En zie ook onder preventie
7 augustus 2024: Bron: The Lancet
Wanneer de Amerikaanse bevolking 30 procent minder bewerkt vlees en minder rood vlees zou gaan eten dan zou dat binnen een tijdbestek van 10 jaar ook tot 30 procent minder gevallen van diabetes type 2, hart- en vaatziekten, darmkanker en overlijden aan alle oorzaken geven.
Dat stellen onderzoekers van de universiteit van Edinburgh die aan de hand van de gegevens van 8665 volwassenen een simulatieonderzoek deden naar het eten van bewerkt vlees en onbewerkt rood vlees in hun voedingspatroon en die werden vergeleken en gesimuleerd wat dat voor effect zou hebben op de totale bevolking van 240 miljoen volwassen Amerikanen gerekend over tien jaar follow-up.
Uit het studierapport:
- De onderzoekers schatten dat een vermindering van 30 procent in de inname van bewerkt vlees alleen al zou kunnen resulteren in 352.900; 92.500; en 53.300 minder gevallen van diabetes type 2, hart- en vaatziekten en darmkanker, respectievelijk, en 16.700 minder sterfgevallen door alle oorzaken gedurende een periode van tien jaar.
- Alleen al een vermindering van de inname van onbewerkt rood vlees met 30 procent zou kunnen leiden tot 732.600; 291.500; en 32.200 minder gevallen van diabetes type 2, hart- en vaatziekten en darmkanker, respectievelijk, en 46.100 minder sterfgevallen door alle oorzaken.
- Een vermindering van 30 procent in de inname van zowel bewerkt vlees als onbewerkt rood vlees zou kunnen resulteren in 1.073.400; 382.400; en 84.400 minder gevallen van diabetes type 2, hart- en vaatziekten en darmkanker, respectievelijk, en 62.200 minder sterfgevallen door alle oorzaken gedurende een periode van tien jaar.
En in deze grafiek uit het studieverslag gekopieerd. En in de referentielijst.
Table 1Input parameters
Justification | Reference | |
---|---|---|
Baseline risk of type 2 diabetes | Provided age-specific risk prediction with three US cohorts: Coronary Artery Risk Development in Young Adults (participants aged 18–40 years), Atherosclerosis Risk in Communities (participants aged 45–64 years), and the Cardiovascular Health Study (participants aged 65 years or older). We used the simple model as all required variables were available in NHANES. AUROCs ranged from 0·72 (95% CI 0·69–0·76) for participants aged 25–30 years to 0·79 (0·76–0·83) for participants aged 35–40 years. | Alva et al |
Baseline risk of cardiovascular disease | Provided sex-specific risk prediction with two US cohorts: the Framingham Heart Study and the Framingham Offspring Study. C statistic, analogous to AUROC, ranged from 0·763 (95% CI 0·746–0·780) in men to 0·793 (0·772–0·814) in women. All required variables were available in NHANES. | D'Agostino et al |
Baseline risk of colorectal cancer | Provided sex-specific risk prediction with one US cohort: the Multi-Ethnic Cohort Study. C statistic was 0·681 (95% CI 0·669–0·694) in men and 0·679 (0·665–0·692) in women. All required variables, except family history of colorectal cancer, were available in NHANES. | Wells et al |
Association between processed meat and unprocessed red meat intake and type 2 diabetes | Meta-analysis that provided dose–response curves separately for processed meat and unprocessed red meat from 25 cohort studies; 17 were included in the estimate for processed meat and unprocessed red meat. Each additional 100 g per day of red meat was associated with a relative risk of 1·31 (95% CI 1·19–1·45) of type 2 diabetes. Each additional 50 g per day of processed meat was associated with a relative risk of 1·46 (1·26–1·69) of type 2 diabetes. These estimates were similar to those from Gu et al, who combined three US cohorts (ie, Nurses' Health Study, Nurses' Health Study II, and Health Professionals Follow-up Study); every one serving per day increment in red meat was associated with a hazard ratio of 1·28 (1·24–1·31) increased risk of type 2 diabetes. Every one serving per day increment of processed red meat was associated with a hazard ratio of 1·46 (1·40–1·53) increased risk of type 2 diabetes. The estimates were also similar to a meta-analysis by Shi et al of 18 effect estimates from 16 studies, which found that each 50 g per day increment of processed red meat was associated with a hazard ratio of 1·44 (1·40–1·53) increased risk of type 2 diabetes. | Yang et al; Gu et al; Shi et al |
