7 juli 2025: Bron: Nutrition & Metabolism volume 22, Article number: 27 (2025)

Rogge blijkt een uitstekend voedingsproduct om de bloedsuikerwaarden - insulinewaarde stabiel te houden, ook direct na het eten. Mede door het hoge vezelgehalte is rogge ook een prima voedingsproduct dat bv. ook de darmflora - darmmicrobiota gunstig beïnvloed.

Uit een meta-analyse van 31 studies blijkt dus dat rogge de bloedsuikerwaarden - insulinewaarde gunstig beïnvloedt. Met als belangrijkste conclusie: Overall, results of this meta-analysis suggest that rye consumption may reduce insulin postprandial AUC without affecting glucose markers. Is vertaalt in het Nederlands: Over het geheel genomen suggereren de resultaten van deze meta-analyse dat roggeconsumptie de postprandiale AUC van insuline kan verlagen zonder dat dit invloed heeft op glucosemarkers. 

Het volledige studieverslag is gratis in te zien, klik daarvoor op de titel van het abstract:

Effect of rye consumption on markers of glycemic control: evidence on the “rye factor”: a systematic review and meta-analysis of randomized controlled trials

Abstract

  • Rye, as a source of dietary fiber, may have beneficial effects in glycemic control. In the current meta-analysis, we collected randomized controlled trials (RCTs) that examined the effect of rye consumption on glucose and insulin markers. PubMed, Scopus, and Web of Science databases were searched to find the RCTs. Random-effects model was used to calculate mean difference and 95% confidence intervals.
  • Thirty-one RCTs, including 922 participants, passed the screening and eligibility stages and were included in the meta-analysis. Rye consumption did not have a significant effect on glucose indices including fasting, postprandial, and area under the curve (AUC).
  • Subgroup analysis did not make a difference in the results, except that there was trends for increased postprandial glucose in two subgroups: individuals aged > 50 y (weighted mean difference (WMD) = 0.93, 95% CI: -0.03, 1.90 mmol/l, P = 0.058) and short intervention lengths (≤ 270 min) (WMD = 0.48, 95% CI: -0.03, 0.99 mmol/l, P = 0.066), and a trend for decreased AUC for glucose in rye fiber doses ≥ 12 g (WMD = -0.22, 95% CI: -0.46, 0.01 mmol/l, P = 0.059).
  • Rye consumption did not show an effect on fasting and postprandial insulin but indicated a reduction in AUC for insulin (WMD = -0.48, 95% CI: -0.66, -0.30 mU/l, P < 0.001).
  • Overall, results of this meta-analysis suggest that rye consumption may reduce insulin postprandial AUC without affecting glucose markers. Prospective cohorts are needed to determine the clinical importance of the finding.

Data availability

The datasets generated and/or analyzed during this meta-analysis are available from the corresponding author upon reasonable request.

References

  1. Yahaya JJ, Doya IF, Morgan ED, Ngaiza AI, Bintabara D. Poor glycemic control and associated factors among patients with type 2 diabetes mellitus: a cross-sectional study. Sci Rep. 2023;13(1):9673. https://doi.org/10.1038/s41598-023-36675-3.

    Article CAS PubMed PubMed Central Google Scholar 

  2. Monnier L, Colette C. Postprandial and basal hyperglycaemia in type 2 diabetes: Contributions to overall glucose exposure and diabetic complications. Diabetes Metab. 2015;41:6S9–15. https://doi.org/10.1016/S1262-3636(16)30003-9.

    Article CAS PubMed Google Scholar 

  3. Yacoub T. Impact of improving postprandial glycemic control with intensifying insulin therapy in type 2 diabetes. Postgrad Med. 2017;129(8):791–800. https://doi.org/10.1080/00325481.2017.1389601.

    Article PubMed Google Scholar 

  4. Sharma K, Akre S, Chakole S, Wanjari MB. Stress-induced diabetes: a review. Cureus. 2022;14(9):e29142. https://doi.org/10.7759/cureus.29142.

    Article PubMed PubMed Central Google Scholar 

  5. Che M, Zhou Q, Lin W, Yang Y, Sun M, Liu X, Liu H, Zhang C. Healthy lifestyle score and glycemic control in type 2 diabetes mellitus patients: a city-wide survey in China. Healthcare. 2023;11(14):2037. https://doi.org/10.3390/healthcare11142037.

