Zie ook: ALFYTAL module suppletie, deze sponsor uit onze reclamecaroussel levert al heel lang voedingsupplementen van hoge kwaliteit tegen heel acceptabele prijzen. Zoals pure broccolisprouts. 

25 augustus 2025: zie ook dit artikel: https://kanker-actueel.nl/broccoli-blijkt-risico-op-kanker-sterk-te-verminderen-blijkt-uit-meta-analyse-van-37-studies-waaronder-23-case-control-studies.html

25 augustus 2025: Bron: BMC Gastroenterology volume 25, Article number: 575 (2025)

Uit een meta analyse van 17 studies met in totaal 639.539 deelnemers blijkt dat mensen die heel regelmatig kruisbloemige groenten zoals broccoli, bloemkool, spruitjes en kool aten de kans op het krijgen van vormen van darmkanker met tot 20 procent minder wordt. In vergelijking met mensen die weinig of geen van deze groenten aten. Als een of meerdere van de kruisbloemige groenten 20 tot 40 gram van het dagelijks eten bevatte gaf dit de beste preventieve resultaten op de risicovermindering voor het ontstaan van darmkanker. Boven de 60 gram gaf dit geen hoger beschermend effect meer.

Including brocolli in one's diet can have a protective effect against colon cancer, finds a recent study

Naast een rijke bron van gunstige fytochemicaliën, waaronder flavonoïden, vezels, vitamine C en carotenoïden, zitten kruisbloemige groenten ook boordevol glucosinolaten. Bij het kauwen worden deze verbindingen afgebroken tot bioactieve isothiocyanaten, met name sulforafaan (SFN) – een molecuul dat niet alleen verantwoordelijk is voor de sterke, kenmerkende geur van de groenten, maar ook voor hun beschermende, chemopreventieve effecten. Isothiocyanaten spelen een beschermende rol tegen kanker via verschillende mechanismen: ze kunnen enzymen / eiwitten blokkeren die kankerverwekkende stoffen activeren, apoptose (geprogrammeerde celdood) in kwaadaardige cellen op gang brengen, de vorming van nieuwe bloedvaten in tumoren remmen en de celcyclus stopzetten, waardoor ongecontroleerde groei van kankercellen wordt voorkomen.

Het volledige studierapport is gratis in te zien of te downloaden. Klik daarvoor op de titel van het abstract:

  • Systematic Review
  • Open access
  • Published: 

Cruciferous vegetables intake and risk of colon cancer: a dose–response meta-analysis

Abstract

Background

Colon cancer (CC) is the third most diagnosed malignancy and second leading cause of cancer mortality globally, with ~ 1.9 million new cases and 903,859 deaths annually (Bray et al. in CA Cancer J Clin 68(6):394–424, 2018). Diet represents a key modifiable risk factor for CC pathogenesis (Herr and Buchler in Cancer Treat Rev 36:377–383, 2010). Cruciferous vegetables (CV)—rich in glucosinolates that hydrolyze into bioactive isothiocyanates (Willett in Cancer Epidem Biomar 10:3–8, 2001; Murillo and Mehta in Nutr Cancer. 41(1–2):17–28, 2001; Higdon et al. in Pharmacol Res 55:224–36, 2007)—exhibit chemopreventive properties through carcinogen detoxification, apoptosis induction, and cell cycle arrest (Zhang et al. in Proc Nutr Soc 65:68–75, 2006). While prior meta-analyses report an inverse association between CV intake and CC risk (Tse and Eslick in Nutr Cancer 66(1):128–39, 2014), the quantitative dose–response relationship remains uncharacterized, limiting translational insights for dietary guidance.

Methods

A thorough search of the literature was conducted in Embase, Scopus,Web of Science, PubMed, and Cochrane Library from inception to June 28, 2025, using a predetermined strategy encompassing both cohort and case–control studies. Two independent reviewers selected studies based on predefined inclusion criteria, with discrepancies resolved by consensus or senior investigator adjudication. Statistical analyses were performed using Stata (version 14.2). Subgroup analyses accounted for study design, geographic location, and potential confounders. Publication bias was assessed using Egger's test, the LFK index, and the trim-and-fill method. Sensitivity analyses employed the leave-one-out approach. The dose–response relationship was evaluated using restricted cubic spline models.

Results

Data from 17 research—including 7 cohort studies and 10 case–control studies—with 97,595 patients were methodically combined in this investigation.Consumption of CV was found to be inversely correlated with CC risk (odds ratios  = 0.8; 95% confidence interval 0.72–0.90) in the pooled analysis using a random-effects model. Furthermore, a progressive decrease in risk was shown by the non-linear dose–response analysis as consumption levels increased.