Association between processed meat and unprocessed red meat intake and cardiovascular disease | Combined estimate from six US cohorts: Atherosclerosis Risk in Communities, Coronary Artery Risk Development in Young Adults, Cardiovascular Health Study, Framingham Heart Study, Framingham Offspring Study, and Multi-Ethnic Study of Atherosclerosis. For processed meat intake, hazard ratio for increased risk of cardiovascular disease for two vs zero servings per week was 1·07 (95% CI 1·04–1·11). For unprocessed red meat, hazard ratio for increased risk of cardiovascular disease for two vs zero servings per week was 1·03 (1·01–1·06). One serving was assumed to be equivalent to 30 g of processed meat in our micro-Simulation of the Health Impacts of Food Transformations. These estimates were similar to the meta-analysis by Shi et al of 17 effect estimates from 14 studies, which found that each 50 g per day increment of processed red meat was associated with a hazard ratio of 1·26 (1·18–1·35) increased risk of cardiovascular disease. | Zhong et al; Shi et al |
Association between processed meat and unprocessed red meat intake and colorectal cancer | Meta-analysis that provided dose–response relative risk estimates for processed meat and red meat. Pooled relative risk for 50 g per day of processed meat intake was 1·22 (95% CI 1·12–1·33) on the basis of eight cohort studies, whereas pooled relative risk for 100 g per day of red meat was 1·16 (1·05–1·29) on the basis of nine cohort studies. These findings were consistent with Bouvard et al, who found that each 50 g per day increment of processed meat increased the risk of colorectal cancer by a relative risk of 1·18 (1·10–1·28). | Zhao et al; International Agency for Research on Cancer |
Mortality among people with type 2 diabetes | Registry-based study of the Swedish National Diabetes Register that provided age-specific hazard ratios of all-cause mortality among people with type 2 diabetes. As this study was based outside the USA, we used hazard ratios from the simple model that were unadjusted for country of origin and education. | Tancredi et al |
Mortality among people with cardiovascular disease | Age-adjusted and sex-adjusted all-cause mortality hazard ratios for people with a history of stroke and myocardial infarction from the Emerging Risk Factors collaboration. Mortality hazard ratio for people with a history of stroke was 2·1 (95% CI 2·0–2·2) and for people with a history of myocardial infarction was 2·0 (1·9–2·2). We used a sampling distribution based on the mean of these hazard ratios. | Di Angelantonio et al |
Mortality among people with colorectal cancer | Fixed age-specific and sex-specific mortality probabilities based on colorectal cancer mortality statistics from the USA in 2017 and estimates of the prevalence of colorectal cancer in corresponding age and sex groups from the 2017–18 NHANES. | Siegel et al |
AUROC=area under the receiver-operating curve. NHANES=US National Health and Nutrition Examination Survey.
En zie ook deze grafiek uitgesplitst naar de vier genoemde ziektebeelden:
Figure 3Absolute percentages of prevented occurrences of each disease by annual household income, age, sex, and ethnicity after a 10-year 30% reduction in processed meat intake
Het volledige studierapport is gratis in te zien. Hier het abstract van de studie gepubliceerd in The Lancet Planetary Earth:
Estimated effects of reductions in processed meat consumption and unprocessed red meat consumption on occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the USA: a microsimulation study
Summary
Background
High consumption of processed meat and unprocessed red meat is associated with increased risk of multiple chronic diseases, although there is substantial uncertainty regarding the relationship for unprocessed red meat. We developed a microsimulation model to estimate how reductions in processed meat and unprocessed red meat consumption could affect rates of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality in the US adult population.
