42.
Lissoni P, Mandalà M, Brivio F. Abrogation of the negative influence of opioids on IL-2 immunotherapy of renal cell cancer by melatonin. Eur Urol. 2000;38(1):115–118. [PubMed]
43.
Lissoni P, Barni S, Mandalà M, et al. Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur J Cancer. 1999;35(12):1688–1692. [PubMed]
44.
Lissoni P, Tancini G, Barni S, et al. Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer. 1997;5(2):126–129. [PubMed]
45.
Lissoni P, Paolorossi F, Ardizzoia A, et al. A randomized study of chemotherapy with cisplatin plus etoposide versus chemoendocrine therapy with cisplatin, etoposide and the pineal hormone melatonin as a first-line treatment of advanced non-small cell lung cancer patients in a poor clinical state. J Pineal Res. 1997;23(1):15–19. [PubMed]
46. Yan JJ, Song F, Wu MC. Pineal hormone melatonin for treating patients with unresectable advanced hepatocellular cancer. TUMOR (Shanghai) 1997;17(6):452–454.
47.
Lissoni P, Meregalli S, Nosetto L, et al. Increased survival time in brain glioblastomas by a radioneuroendocrine strategy with radiotherapy plus melatonin compared to radiotherapy alone. Oncology. 1996;53(1):43–46. [PubMed]
48.
Lissoni P, Brivio O, Brivio F, et al. Adjuvant therapy with the pineal hormone melatonin in patients with lymph node relapse due to malignant melanoma. J Pineal Res. 1996;21(4):239–242. [PubMed]
49.
Lissoni P, Ardizzoia A, Barni S, et al. A randomized study of tamoxifen alone versus tamoxifen plus melatonin in estrogen receptor-negative heavily pretreated metastatic breast-cancer patients. Oncol Rep. 1995;2(5):871–873. [PubMed]
50.
Lissoni P, Barni S, Tancini G, et al. A randomised study with subcutaneous low-dose interleukin 2 alone vs interleukin 2 plus the pineal neurohormone melatonin in advanced solid neoplasms other than renal cancer and melanoma. Br J Cancer. 1994;69(1):196–199. [PMC free article] [PubMed]
51.
Lissoni P, Barni S, Ardizzoia A, Tancini G, Conti A, Maestroni G. A randomized study with the pineal hormone melatonin versus supportive care alone in patients with brain metastases due to solid neoplasms. Cancer. 1994;73(3):699–701. [PubMed]
52.
Vernieri C, Nichetti F, Raimondi A, et al. Diet and supplements in cancer prevention and treatment: Clinical evidences and future perspectives. Crit Rev Oncol Hematol. 2018;123:57–73. [PubMed]
Articles from OncoTargets and therapy are provided here courtesy of Dove Press
melatonine, preventie, immuuntherapeutisch middel, arts-bioloog drs. Engelbert Valstar, literatuurlijsten
Gerelateerde artikelen
Plaats een reactie ...
Reageer op "Melatonine geeft zowel als aanvullend middel bij een behandeling van kanker als preventief om kanker te voorkomen uitstekende resultaten blijkt uit 2 grote reviewstudies"