Conclusion

This meta-analysis suggests a potential inverse association between higher CV intake and CC incidence. However, these findings should be interpreted cautiously due to methodological limitations, including heterogeneity in study designs, dietary assessment methods and potential residual confounding.

Peer Review reports

Data availability

Data is provided within the manuscript or supplementary information files.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    PubMed Google Scholar 

  2. Herr I, Buchler MW. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat Rev. 2010;36:377–83.

    PubMed CAS Google Scholar 

  3. Willett WC. Diet and cancer: One view at the start of the millennium. Cancer Epidem Biomar. 2001;10:3–8.

    CAS Google Scholar 

  4. Murillo G, Mehta RG. Cruciferous vegetables and cancer prevention. Nutr Cancer. 2001;41(1–2):17–28.

    PubMed CAS Google Scholar 

  5. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacol Res. 2007;55:224–36.

    PubMed PubMed Central CAS Google Scholar 

  6. Zhang Y, Yao S, Li J. Vegetable-derived isothiocyanates: antiproliferative activity and mechanism of action. Proc Nutr Soc. 2006;65:68–75.

    PubMed CAS Google Scholar 

  7. Tse G, Eslick GD. Cruciferous vegetables and risk of colorectal neoplasms: a systematic review and meta-analysis. Nutr Cancer. 2014;66(1):128–39.

    PubMed CAS Google Scholar 

  8. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J Clin Epidemiol. 2021;134:178–89. https://doi.org/10.1016/j.jclinepi.2021.03.001.

    Article PubMed Google Scholar 

  9. Stang A. Critical evaluation of the Newcastle Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    PubMed Google Scholar 

  10. Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. BMJ. 1997;315(7121):1533–7.

    PubMed PubMed Central CAS Google Scholar 

  11. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    PubMed Google Scholar 

  12. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2009;29(12):1282–97.

    Google Scholar 

  13. Chen H, Manning AK, Dupuis J. A method of moments estimator for random effect multivariate meta-analysis. Biometrics. 2012;68(4):1278–84.

    PubMed PubMed Central Google Scholar 

  14. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    PubMed PubMed Central CAS Google Scholar 

  15. Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM. Advances in the meta-analysis of heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials. 2015;45(Pt A):130–8. https://doi.org/10.1016/j.cct.2015.05.009.

    Article PubMed Google Scholar 

  16. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

    PubMed CAS Google Scholar 

  17. Orsini N, Li R, Wolk A, et al. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am J Epidemiol. 2012;175:66–73.

    PubMed Google Scholar 

  18. Harrell FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst. 1988;80:1198–202.

    PubMed Google Scholar 

  19. Jackson D, White IR, Thompson SG. Extending DerSimonian and Laird’s methodology to perform multivariate random effects meta-analyses. Stat Med. 2010;29:1282–97.

    PubMed Google Scholar 

  20. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JP. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;22(343): d4002. https://doi.org/10.1136/bmj.d4002.

    Article Google Scholar 

  21. Leenders M, Siersema PD, Overvad K, Tjønneland A, Olsen A, Boutron-Ruault MC, Bastide N, Fagherazzi G, Katzke V, Kühn T, Boeing H, Aleksandrova K, Trichopoulou A, Lagiou P, Klinaki E, Masala G, Grioni S, Santucci De Magistris M, Tumino R, Ricceri F, Peeters PH, Lund E, Skeie G, Weiderpass E, Quirós JR, Agudo A, Sánchez MJ, Dorronsoro M, Navarro C, Ardanaz E, Ohlsson B, Jirström K, Van Guelpen B, Wennberg M, Khaw KT, Wareham N, Key TJ, Romieu I, Huybrechts I, Cross AJ, Murphy N, Riboli E, Bueno-de-Mesquita HB. Subtypes of fruit and vegetables, variety in consumption and risk of colon and rectal cancer in the European prospective investigation into cancer and nutrition. Int J Cancer. 2015;137(11):2705–14. https://doi.org/10.1002/ijc.29640.

    Article PubMed CAS Google Scholar 

  22. Vogtmann E, Xiang YB, Li HL, Cai Q, Wu QJ, Xie L, Li GL, Yang G, Waterbor JW, Levitan EB, Zhang B, Zheng W, Shu XO. Cruciferous vegetables, glutathione S-transferase polymorphisms, and the risk of colorectal cancer among Chinese men. Ann Epidemiol. 2014;24(1):44–9. https://doi.org/10.1016/j.annepidem.2013.10.003.