Methods
We used data from two versions of the US National Health and Nutrition Examination Survey, one conducted during 2015–16 and one conducted during 2017–18, to create a simulated US population. The starting cohort was restricted to respondents aged 18 years or older who were not pregnant and had 2 days of dietary-recall data. First, we used previously developed risk models to estimate the baseline disease risk of an individual. For type 2 diabetes we used a logistic-regression model and for cardiovascular disease and colorectal cancer we used Cox proportional-hazard models. We then multiplied baseline risk by relative risk associated with individual processed meat and unprocessed red meat consumption. Prevented occurrences of type 2 diabetes, cardiovascular disease, colorectal cancer, and mortality were computed by taking the difference between the incidence in the baseline and intervention scenarios. All stages were repeated for ten iterations to correspond to a 10-year time span. Scenarios were reductions of 5%, 10%, 30%, 50%, 75%, and 100% in grams consumed of processed meat, unprocessed red meat, or both. Each scenario was repeated 50 times for uncertainty analysis.
Findings
The total number of individual respondents included in the simulated population was 8665, representing 242 021 876 US adults. 4493 (51·9%) of 8665 individuals were female and 4172 (48·1%) were male; mean age was 49·54 years (SD 18·38). At baseline, weighted mean daily consumption of processed meat was 29·1 g, with a 30% reduction being 8·7 g per day, and of unprocessed red meat was 46·7 g, with a 30% reduction being 14·0 g per day. We estimated that a 30% reduction in processed meat intake alone could lead to 352 900 (95% uncertainty interval 345 500–359 900) fewer occurrences of type 2 diabetes, 92 500 (85 600–99 900) fewer occurrences of cardiovascular disease, 53 300 (51 400–55 000) fewer occurrences of colorectal cancer, and 16 700 (15 300–17 700) fewer all-cause deaths during the 10-year period. A 30% reduction in unprocessed red meat intake alone could lead to 732 600 (725 700–740 400) fewer occurrences of type 2 diabetes, 291 500 (283 900–298 800) fewer occurrences of cardiovascular disease, 32 200 (31 500–32 700) fewer occurrences of colorectal cancer, and 46 100 (45 300–47 200) fewer all-cause deaths during the 10-year period. A 30% reduction in both processed meat and unprocessed red meat intake could lead to 1 073 400 (1 060 100–1 084 700) fewer occurrences of type 2 diabetes, 382 400 (372 100–391 000) fewer occurrences of cardiovascular disease, 84 400 (82 100–86 200) fewer occurrences of colorectal cancer, and 62 200 (60 600–64 400) fewer all-cause deaths during the 10-year period.
Interpretation
Reductions in processed meat consumption could reduce the burden of some chronic diseases in the USA. However, more research is needed to increase certainty in the estimated effects of reducing unprocessed red meat consumption.
Funding
The Wellcome Trust.
Contributors
LST and LMJ acquired funding. JK and LMJ accessed and verified the underlying data and wrote the original draft of the paper. JK developed the simulation model and cleaned the underlying data, with inputs from PA and LMJ. PA and LST reviewed and edited the paper. All authors conceptualised the study, had full access to all the data in the study, and had final responsibility for the decision to submit for publication.
Data sharing
All code to run the micro-Simulation of the Health Impacts of Food Transformations is available at https://github.com/jsfken/mSHIFT. De-identified US National Health and Nutrition Examination Survey data are available at https://wwwn.cdc.gov/nchs/nhanes/Default.aspx.
Declaration of interests
We declare no competing interests.