    Article PubMed PubMed Central Google Scholar 

  6. Bitew ZW, Alemu A, Jember DA, Tadesse E, Getaneh FB, Sied A, Weldeyonnes M. Prevalence of glycemic control and factors associated with poor glycemic control: a systematic review and meta-analysis. Inquiry. 2023;60:469580231155716. https://doi.org/10.1177/00469580231155716.

    Article PubMed Google Scholar 

  7. Tateyama Y, Techasrivichien T, Musumari PM, Macwan’gi M, Zulu R, Dube C, Suguimoto SP, Ono-Kihara M, Kihara M. Prevalence and correlates of elevated HbA1c in rural Zambia: A population-based cross-sectional study. Eur J Pub Health. 2020. https://doi.org/10.1093/eurpub/ckaa165.593.

    Article Google Scholar 

  8. de Cássia R, Fernandes L, Teló GH, Cureau FV, Barufaldi LA, Maria CC, Kuschnir BD, Schaan MS, Bloch KV. Prevalence of high HbA1c levels in Brazilian adolescents: The Study of Cardiovascular Risk in Adolescents. Diabetes Res Clin Pract. 2017;125:1–9. https://doi.org/10.1016/j.diabres.2017.01.003.

    Article CAS Google Scholar 

  9. Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8(1):152. https://doi.org/10.1038/s41392-023-01400-z.

    Article CAS PubMed PubMed Central Google Scholar 

  10. Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci. 2022;9:1002710. https://doi.org/10.3389/fmolb.2022.1002710.

    Article CAS PubMed PubMed Central Google Scholar 

  11. Gerontiti E, Shalit A, Stefanaki K, Kazakou P, Karagiannakis DS, Peppa M, Psaltopoulou T, Paschou SA. The role of low glycemic index and load diets in medical nutrition therapy for type 2 diabetes: an update. Hormones. 2024. https://doi.org/10.1007/s42000-024-00566-7.

    Article PubMed Google Scholar 

  12. Benhalima K, Standl E, Mathieu C. The importance of glycemic control: how low should we go with HbA1c? Start early, go safe, go low. J Diabetes Complicat. 2011;25(3):202–7. https://doi.org/10.1016/j.jdiacomp.2010.03.002.

    Article Google Scholar 

  13. Iversen KN, Jonsson K, Landberg R. The effect of rye-based foods on postprandial plasma insulin concentration: the rye factor. Front Nutr. 2022;9:868938. https://doi.org/10.3389/fnut.2022.868938.

    Article CAS PubMed PubMed Central Google Scholar 

  14. Nirmala Prasadi VP, Joye IJ. Dietary fibre from whole grains and their benefits on metabolic health. Nutrients. 2020;12(10):3045. https://doi.org/10.3390/nu12103045.

    Article CAS Google Scholar 

  15. Hopping BN, Erber E, Grandinetti A, Verheus M, Kolonel LN, Maskarinec G. Dietary fiber, magnesium, and glycemic load alter risk of type 2 diabetes in a multiethnic cohort in Hawaii. J Nutr. 2010;140(1):68–74. https://doi.org/10.3945/jn.109.112441.

    Article CAS PubMed PubMed Central Google Scholar 

  16. Repin N, Kay BA, Cui SW, Wright AJ, Duncan AM, Douglas GH. Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food Funct. 2017;8(6):2142–54. https://doi.org/10.1039/c7fo00331e.

    Article CAS PubMed Google Scholar 

  17. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA. Preferred reporting items for systematic review and meta-analysis protocols. Syst Rev. 2015;4:1.

    Article PubMed PubMed Central Google Scholar 

  18. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898.

    Article PubMed Google Scholar 

  19. Deeks JJ & Higgins JPT. Chapter DGA 10 Analysing data and undertaking meta-analyses, in: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al (Eds) Cochrane Handbook for Systematic Reviews of Interventions version Cochrane (2023)

  20. Giacco R, Lappi J, Costabile G, Kolehmainen M, Schwab U, Landberg R, Uusitupa M, Poutanen K, Pacini G, Rivellese AA, Riccardi G, Mykkänen H. Effects of rye and whole wheat versus refined cereal foods on metabolic risk factors: a randomised controlled two-centre intervention study. Clin Nutr. 2013;32(6):941–9. https://doi.org/10.1016/j.clnu.2013.01.016.

