25 november 2025: zie ook dit artikel: https://kanker-actueel.nl/NL/dcvax-l-verbetert-overall-overleving-en-vermindert-kans-op-recidief-bij-patienten-met-nieuw-gediagnosticeerd-glioblastoom-en-recidiverend-glioblastoom-in-vergelijking-met-beste-standaardzorg.html

25 november 2025: The Lancet d.d. 24 november 2025.

Uit een fase 1/2 studie blijkt dat wanneer met Ultra Sound - geluidsgolven de bloed-hersenbarriëre wat wijder wordt gemaakt patiënten met een hersentumor van het type Glioblastoom de mediane overleving wat langer wordt. De Ultra Sound werd toegevoegd aan Temozolomide - Temodal. De onderzoekers pasten Ultra Sound - geluidsgolven toe bij 34 patiënten met een Glioblastoom

De patiënten kregen zes behandelingen met de Ultra Sound - geluidsgolven en de mediane overleving gerekend vanaf de diagnose, dus niet vanaf moment dat de  Ultra Sound - geluidsgolven werd toegepast, nog 31 maanden vergeleken met 19 maanden, dus ongeveer een jaar langer dan een controlegroep van 185 vergelijkbare patiënten die alleen de Temozolomide - Temodal hadden gehad. Na een follow-up van 44 maanden leefden nog 14 patiënten van de 34 patiënten die aan de studie meededen.

Het is wel beetje vreemd dat al in 2011 wij een bericht over gebruik van Ultra Sound - geluidsgolven bij hersentumoren hebben geplaatst en dat nu 14 jaar later er pas resultaten uit een fase I/II studie worden gepresenteerd. 

En uit een citaat uit een artikel van de Volkskrant blijkt deze studie niet gerandomiseerd uit te zijn gevoerd:

"De patiënten in de controlegroep hadden weliswaar dezelfde kenmerken als de patiënten die werden behandeld, maar het blijft mogelijk dat artsen vooral patiënten hebben behandeld met iets betere vooruitzichten. Dat kan de resultaten hebben beïnvloed. Bij een vervolgstudie zal wel worden geloot, schrijven de onderzoekers."

In hetzelfde artikel schrijft de Volkskrant dat het UMC Utrecht kinderen en jongvolwassenen met hersenstamkanker met Ultra Sound - geluidsgolven gaat behandelen. 

Hier een videopresentatie van de  Ultra Sound - geluidsgolven:

Related Videos

November 24, 2025

Microbubble-Enhanced Transcranial Focused Ultrasound

Microbubble-Enhanced Transcranial Focused Ultrasound precisely …



Het volledige studierapport is onder bepaalde voorwaarden gratis te lezen of te downloaden.

Summary

Background

Brain-infiltrating tumour cells from high-grade glioma remain shielded from drug treatments by the blood–brain barrier, leading to inevitable recurrence. Microbubble-enhanced transcranial focused ultrasound (MB-FUS) enables controlled blood–brain barrier opening (BBBO), permitting localised drug delivery. We aimed to assess safety and feasibility of MB-FUS plus standard-of-care chemotherapy for individuals with high-grade glioma.

Methods

BT008NA was an open-label, single-arm, phase 1/2 trial conducted at five sites in the USA and Canada (part of the ReFOCUSED Consortium). Key eligibility criteria were participants with newly diagnosed high-grade glioma (glioblastoma as per WHO 2016 classification), aged 18–80 years, with normal organ function, a baseline Karnofsky Performance Status score of 70 or higher, who had received maximal safe resection and 6-week chemoradiotherapy and were to start standard-of-care monthly adjuvant temozolomide chemotherapy (150 mg/m2 of body surface area). MRI-guided, 220 kHz transcranial MB-FUS treatments were delivered in periresectional (tumour-infiltrative) regions, on any of the first 3 days of a 28-day temozolomide cycle, for up to six cycles. Primary outcomes were safety (adverse events) and feasibility (BBBO: new contrast enhancement on post-procedure T1-weighted MRI). Protocol-prespecified secondary outcomes were overall survival and progression-free survival. Analyses were done in the intention-to-treat population. This trial is registered at ClinicalTrials.govNCT03551249 (USA) and NCT03616860 (Canada), and is closed to enrolment.