Acknowledgments
This study was funded by the Wellcome Trust (grant 216042/Z/19/Z). We thank Victor Zhong for useful discussions and providing relevant data and Brian Wells for providing details of the colorectal cancer risk equations. We also thank Andrew Freedman, Jennifer Marratt, Thomas Imperiale, Jane Driver, Michael Goodman, Mohammed Ali, Edward Gregg, Sarah Frank, Anna Grummon, Benjamin Allaire, and Anthony Wood for useful discussions.
Supplementary Material
-
Supplementary appendix
References
- 1.
Leading causes of death.https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htmDate: 2022Date accessed: June 12, 2024
- 2.
Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis.Circulation. 2010; 121: 2271-2283
- 3.
Associations of processed meat, unprocessed red meat, poultry, or fish intake with incident cardiovascular disease and all-cause mortality.JAMA Intern Med. 2020; 180: 503-512
- 4.
Food groups and risk of coronary heart disease, stroke and heart failure: a systematic review and dose—response meta-analysis of prospective studies.Crit Rev Food Sci Nutr. 2019; 59: 1071-1090
- 5.
Red meat consumption, cardiovascular diseases, and diabetes: a systematic review and meta-analysis.Eur Heart J. 2023; 44: 2626-2635
- 6.
Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis.Am J Clin Nutr. 2011; 94: 1088-1096
- 7.
Meat and fish intake and type 2 diabetes: dose—response meta-analysis of prospective cohort studies.Diabetes Metab. 2020; 46: 345-352
- 8.
Red meat intake and risk of type 2 diabetes in a prospective cohort study of United States females and males.Am J Clin Nutr. 2023; 118: 1153-1163
- 9.
IARC monographs on the evaluation of carcinogenic risks to humans volume 114—red meat and processed meat.https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Red-Meat-And-Processed-Meat-2018Date: 2018Date accessed: June 17, 2024
- 10.
Red and processed meat consumption and colorectal cancer risk: a systematic review and meta-analysis.Oncotarget. 2017; 8: 83306-83314
- 11.
Dietary intake of heme iron and risk of cardiovascular disease: a dose—response meta-analysis of prospective cohort studies.Nutr Metab Cardiovasc Dis. 2015; 25: 24-35
- 12.
Meat consumption, diabetes, and its complications.Curr Diab Rep. 2013; 13: 298-306
- 13.
A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer.Nutrients. 2019; 112673
- 14.
Dietary iron intake, body iron stores, and the risk of type 2 diabetes: a systematic review and meta-analysis.BMC Med. 2012; 10: 119
- 15.
Dietary heterocyclic amine intake and colorectal adenoma risk: a systematic review and meta-analysis.Cancer Epidemiol Biomarkers Prev. 2019; 28: 99-109
- 16.
Trends in processed meat, unprocessed red meat, poultry, and fish consumption in the United States, 1999–2016.J Acad Nutr Diet. 2019; 119: 1085-1098
- 17.
A Mediterranean-style eating pattern with lean, unprocessed red meat has cardiometabolic benefits for adults who are overweight or obese in a randomized, crossover, controlled feeding trial.Am J Clin Nutr. 2018; 108: 33-40
- 18.
Substituting lean beef for carbohydrate in a healthy dietary pattern does not adversely affect the cardiometabolic risk factor profile in men and women at risk for type 2 diabetes.J Nutr. 2020; 150: 1824-1833
- 19.
Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors.Circulation. 2019; 139: 1828-1845
- 20.
Health effects associated with consumption of unprocessed red meat: a burden of proof study.Nat Med. 2022; 28: 2075-2082
- 21.
Effect of lower versus higher red meat intake on cardiometabolic and cancer outcomes: a systematic review of randomized trials.Ann Intern Med. 2019; 171: 721-731
- 22.
Low-fat dietary pattern intervention and health-related quality of life: the Women's Health Initiative randomized controlled dietary modification trial.J Acad Nutr Diet. 2016; 116: 259-271
- 23.
Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study.Circulation. 1999; 99: 779-785
- 24.
Controversial red meat study adds correction over undisclosed industry funding.BMJ. 2020; 368: m111
- 25.
Microsimulation modeling in food policy: a scoping review of methodological aspects.Adv Nutr. 2022; 13: 621-632
- 26.
A social cost–benefit analysis of meat taxation and a fruit and vegetables subsidy for a healthy and sustainable food consumption in the Netherlands.BMC Public Health. 2020; 20: 643
- 27.
Effect of meat price on race and gender disparities in obesity, mortality and quality of life in the US: a model-based analysis.PLoS One. 2017; 12e0168710
- 28.
Cost effectiveness of nutrition policies on processed meat: implications for cancer burden in the US.Am J Prev Med. 2019; 57: e143-e152
- 29.
Simulation modeling for the economic evaluation of population-based dietary policies: a systematic scoping review.Adv Nutr. 2021; 12: 1957-1995
- 30.
Modeling health gains and cost savings for ten dietary salt reduction targets.Nutr J. 2016; 15: 44
- 31.
Modelling the health impact of environmentally sustainable dietary scenarios in the UK.Eur J Clin Nutr. 2012; 66: 710-715
- 32.
Communicating risk regarding food consumption: the case of processed meat.Nutrients. 2019; 11: 400
- 33.
A healthier US diet could reduce greenhouse gas emissions from both the food and health care systems.Clim Change. 2017; 142: 199-212
- 34.
NHANES questionnaires, datasets, and related documentation.https://wwwn.cdc.gov/nchs/nhanes/default.aspxDate accessed: June 11, 2024
- 35.
Food reporting patterns in the USDA automated multiple-pass method.Procedia Food Sci. 2013; 2: 145-156
- 36.
FPED overview.https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/fped-overview/Date: 2023Date accessed: December 12, 2023
- 37.
General cardiovascular risk profile for use in primary care: the Framingham Heart Study.Circulation. 2008; 117: 743-753
- 38.
Identifying risk for type 2 diabetes in different age cohorts: does one size fit all?.BMJ Open Diabetes Res Care. 2017; 5e000447
- 39.
Colorectal cancer predicted risk online (CRC-PRO) calculator using data from the multi-ethnic cohort study.J Am Board Fam Med. 2014; 27: 42-55
- 40.
Carcinogenicity of consumption of red and processed meat.Lancet Oncol. 2015; 16: 1599-1600
- 41.
Excess mortality among persons with type 2 diabetes.N Engl J Med. 2015; 373: 1720-1732
- 42.
Association of cardiometabolic multimorbidity with mortality.JAMA. 2015; 314: 52-60
- 43.
Colorectal cancer statistics, 2017.CA Cancer J Clin. 2017; 67: 177-193
- 44.
United States life tables, 2018.Natl Vital Stat Rep. 2020; 69: 1-45
- 45.
Deaths: final data for 2017.Natl Vital Stat Rep. 2019; 68: 1-77
- 46.
Impact of taxes and warning labels on red meat purchases among US consumers: a randomized controlled trial.PLoS Med. 2023; 20e1004284
- 47.
Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems.Lancet. 2019; 393: 447-492
- 48.
Sixth Carbon Budget.
- 49.
In Mexico, evidence of sustained consumer response two years after implementing a sugar-sweetened beverage tax.Health Aff (Millwood). 2017; 36: 564-571
- 50.
Red and processed meat in the context of health and the environment: many shades of red and green: information brief.https://www.who.int/publications-detail-redirect/9789240074828Date: 2023Date accessed: June 12, 2024
- 51.
Cost-effectiveness of financial incentives and disincentives for improving food purchases and health through the US Supplemental Nutrition Assistance Program (SNAP): a microsimulation study.PLoS Med. 2018; 15e1002661
- 52.
Meet the meatless: demand for new generation plant-based meat alternatives.Appl Econ Perspect Policy. 2023; 45: 4-21
- 53.