    Article CAS PubMed Google Scholar 

  21. Iversen KN, Carlsson F, Andersson A, Michaëlsson K, Langton M, Risérus U, Hellström PM, Landberg R. A hypocaloric diet rich in high fiber rye foods causes greater reduction in body weight and body fat than a diet rich in refined wheat: A parallel randomized controlled trial in adults with overweight and obesity (the RyeWeight study). Clin Nutr ESPEN. 2021;45:155–69. https://doi.org/10.1016/j.clnesp.2021.07.007.

    Article PubMed Google Scholar 

  22. Juntunen KS, Laaksonen DE, Poutanen KS, Niskanen LK, Mykkänen HM. High-fiber rye bread and insulin secretion and sensitivity in healthy postmenopausal women. Am J Clin Nutr. 2003;77(2):385–91. https://doi.org/10.1093/ajcn/77.2.385.

    Article CAS PubMed Google Scholar 

  23. Kallio P, Kolehmainen M, Laaksonen DE, Kekäläinen J, Salopuro T, Sivenius K, Pulkkinen L, Mykkänen HM, Niskanen L, Uusitupa M, Poutanen KS. Dietary carbohydrate modification induces alterations in gene expression in abdominal subcutaneous adipose tissue in persons with the metabolic syndrome: the FUNGENUT Study. Am J Clin Nutr. 2007;85(5):1417–27. https://doi.org/10.1093/ajcn/85.5.1417.

    Article CAS PubMed Google Scholar 

  24. Landberg R, Andersson SO, Zhang JX, Johansson JE, Stenman UH, Adlercreutz H, Kamal-Eldin A, Aman P, Hallmans G. Rye whole grain and bran intake compared with refined wheat decreases urinary C-peptide, plasma insulin, and prostate specific antigen in men with prostate cancer. J Nutr. 2010;140(12):2180–6. https://doi.org/10.3945/jn.110.127688.

    Article CAS PubMed Google Scholar 

  25. Liu Y, Xue K, Iversen KN, Qu Z, Dong C, Jin T, Hallmans G, Åman P, Johansson A, He G, Landberg R. The effects of fermented rye products on gut microbiota and their association with metabolic factors in Chinese adults - an explorative study. Food Funct. 2021;12(19):9141–50. https://doi.org/10.1039/d1fo01423d.

    Article CAS PubMed Google Scholar 

  26. McIntosh GH, Noakes M, Royle PJ, Foster PR. Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr. 2003;77(4):967–74. https://doi.org/10.1093/ajcn/77.4.967.

    Article CAS PubMed Google Scholar 

  27. Sandberg JC, Björck IME, Nilsson AC. Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutr J. 2017;16(1):25. https://doi.org/10.1186/s12937-017-0246-5.

    Article CAS PubMed PubMed Central Google Scholar 

  28. Bondia-Pons I, Nordlund E, Mattila I, Katina K, Aura AM, Kolehmainen M, Orešič M, Mykkänen H, Poutanen K. Postprandial differences in the plasma metabolome of healthy Finnish subjects after intake of a sourdough fermented endosperm rye bread versus white wheat bread. Nutr J. 2011;10:116. https://doi.org/10.1186/1475-2891-10-116.

    Article CAS PubMed PubMed Central Google Scholar 

  29. Hartvigsen ML, Gregersen S, Lærke HN, Holst JJ, Bach Knudsen KE, Hermansen K. Effects of concentrated arabinoxylan and β-glucan compared with refined wheat and whole grain rye on glucose and appetite in subjects with the metabolic syndrome: a randomized study. Eur J Clin Nutr. 2014;68(1):84–90. https://doi.org/10.1038/ejcn.2013.236.

    Article CAS PubMed Google Scholar 

  30. Heinonen MV, Karhunen LJ, Chabot ED, Toppinen LK, Juntunen KS, Laaksonen DE, Siloaho M, Liukkonen KH, Herzig KH, Niskanen LK, Mykkänen HM. Plasma ghrelin levels after two high-carbohydrate meals producing different insulin responses in patients with metabolic syndrome. Regul Pept. 2007;138(2–3):118–25. https://doi.org/10.1016/j.regpep.2006.08.011.