    Article PubMed Google Scholar 

  23. Mori N, Sawada N, Shimazu T, Yamaji T, Goto A, Takachi R, Ishihara J, Iwasaki M, Inoue M, Tsugane S and JPHC Study Group. Cruciferous vegetable intake and colorectal cancer risk: Japan public health center-based prospective study. Eur J Cancer Prev. 2019;28(5):420–7. https://doi.org/10.1097/CEJ.0000000000000491.

    Article Google Scholar 

  24. Flood A, Velie EM, Chaterjee N, Subar AF, Thompson FE, Lacey JV Jr, Schairer C, Troisi R, Schatzkin A. Fruit and vegetable intakes and the risk of colorectal cancer in the breast cancer detection demonstration project follow-up cohort. Am J Clin Nutr. 2002;75(5):936–43. https://doi.org/10.1093/ajcn/75.5.936.

    Article PubMed CAS Google Scholar 

  25. Steinmetz KA, Potter JD. Food-group consumption and colon cancer in the adelaide case-control study. I. Vegetables and fruit. Int J Cancer. 1993;53(5):711–9.

    PubMed CAS Google Scholar 

  26. Voorrips LE, Goldbohm RA, van Poppel G, Sturmans F, Hermus RJ, van den Brandt PA. Vegetable and fruit consumption and risks of colon and rectal cancer in a prospective cohort study: The Netherlands cohort study on diet and cancer. Am J Epidemiol. 2000;152(11):1081–92.

    PubMed CAS Google Scholar 

  27. Michels KB, Edward Giovannucci, Joshipura KJ, Rosner BA, Stampfer MJ, Fuchs CS, Colditz GA, Speizer FE, Willett WC. Prospective study of fruit and vegetable consumption and incidence of colon and rectal cancers. J Natl Cancer Inst. 2000;92(21):1740–52. https://doi.org/10.1093/jnci/92.21.1740. Erratum in: J Natl Cancer Inst 2001;93(11):879.

  28. Peters RK, Pike MC, Garabrant D, Mack TM. Diet and colon cancer in Los Angeles county. California Cancer Causes Control. 1992;3(5):457–73.

    PubMed CAS Google Scholar 

  29. Hara M, Hanaoka T, Kobayashi M, Otani T, Adachi HY, Montani A, Natsukawa S, Shaura K, Koizumi Y, Kasuga Y, Matsuzawa T, Ikekawa T, Sasaki S, Tsugane S. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr Cancer. 2003;46(2):138–47. https://doi.org/10.1207/S15327914NC4602_06.

    Article PubMed Google Scholar 

  30. Hu J, Mery L, Desmeules M, Macleod M and Canadian Cancer Registries Epidemiology Research Group. Diet and vitamin or mineral supplementation and risk of rectal cancer in Canada. Acta Oncol. 2007;46(3):342–54.

    Google Scholar 

  31. Fang W, Qu X, Shi J, Li H, Guo X, Wu X, Liu Y, Li Z. Cruciferous vegetables and colorectal cancer risk: a hospital-based matched case-control study in Northeast China. Eur J Clin Nutr. 2019;73(3):450–7. https://doi.org/10.1038/s41430-018-0341-5.

    Article PubMed Google Scholar 

  32. Lee HP, Gourley L, Duffy SW, Estève J, Lee J, Day NE. Colorectal cancer and diet in an Asian population–a case-control study among Singapore Chinese. Int J Cancer. 1989;43(6):1007–16.

    PubMed CAS Google Scholar 

  33. Young TB, Wolf DA. Case-control study of proximal and distal colon cancer and diet in Wisconsin. Int J Cancer. 1988;42(2):167–75.

    PubMed CAS Google Scholar 

  34. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD. Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. Am J Epidemiol. 1994;139(1):1–15.

    PubMed CAS Google Scholar 

  35. Ramadas A, Kandiah M. Food intake and colorectal adenomas: a case-control study in Malaysia. Asian Pac J Cancer Prev. 2009;10(5):925–32.

    PubMed Google Scholar 

  36. West DW, Slattery ML, Robison LM, Schuman KL, Ford MH, Mahoney AW, Lyon JL, Sorensen AW. Dietary intake and colon cancer: sex- and anatomic site-specific associations. Am J Epidemiol. 1989;130(5):883–94. https://doi.org/10.1093/oxfordjournals.aje.a115421.

    Article PubMed CAS Google Scholar 

  37. Chiu BC, Ji BT, Dai Q, Gridley G, McLaughlin JK, Gao YT, Fraumeni JF Jr, Chow WH. Dietary factors and risk of colon cancer in Shanghai, China. Cancer Epidemiol Biomarkers Prev. 2003;12(3):201–8.