A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood-Meat Eating Alternative Trial (SWAP-MEAT).Am J Clin Nutr. 2020; 112: 1188-1199
- 54.
Assessing the effects of alternative plant-based meats v animal meats on biomarkers of inflammation: a secondary analysis of the SWAP-MEAT randomized crossover trial.J Nutr Sci. 2022; 11: e82
- 55.
Iron deficiency in the United States: limitations in guidelines, data, and monitoring of disparities.Am J Public Health. 2022; 112: S826-S835
- 56.
Decreased iron intake parallels rising iron deficiency anemia and related mortality rates in the US population.J Nutr. 2021; 151: 1947-1955
- 57.
Impact of consuming an environmentally protective diet on micronutrients: a systematic literature review.Am J Clin Nutr. 2024; 119: 927-948
- 58.
Dietary Guidelines for Americans, 2020–2025 and online materials.https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdfDate: 2020Date accessed: June 12, 2024
- 59.
Evaluation of health and economic effects of United States school meal standards consistent with the 2020-2025 dietary guidelines for Americans.Am J Clin Nutr. 2023; 118: 605-613
Article info
Publication history
Published: July 2024
Identification
Copyright
© 2024 The Author(s). Published by Elsevier Ltd.
User license
Creative Commons Attribution (CC BY 4.0) |ScienceDirect
Access this article on ScienceDirectGerelateerde artikelen
- Minder bewerkt vlees en puur rood vlees eten zou 30 procent minder gevallen van diabetes type 2, hart- en vaatziekten, darmkanker en sterfgevallen door alle oorzaken veroorzaken
- Vlees en bewerkt vlees, hoe weinig ook, vergroot risico op darmkanker. Veel vezels en volkoren producten vermindert juist het risico op darmkanker blijkt uit groot Engels bevolkingsonderzoek
- Moerman revisited: hoogmoed in volle bloei draagt aren van verderf als vrucht. Arts-bioloog drs. Engelbert Valstar legt de hypocrisie van het KWF bloot in vlijmscherpe analyse over voeding bij kanker
- Elke dag rood vlees geeft 42 procent grotere kans op darmkanker dan 1x per week of geen vlees eten blijkt uit groot bevolkingsonderzoek in Engeland
- WHO plaatst eten van bewerkt vlees in risicogroep 1 voor kans op krijgen van kanker, rood vlees zelf in categorie 2 op basis van grote reviewstudie
- Rood vlees eten vergroot aanzienlijk het risico op het ontwikkelen van zwangerschapsdiabetes mellitus (GDM). Noten, peulvruchten en vis verminderen juist het risico op GDM)
- Meisjes die in hun adolescentietijd veel rood vlees eten hebben een significant vergroot risico op het krijgen van borstkanker voor de overgang, aldus grote langjarige studie onder 40.000 verpleegsters.
- Rood vlees en bewerkt vlees geeft groter risico op vormen van nierkanker, bljkt uit groot bevolkingsonderzoek
- Rood vlees en bewerkt vlees geeft beduidend hoger risico op darmkanker blijkt uit aantal nieuwe studies. Een gezonde leefstijl en gevarieerde voeding kan darmkanker voorkomen
- Rood vlees wel degelijk risico voor krijgen van kanker, ondanks geruststellende woorden van Voorlichtingsbureau voor Vlees en het KWF in de media daarover, blijkt uit studieanalyse en weerwoord van arts- bioloog drs. E. Valstar .
- Vlees en vleesproducten zijn een risico voor het krijgen van kanker. Een aantal studies en artikelen bij elkaar gezet over risico van te veel (rood) vlees eten
Plaats een reactie ...
Reageer op "Minder bewerkt vlees en puur rood vlees eten zou 30 procent minder gevallen van diabetes type 2, hart- en vaatziekten, darmkanker en sterfgevallen door alle oorzaken veroorzaken"