    Article CAS PubMed Google Scholar 

  31. Kallio P, Kolehmainen M, Laaksonen DE, Pulkkinen L, Atalay M, Mykkänen H, Uusitupa M, Poutanen K, Niskanen L. Inflammation markers are modulated by responses to diets differing in postprandial insulin responses in individuals with the metabolic syndrome. Am J Clin Nutr. 2008;87(5):1497–503. https://doi.org/10.1093/ajcn/87.5.1497.

    Article CAS PubMed Google Scholar 

  32. Lappi J, Aura AM, Katina K, Nordlund E, Kolehmainen M, Mykkänen H, Poutanen K. Comparison of postprandial phenolic acid excretions and glucose responses after ingestion of breads with bioprocessed or native rye bran. Food Funct. 2013;4(6):972–81. https://doi.org/10.1039/c3fo60078e.

    Article CAS PubMed Google Scholar 

  33. Lundin EA, Zhang JX, Lairon D, Tidehag P, Aman P, Adlercreutz H, Hallmans G. Effects of meal frequency and high-fibre rye-bread diet on glucose and lipid metabolism and ileal excretion of energy and sterols in ileostomy subjects. Eur J Clin Nutr. 2004;58(10):1410–9. https://doi.org/10.1038/sj.ejcn.1601985.

    Article CAS PubMed Google Scholar 

  34. Östman JR, Müllner E, Eriksson J, Kristinsson H, Gustafsson J, Witthöft C, Bergsten P, Moazzami AA. Glucose appearance rate rather than the blood glucose concentrations explains differences in postprandial insulin responses between wholemeal rye and refined wheat breads-results from a cross-over meal study. Mol Nutr Food Res. 2019;63(7):e1800959. https://doi.org/10.1002/mnfr.201800959.

    Article CAS PubMed Google Scholar 

  35. Rosén LA, Silva LO, Andersson UK, Holm C, Ostman EM, Björck IM. Endosperm and whole grain rye breads are characterized by low post-prandial insulin response and a beneficial blood glucose profile. Nutr J. 2009;8:42. https://doi.org/10.1186/1475-2891-8-42.

    Article CAS PubMed PubMed Central Google Scholar 

  36. Zamaratskaia G, Johansson DP, Junqueira MA, Deissler L, Langton M, Hellström PM, Landberg R. Impact of sourdough fermentation on appetite and postprandial metabolic responses - a randomised cross-over trial with whole grain rye crispbread. Br J Nutr. 2017;118(9):686–97. https://doi.org/10.1017/S000711451700263X.

    Article CAS PubMed Google Scholar 

  37. Elliott RM, Morgan LM, Tredger JA, Wright J. The effects of cereal source and processing on the metabolic responses to commercially available breakfast cereals and breads. Int J Food Sci Nutr. 1994;45:211–22.

    Article Google Scholar 

  38. Hartvigsen ML, Lærke HN, Overgaard A, Holst JJ, Bach Knudsen KE, Hermansen K. Postprandial effects of test meals including concentrated arabinoxylan and whole grain rye in subjects with the metabolic syndrome: a randomised study. Eur J Clin Nutr. 2014;68(5):567–74. https://doi.org/10.1038/ejcn.2014.25.

    Article CAS PubMed Google Scholar 

  39. Hlebowicz J, Jönsson JM, Lindstedt S, Björgell O, Darwich G, Almér LO. Effect of commercial rye whole-meal bread on postprandial blood glucose and gastric emptying in healthy subjects. Nutr J. 2009;8:26. https://doi.org/10.1186/1475-2891-8-26.

    Article CAS PubMed PubMed Central Google Scholar 

  40. Johansson DP, Lee I, Risérus U, Langton M, Landberg R. Effects of unfermented and fermented whole grain rye crisp breads served as part of a standardized breakfast, on appetite and postprandial glucose and insulin responses: a randomized cross-over trial. PLoS ONE. 2015;10(3):e0122241. https://doi.org/10.1371/journal.pone.0122241.

