Zie ook: ALFYTAL module suppletie, deze sponsor uit onze reclamecaroussel levert al heel lang voedingsupplementen van hoge kwaliteit tegen heel acceptabele prijzen. Zoals pure broccolisprouts. 

5 augustus 2024: Bron:  2024 Jun; 16(11): 1583

Uit een grote meta-analyse van 12 observatiestudies en 23 case-control studies blijkt dat wie regelmatig broccoli eet het risico  op het krijgen van kanker verlaagt in vergelijking met wie weinig of geen broccoli eet. Er zijn in de afgelopen 25 jaar ook meerdere specifieke interventiestudies gedaan met broccoli, zie deze search op broccoli op onze website. Waaronder deze studie met rauwe broccoli bij blaaskanker en COPD. En deze meer algemene leefstijlstudie uit Denemarken.

Uit het abstract van de meta-analyse studie:

De resultaten suggereren een omgekeerd verband tussen de consumptie van broccoli en het risico op kanker, zowel in case-control studies (OR: 0,64, 95% CI van 0,58 tot 0,70, p < 0,001; Q = 35,97, p = 0,072, I2 = 30,49%- matige heterogeniteit; τ2 = 0,016) en observatiestudies (RR: 0,89, 95% BI van 0,82 tot 0,96, p = 0,003; Q = 13,51, p = 0,333, I2 = 11,21% – lage heterogeniteit; τ2 = 0,002). 

Het studierapport is gratis in te zien. Hier het abstract met referentielijst en geciteerde artikelen:

Abstract

Background: The scientific literature has reported an inverse association between broccoli consumption and the risk of suffering from several types of cancer; however, the results were not entirely consistent across studies. A systematic review and meta-analysis of observational studies were conducted to determine the association between broccoli consumption and cancer risk with the aim of clarifying the beneficial biological effects of broccoli consumption on cancer.

Methods: PubMed/MEDLINE, Web of Science, Scopus, Cochrane Library (CENTRAL), and Epistemonikos databases were searched to identify all published papers that evaluate the impact of broccoli consumption on the risk of cancer. Citation chasing of included studies was conducted as a complementary search strategy. The risk of bias in individual studies was assessed using the Newcastle-Ottawa Scale. A random-effects model meta-analysis was employed to quantitatively synthesize results, with the I2 index used to assess heterogeneity.

Results: Twenty-three case-control studies (n = 12,929 cases and 18,363 controls; n = 31,292 individuals) and 12 cohort studies (n = 699,482 individuals) were included in the meta-analysis. The results suggest an inverse association between broccoli consumption and the risk of cancer both in case-control studies (OR: 0.64, 95% CI from 0.58 to 0.70, p < 0.001; Q = 35.97, p = 0.072, I2 = 30.49%-moderate heterogeneity; τ2 = 0.016) and cohort studies (RR: 0.89, 95% CI from 0.82 to 0.96, p = 0.003; Q = 13.51, p = 0.333, I2 = 11.21%-low heterogeneity; τ2 = 0.002). Subgroup analysis suggested a potential benefit of broccoli consumption in site-specific cancers only in case-control studies.

Conclusions: In summary, the findings indicate that individuals suffering from some type of cancer consumed less broccoli, suggesting a protective biological effect of broccoli on cancer. More studies, especially cohort studies, are necessary to clarify the possible beneficial effect of broccoli on several types of cancer.

Keywords: anticancer agent; cancer prevention; chemopreventive; cruciferous vegetables; epidemiological studies; sulforaphane.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
 