Findings

Between Oct 16, 2018, and March 9, 2022, we enrolled 34 participants, all evaluable for prespecified primary and secondary endpoints, with a mean age of 51·5 years (SD 13·0) and median follow-up 44·5 months (95% CI 34·9–57·3). By self-reporting, 18 (53%) participants were female and 16 (47%) male, 28 (82%) were White, and 34 (100%) were non-Hispanic. 176 adverse events were captured: 54 (31%) chemotherapy-related, 10 (6%) disease-related, 87 (49%) related to undergoing MB-FUS (40 [46%] grade 1, 46 [53%] grade 2, and one [1%] grade 3), and 25 (14%) unrelated. Two (1%) of the adverse events were grade 5 (disease-related deaths), three (2%) grade 4 (temozolomide-related haematological abnormalities), and eight (5%) grade 3 (three [2%] temozolomide-related, one [1%] MB-FUS-related, three [2%] disease-related, and one [1%] unrelated); these occurred across seven (21%) of 34 participants. No treatment-related deaths occurred during the trial. BBBO was visualised in all treatments. Median overall survival was 31·3 months (95% CI 21·1–not reached) and median progression-free survival was 13·5 months (9·9–26·9) with patient-specific disease courses found concordant with trajectories of MB-FUS-enriched plasma cell-free DNA.

Interpretation

MB-FUS plus temozolomide is a safe combinatorial therapeutic approach for individuals with high-grade glioma, with the potential to improve survival and enable non-invasive plasma biomarker-based disease surveillance (sono-liquid biopsy), warranting randomised controlled trials.

Funding

National Institutes of Health and Insightec.