    Article CAS PubMed PubMed Central Google Scholar 

  41. Juntunen KS, Laaksonen DE, Autio K, Niskanen LK, Holst JJ, Savolainen KE, Liukkonen KH, Poutanen KS, Mykkänen HM. Structural differences between rye and wheat breads but not total fiber content may explain the lower postprandial insulin response to rye bread. Am J Clin Nutr. 2003;78(5):957–64. https://doi.org/10.1093/ajcn/78.5.957.

    Article CAS PubMed Google Scholar 

  42. Lee I, Shi L, Webb DL, Hellström PM, Risérus U, Landberg R. Effects of whole-grain rye porridge with added inulin and wheat gluten on appetite, gut fermentation and postprandial glucose metabolism: a randomised, cross-over, breakfast study. Br J Nutr. 2016;116(12):2139–49. https://doi.org/10.1017/S0007114516004153.

    Article CAS PubMed Google Scholar 

  43. Leinonen K, Liukkonen K, Poutanen K, Uusitupa M, Mykkänen H. Rye bread decreases postprandial insulin response but does not alter glucose response in healthy Finnish subjects. Eur J Clin Nutr. 1999;53(4):262–7. https://doi.org/10.1038/sj.ejcn.1600716.

    Article CAS PubMed Google Scholar 

  44. Nilsson AC, Ostman EM, Granfeldt Y, Björck IM. Effect of cereal test breakfasts differing in glycemic index and content of indigestible carbohydrates on daylong glucose tolerance in healthy subjects. Am J Clin Nutr. 2008;87(3):645–54. https://doi.org/10.1093/ajcn/87.3.645.

    Article CAS PubMed Google Scholar 

  45. Rosén LA, Östman EM, Shewry PR, Ward JL, Andersson AA, Piironen V, Lampi AM, Rakszegi M, Bedö Z, Björck IM. Postprandial glycemia, insulinemia, and satiety responses in healthy subjects after whole grain rye bread made from different rye varieties 1. J Agric Food Chem. 2011;59(22):12139–48. https://doi.org/10.1021/jf2019825.

    Article CAS PubMed Google Scholar 

  46. Törrönen R, Kolehmainen M, Sarkkinen E, Poutanen K, Mykkänen H, Niskanen L. Berries reduce postprandial insulin responses to wheat and rye breads in healthy women. J Nutr. 2013;143(4):430–6. https://doi.org/10.3945/jn.112.169771.

    Article CAS PubMed Google Scholar 

  47. Basu A, Alman AC, Snell-Bergeon JK. Dietary fiber intake and glycemic control: coronary artery calcification in type 1 diabetes (CACTI) study. Nutr J. 2019;18(1):23. https://doi.org/10.1186/s12937-019-0449-z.

    Article PubMed PubMed Central Google Scholar 

  48. Musa-Veloso K, Poon T, Harkness LS, O’Shea M, Chu Y. The effects of whole-grain compared with refined wheat, rice, and rye on the postprandial blood glucose response: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr. 2018;108(4):759–74. https://doi.org/10.1093/ajcn/nqy112.

    Article PubMed Google Scholar 

  49. Frølich W, Aman P, Tetens I. Whole grain foods and health - a Scandinavian perspective. Food Nutr Res. 2013. https://doi.org/10.3402/fnr.v57i0.18503.

    Article PubMed PubMed Central Google Scholar 

  50. Jonsson K, Andersson R, Bach Knudsen KE, Hallmans G, Hanhineva K, Katina K, Kolehmainen M, Kyrø C, Langton M, Nordlund E, Lærke HN, Olsen A, Poutanen K, Tjønneland A, Landberg R. Rye and health - Where do we stand and where do we go? Trends Food Sci Technol. 2018;79:78–87. https://doi.org/10.1016/j.tifs.2018.06.018.

    Article CAS Google Scholar 

  51. Akhlaghi M, Kamali M, Dastsouz F, Sadeghi F, Amanat S. Increased waist-to-height ratio may contribute to age-related increase in cardiovascular risk factors. Int J Prev Med. 2016;27(7):68. https://doi.org/10.4103/2008-7802.181328.