    PubMed Google Scholar 

  38. Lee S, Meyerhardt JA. Impact of diet and exercise on colorectal cancer. Hematol Oncol Clin North Am. 2022;36:471–89.

    PubMed Google Scholar 

  39. Slattery ML, Boucher KM, Caan BJ, Potter JD, Ma KN. Eating patterns and risk of colon cancer. Am J Epidemiol. 1998;148:4–16.

    PubMed CAS Google Scholar 

  40. Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics. 2022;14:1213–28.

    PubMed CAS Google Scholar 

  41. Duffy MJ, Mullooly M, Bennett K, Crown J. Vitamin D supplementation: Does it have a preventative or therapeutic role in cancer? Nutr Cancer. 2023;75:450–60.

    PubMed CAS Google Scholar 

  42. Van BEL, Fuchs CS, Niedzwiecki D, Zhang S, Saltz LB, Mayer RJ, Mowat RB, Whittom R, Hantel A, Benson A, Atienza D, Messino M, Kindler H, Venook A, Ogino S, Giovannucci EL, Meyerhardt JA. Association of survival with adherence to the American cancer society nutrition and physical activity guidelines for cancer survivors after colon cancer diagnosis: the CALGB 89803/alliance trial. JAMA Oncol. 2018;4:783–90.

    Google Scholar 

  43. Fenwick GR, Heaney RK, Mullin WJ, VanEt-ten CH. Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr. 1983;18(2):123–201.

    PubMed CAS Google Scholar 

  44. Brooks JD, Paton VG, Vidanes G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidem Biomar. 2001;10(9):949–54.

    CAS Google Scholar 

  45. Meeran SM, Ahmed A, Tollefsbol TO. Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clin Epigenetics. 2010;1(3–4):101–16. https://doi.org/10.1007/s13148-010-0011-5.PMID:21258631;PMCID:PMC3024548.

    Article PubMed PubMed Central CAS Google Scholar 

  46. Chen Y, Tang L, Ye X, Chen Y, Shan E, Han H, Zhong C. Regulation of ZO-1 on β-catenin mediates sulforaphane suppressed colorectal cancer stem cell properties in colorectal cancer. Food Funct. 2022;13(23):12363–70. https://doi.org/10.1039/d2fo02932d.

    Article PubMed CAS Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

All authors announced that they had not received any fund support.

Author information

Authors and Affiliations

Contributions

(I) Conception and design:Bo Lai. (II) Administrative support:Zhong Li. (III) Provision of study materials or patients:Junjie Li. (IV) Collection and assembly of data:Bo Lai. (V) Data analysis and interpretation:Bo Lai. (VI) Manuscript writing: Bo Lai,Zhong Li,Junjie Li. (VII) Final approval of manuscript: Bo Lai, Zhong Li, Junjie Li

Corresponding author

Correspondence to Junjie Li.

Ethics declarations

Ethics approval and consent to participate

As this meta-analysis exclusively synthesized aggregated data from previously published studies, no direct involvement of human participants occurred. Consequently, neither ethics re-approval nor additional informed consent was required, in accordance with international guidelines for evidence synthesis research. All original studies included in this analysis declared compliance with ethical standards in their respective publications, including appropriate ethics board approvals and participant consent procedures.An ethics statement is not applicable because this study is based exclusively on published literature. The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, B., Li, Z. & Li, J. Cruciferous vegetables intake and risk of colon cancer: a dose–response meta-analysis. BMC Gastroenterol 25, 575 (2025). https://doi.org/10.1186/s12876-025-04163-9

Download citation

  • Received

  • Accepted

  • Published

  • DOIhttps://doi.org/10.1186/s12876-025-04163-9

Share this article

Anyone you share the following link with will be able to read this content:

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords



Plaats een reactie ...

Reageer op "Mensen die meer kruisbloemige groenten aten, zoals broccoli, kool, bloemkool of spruitjes, hadden een 20 procent lager risico op het krijgen van darmkanker in vergelijking met mensen die deze groenten minder aten"


Gerelateerde artikelen
 

Gerelateerde artikelen

Mensen die meer kruisbloemige >> ultrabewerkt voedsel geeft >> Rogge houdt door hoge vezelgehalte >> Vitamine D kan ontstaan van >> Calciumrijke voeding en calcium >> Koolsoorten en broccoli, bloemkool, >> Ultra bewerkt voedsel blijkt >> 60 plussers die dagelijks >> Broccoli blijkt risico op >> Olijfolie dagelijks vermindert >>