References

1.
Weller, M ∙ Van Den Bent, M ∙ Preusser, M ∙ et al.
EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood
Nat Rev Clin Oncol. 2021; 18:170-186
2.
Arvanitis, CD ∙ Ferraro, GB ∙ Jain, RK
The blood–brain barrier and blood–tumour barrier in brain tumours and metastases
Nat Rev Cancer. 2020; 20:26-41
3.
McDannold, N ∙ Arvanitis, CD ∙ Vykhodtseva, N ∙ et al.
Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques
Cancer Res. 2012; 72:3652-3663
4.
Meng, Y ∙ Reilly, RM ∙ Pezo, RC ∙ et al.
MR-guided focused ultrasound enhances delivery of trastuzumab to HER2-positive brain metastases
Sci Transl Med. 2021; 13, eabj4011
5.
Meng, Y ∙ Pople, CB ∙ Suppiah, S ∙ et al.
MR-guided focused ultrasound liquid biopsy enriches circulating biomarkers in patients with brain tumors
Neuro Oncol. 2021; 23:1789-1797
6.
Yuan, J ∙ Xu, L ∙ Chien, CY ∙ et al.
First-in-human prospective trial of sonobiopsy in high-grade glioma patients using neuronavigation-guided focused ultrasound
NPJ Precis Oncol. 2023; 7:92
7.
Ozair, A ∙ Moiz, B ∙ Anastasiadis, P ∙ et al.
Applications of transcranial focused ultrasound for primary brain tumors
Neurooncol Adv. 2025; 7, vdaf156
8.
Anastasiadis, P ∙ Gandhi, D ∙ Guo, Y ∙ et al.
Localized blood–brain barrier opening in infiltrating gliomas with MRI-guided acoustic emissions-controlled focused ultrasound
Proc Natl Acad Sci USA. 2021; 118, e2103280118
9.
Mainprize, T ∙ Lipsman, N ∙ Huang, Y ∙ et al.
Blood–brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study
Sci Rep. 2019; 9:321
10.
Park, SH ∙ Kim, MJ ∙ Jung, HH ∙ et al.
Safety and feasibility of multiple blood–brain barrier disruptions for the treatment of glioblastoma in patients undergoing standard adjuvant chemotherapy
J Neurosurg. 2020; 134:475-483
11.
Chen, KT ∙ Chai, WY ∙ Lin, YJ ∙ et al.
Neuronavigation-guided focused ultrasound for transcranial blood–brain barrier opening and immunostimulation in brain tumors
Sci Adv. 2021; 7, eabd0772
12.
Sonabend, AM ∙ Gould, A ∙ Amidei, C ∙ et al.
Repeated blood–brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial
Lancet Oncol. 2023; 24:509-522
13.
Bilbro, NA ∙ Hirst, A ∙ Paez, A ∙ et al.
The IDEAL Reporting Guidelines: A Delphi Consensus Statement Stage specific recommendations for reporting the evaluation of surgical innovation
Ann Surg. 2021; 273:82-85
14.
Woodworth, GF ∙ Anastasiadis, P ∙ Ozair, A ∙ et al.
Acoustic emissions dose and spatial control of blood–brain barrier opening with focused ultrasound
Device. 2025; 3, 100894
15.
Douville, C ∙ Cohen, JD ∙ Ptak, J ∙ et al.
Assessing aneuploidy with repetitive element sequencing
Proc Natl Acad Sci USA. 2020; 117:4858-4863
16.
Cristiano, S ∙ Leal, A ∙ Phallen, J ∙ et al.
Genome-wide cell-free DNA fragmentation in patients with cancer
Nature. 2019; 570:385-389
17.
US Food and Drug Administration
Guidance document: considerations for the design and conduct of externally controlled trials for drug and biological products
18.
Rahman, R ∙ Ventz, S ∙ McDunn, J ∙ et al.
Leveraging external data in the design and analysis of clinical trials in neuro-oncology
Lancet Oncol. 2021; 22:e456-e465
19.
Iacus, SM ∙ King, G ∙ Porro, G
Causal inference without balance checking: coarsened exact matching
Polit Anal. 2012; 20:1-24
20.
Ho, DE ∙ Imai, K ∙ King, G ∙ et al.
Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference
Polit Anal. 2007; 15:199-236
21.
VanderWeele, TJ ∙ Ding, P
Sensitivity analysis in observational research: introducing the E-value
Ann Intern Med. 2017; 167:268-274
22.
Stupp, R ∙ Mason, WP ∙ van den Bent, MJ ∙ et al.
Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma
N Engl J Med. 2005; 352:987-996
23.
Carpentier, A ∙ Stupp, R ∙ Sonabend, AM ∙ et al.
Repeated blood–brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: a phase I/II clinical trial
Nat Commun. 2024; 15, 1650
24.
Arrieta, VA ∙ Gould, A ∙ Kim, KS ∙ et al.
Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas
Nat Commun. 2024; 15, 4698
25.
Idbaih, A ∙ Canney, M ∙ Belin, L ∙ et al.
Safety and feasibility of repeated and transient blood–brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma
Clin Cancer Res. 2019; 25:3793-3801
26.
Carpentier, A ∙ Canney, M ∙ Vignot, A ∙ et al.
Clinical trial of blood–brain barrier disruption by pulsed ultrasound
Sci Transl Med. 2016; 8, 343re2
27.
Portnow, J ∙ Badie, B ∙ Chen, M ∙ et al.
The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation
Clin Cancer Res. 2009; 15:7092-7098
28.
Alnahhas, I ∙ Alsawas, M ∙ Rayi, A ∙ et al.
Characterizing benefit from temozolomide in MGMT promoter unmethylated and methylated glioblastoma: a systematic review and meta-analysis
Neurooncol Adv. 2020; 2, vdaa082
29.
Mouliere, F ∙ Smith, CG ∙ Heider, K ∙ et al.
Fragmentation patterns and personalized sequencing of cell-free DNA in urine and plasma of glioma patients
EMBO Mol Med. 2021; 13, e12881
30.
Bettegowda, C ∙ Sausen, M ∙ Leary, RJ ∙ et al.
Detection of circulating tumor DNA in early- and late-stage human malignancies
Sci Transl Med. 2014; 6, 224ra24
31.
Wei, KC ∙ Chu, PC ∙ Wang, HY ∙ et al.
Focused ultrasound-induced blood–brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study
PloS One. 2013; 8, e58995
32.
Liu, HL ∙ Huang, CY ∙ Chen, JY ∙ et al.
Pharmacodynamic and therapeutic investigation of focused ultrasound-induced blood–brain barrier opening for enhanced temozolomide delivery in glioma treatment
PLoS One. 2014; 9, e114311

Plaats een reactie ...

Reageer op "Ultra Sound: Geluidsgolven die bloed-hersenbarriëre openen geven langere overleving bij patiënten met hersentumoren van het type Glioblastoom"


Gerelateerde artikelen