    Article Google Scholar 

  52. Fang P, She Y, Zhao J, Yan J, Yu X, Jin Y, Wei Q, Zhang Z, Shang W. Emerging roles of kisspeptin/galanin in age-related metabolic disease. Mech Ageing Dev. 2021;199:111571. https://doi.org/10.1016/j.mad.2021.111571.

    Article CAS PubMed Google Scholar 

  53. Fu J, Zheng Y, Gao Y, Xu W. Dietary fiber intake and gut microbiota in human health. Microorganisms. 2022;10(12):2507. https://doi.org/10.3390/microorganisms10122507.

    Article CAS PubMed PubMed Central Google Scholar 

  54. Sato S, Chinda D, Shimoyama T, Iino C, Kudo S, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. A cohort study of the effects of daily-diet water-soluble dietary fiber on butyric acid-producing gut microbiota in middle-aged and older adults in a rural region. Microorganisms. 2022;10(9):1813. https://doi.org/10.3390/microorganisms10091813.

    Article CAS PubMed PubMed Central Google Scholar 

  55. Akhlaghi M. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Crit Rev Food Sci Nutr. 2024;64(10):3139–50. https://doi.org/10.1080/10408398.2022.2130160.

    Article CAS PubMed Google Scholar 

  56. Portincasa P, Bonfrate L, Vacca M, De Angelis M, Farella I, Lanza E, Khalil M, Wang DQ, Sperandio M, Di Ciaula A. Gut microbiota and short chain fatty acids: implications in glucose homeostasis. Int J Mol Sci. 2022;23(3):1105. https://doi.org/10.3390/ijms23031105.

    Article CAS PubMed PubMed Central Google Scholar 

  57. Wolever TM, Jenkins DJ, Ocana AM, Rao VA, Collier GR. Second-meal effect: low-glycemic-index foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr. 1988;48(4):1041–7. https://doi.org/10.1093/ajcn/48.4.1041.

    Article CAS PubMed Google Scholar 

  58. Sun J, Wang J, Ma W, Miao M, Sun G. (2022) Effects of additional dietary fiber supplements on pregnant women with gestational diabetes: a systematic review and meta-analysis of randomized controlled studies. Nutrients. 2022;14(21):4626. https://doi.org/10.3390/nu14214626.

    Article CAS PubMed PubMed Central Google Scholar 

  59. Jovanovski E, Khayyat R, Zurbau A, Komishon A, Mazhar N, Sievenpiper JL, Blanco Mejia S, Ho HVT, Li D, Jenkins AL, Duvnjak L, Vuksan V. Should viscous fiber supplements be considered in diabetes control? results from a systematic review and meta-analysis of randomized controlled trials. Diabetes Care. 2019;42(5):755–66. https://doi.org/10.2337/dc18-1126.

    Article CAS PubMed Google Scholar 

  60. Lu K, Yu T, Cao X, Xia H, Wang S, Sun G, Chen L, Liao W. Effect of viscous soluble dietary fiber on glucose and lipid metabolism in patients with type 2 diabetes mellitus: a systematic review and meta-analysis on randomized clinical trials. Front Nutr. 2023;10:1253312. https://doi.org/10.3389/fnut.2023.1253312.

    Article CAS PubMed PubMed Central Google Scholar 

  61. Xie Y, Gou L, Peng M, Zheng J, Chen L. Effects of soluble fiber supplementation on glycemic control in adults with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2021;40(4):1800–10. https://doi.org/10.1016/j.clnu.2020.10.032.

    Article CAS PubMed Google Scholar 

  62. Janssen JAMJL. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int J Mol Sci. 2021;22(15):7797. https://doi.org/10.3390/ijms22157797.

    Article CAS PubMed PubMed Central Google Scholar 

  63. Xiao HH, Lu L, Poon CC, Chan CO, Wang LJ, Zhu YX, Zhou LP, Cao S, Yu WX, Wong KY, Mok DK, Wong MS. The lignan-rich fraction from Sambucus Williamsii Hance ameliorates dyslipidemia and insulin resistance and modulates gut microbiota composition in ovariectomized rats. Biomed Pharmacother. 2021;137:111372. https://doi.org/10.1016/j.biopha.2021.111372.

    Article CAS PubMed Google Scholar 

  64. Hallmans G, Zhang JX, Lundin E, Stattin P, Johansson A, Johansson I, Hultén K, Winkvist A, Aman P, Lenner P, Adlercreutz H. Rye, lignans and human health. Proc Nutr Soc. 2003;62(1):193–9. https://doi.org/10.1079/pns2002229.

    Article CAS PubMed Google Scholar 

  65. Setchell KD, Brown NM, Zimmer-Nechemias L, Wolfe B, Jha P, Heubi JE. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans. Food Funct. 2014;5(3):491–501. https://doi.org/10.1039/c3fo60402k.

    Article CAS PubMed PubMed Central Google Scholar 

  66. Senizza A, Rocchetti G, Mosele JI, Patrone V, Callegari ML, Morelli L, Lucini L. Lignans and gut microbiota: an interplay revealing potential health implications. Molecules. 2020;25(23):5709. https://doi.org/10.3390/molecules25235709.

    Article CAS PubMed PubMed Central Google Scholar 

  67. Morisset AS, Lemieux S, Veilleux A, Bergeron J, John Weisnagel S, Tchernof A. Impact of a lignan-rich diet on adiposity and insulin sensitivity in post-menopausal women. Br J Nutr. 2009;102(2):195–200. https://doi.org/10.1017/S0007114508162092.

    Article CAS PubMed Google Scholar 

  68. Zhao SL, Liu D, Ding LQ, Liu GK, Yao T, Wu LL, Li G, Cao SJ, Qiu F, Kang N. Schisandra chinensis lignans improve insulin resistance by targeting TLR4 and activating IRS-1/PI3K/AKT and NF-κB signaling pathways. Int Immunopharmacol. 2024;142(Pt A):113069. https://doi.org/10.1016/j.intimp.2024.113069.

    Article CAS PubMed Google Scholar 

  69. Zabolotneva AA, Shatova OP, Sadova AA, Shestopalov AV, Roumiantsev SA. An overview of alkylresorcinols biological properties and effects. J Nutr Metab. 2022;2022:4667607. https://doi.org/10.1155/2022/4667607.

    Article CAS PubMed PubMed Central Google Scholar 

  70. Oishi K, Yamamoto S, Itoh N, Nakao R, Yasumoto Y, Tanaka K, Kikuchi Y, Fukudome S, Okita K, Takano-Ishikawa Y. Wheat alkylresorcinols suppress high-fat, high-sucrose diet-induced obesity and glucose intolerance by increasing insulin sensitivity and cholesterol excretion in male mice. J Nutr. 2015;145(2):199–206. https://doi.org/10.3945/jn.114.202754.

    Article CAS PubMed Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Contributions

M. G. conceived the idea for the meta-analysis and conducted the primary search and screening. S. F. and M. A. completed the search and screening processes and performed data extraction. F. G. and M. A. wrote the manuscript and prepared the figures and tables. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Masoumeh Akhlaghi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazvini, M., Ghanbari-Gohari, F., Foshati, S. et al. Effect of rye consumption on markers of glycemic control: evidence on the “rye factor”: a systematic review and meta-analysis of randomized controlled trials. Nutr Metab (Lond) 22, 27 (2025). https://doi.org/10.1186/s12986-025-00901-8

Download citation

  • Received

  • Accepted

  • Published

  • DOIhttps://doi.org/10.1186/s12986-025-00901-8

Share this article

Anyone you share the following link with will be able to read this content:

Provided by the Springer Nature SharedIt content-sharing initiative



Plaats een reactie ...

Reageer op "Rogge houdt door hoge vezelgehalte bloedsuikerwaarden - insulinewaarden stabiel en is uitstekend voedingsproduct in voorkomen van diabetes-2 en hart- en vaatziektes"


Gerelateerde artikelen
 

Gerelateerde artikelen

Rogge houdt door hoge vezelgehalte >> Vitamine D kan ontstaan van >> Calciumrijke voeding en calcium >> Koolsoorten en broccoli, bloemkool, >> Ultra bewerkt voedsel blijkt >> 60 plussers die dagelijks >> Broccoli blijkt risico op >> Olijfolie dagelijks vermindert >> Mediterrane dieet staat op >> Gezondheidsraad adviseert >>