Figure 2
 
Figure 3
 
Figure 4

Similar articles

References

    1. Dagenais G.R., Leong D.P., Rangarajan S., Lanas F., Lopez-Jaramillo P., Gupta R., Diaz R., Avezum A., Oliveira G.B.F., Wielgosz A., et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): A prospective cohort study. Lancet. 2020;395:785–794. doi: 10.1016/s0140-6736(19)32007-0. - DOI PubMed
    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. - DOI PubMed
    1. Ferlay J., Laversanne M., Ervik M., Lam F., Colombet M., Mery L., Piñeros M., Znaor A., Soerjomataram I., Bray F. Global Cancer Observatory: Cancer Tomorrow (Version 1.1) International Agency for Research on Cancer; Lyon, France: 2024.
    1. Cronin K.A., Scott S., Firth A.U., Sung H., Henley S.J., Sherman R.L., Siegel R.L., Anderson R.N., Kohler B.A., Benard V.B., et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer. 2022;128:4251–4284. doi: 10.1002/cncr.34479. - DOI PMC PubMed
    1. Weeden C.E., Hill W., Lim E.L., Gronroos E., Swanton C. Impact of risk factors on early cancer evolution. Cell. 2023;186:1541–1563. doi: 10.1016/j.cell.2023.03.013. - DOI PubMed
    1. Steck S.E., Murphy E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer. 2020;20:125–138. doi: 10.1038/s41568-019-0227-4. - DOI PubMed
    1. Wu Q.-J., Yang Y., Wang J., Han L.-H., Xiang Y.-B. Cruciferous vegetable consumption and gastric cancer risk: A meta-analysis of epidemiological studies. Cancer Sci. 2013;104:1067–1073. doi: 10.1111/cas.12195. - DOI PMC PubMed
    1. Zhang Z., Bergan R., Shannon J., Slatore C.G., Bobe G., Takata Y. The Role of Cruciferous Vegetables and Isothiocyanates for Lung Cancer Prevention: Current Status, Challenges, and Future Research Directions. Mol. Nutr. Food Res. 2018;62:e1700936. doi: 10.1002/mnfr.201700936. - DOI PubMed
    1. Wu Q.J., Xie L., Zheng W., Vogtmann E., Li H.L., Yang G., Ji B.T., Gao Y.T., Shu X.O., Xiang Y.B. Cruciferous vegetables consumption and the risk of female lung cancer: A prospective study and a meta-analysis. Ann. Oncol. 2013;24:1918–1924. doi: 10.1093/annonc/mdt119. - DOI PMC PubMed
    1. Johnson I.T. Cruciferous Vegetables and Risk of Cancers of the Gastrointestinal Tract. Mol. Nutr. Food Res. 2018;62:1701000. doi: 10.1002/mnfr.201701000. - DOI PubMed
    1. Li L.-Y., Luo Y., Lu M.-D., Xu X.-W., Lin H.-D., Zheng Z.-Q. Cruciferous vegetable consumption and the risk of pancreatic cancer: A meta-analysis. World J. Surg. Oncol. 2015;13:44. doi: 10.1186/s12957-015-0454-4. - DOI PMC PubMed
    1. Tse G., Eslick G.D. Cruciferous Vegetables and Risk of Colorectal Neoplasms: A Systematic Review and Meta-Analysis. Nutr. Cancer Int. J. 2014;66:128–139. doi: 10.1080/01635581.2014.852686. - DOI PubMed
    1. Wu Q.J., Yang Y., Vogtmann E., Wang J., Han L.H., Li H.L., Xiang Y.B. Cruciferous vegetables intake and the risk of colorectal cancer: A meta-analysis of observational studies. Ann. Oncol. 2013;24:1079–1087. doi: 10.1093/annonc/mds601. - DOI PMC PubMed
    1. Liu B., Mao Q., Lin Y., Zhou F., Xie L. The association of cruciferous vegetables intake and risk of bladder cancer: A meta-analysis. World J. Urol. 2013;31:127–133. doi: 10.1007/s00345-012-0850-0. - DOI PubMed
    1. Liu B., Mao Q., Wang X., Zhou F., Luo J., Wang C. Cruciferous vegetables consumption and risk of renal cell carcinoma: A meta-analysis. Nutr. Cancer. 2013;65:668–676. doi: 10.1080/01635581.2013.795980. - DOI PubMed
    1. Zhao J., Zhao L. Cruciferous vegetables intake is associated with lower risk of renal cell carcinoma: Evidence from a meta-analysis of observational studies. PLoS ONE. 2013;8:e75732. doi: 10.1371/journal.pone.0075732. - DOI PMC PubMed
    1. Han B., Li X., Yu T. Cruciferous vegetables consumption and the risk of ovarian cancer: A meta-analysis of observational studies. Diagn. Pathol. 2014;9:7. doi: 10.1186/1746-1596-9-7. - DOI PMC PubMed
    1. Hu J., Hu Y., Hu Y., Zheng S. Intake of cruciferous vegetables is associated with reduced risk of ovarian cancer: A meta-analysis. Asia Pac. J. Clin. Nutr. 2015;24:101–109. doi: 10.6133/apjcn.2015.24.1.22. - DOI PubMed
    1. Liu X., Lv K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis. Breast. 2013;22:309–313. doi: 10.1016/j.breast.2012.07.013. - DOI PubMed
    1. Liu B., Mao Q., Cao M., Xie L. Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis. Int. J. Urol. 2012;19:134–141. doi: 10.1111/j.1442-2042.2011.02906.x. - DOI PubMed
    1. Nagraj G.S., Chouksey A., Jaiswal S., Jaiswal A.K. Nutritional Composition and Antioxidant Properties of Fruits and Vegetables. Academic Press; London, UK: 2020. Broccoli; pp. 5–17. - DOI
    1. Gasper A.V., Al-Janobi A., Smith J.A. Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am. J. Clin. Nutr. 2005;82:1283. doi: 10.1093/ajcn/82.6.1283. Correction Am. J. Clin. Nutr. 2006, 83, 724. - DOI PubMed
    1. Hayes J.D., Dinkova-Kostova A.T. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem. Sci. 2014;39:199–218. doi: 10.1016/j.tibs.2014.02.002. - DOI PubMed
    1. Yang L., Palliyaguru D.L., Kensler T.W. Frugal chemoprevention: Targeting Nrf2 with foods rich in sulforaphane. Semin. Oncol. 2016;43:146–153. doi: 10.1053/j.seminoncol.2015.09.013. - DOI PMC PubMed
    1. Tahata S., Singh S.V., Lin Y., Hahm E.-R., Beumer J.H., Christner S.M., Rao U.N., Sander C., Tarhini A.A., Tawbi H., et al. Evaluation of Biodistribution of Sulforaphane after Administration of Oral Broccoli Sprout Extract in Melanoma Patients with Multiple Atypical Nevi. Cancer Prev. Res. 2018;11:429–437. doi: 10.1158/1940-6207.capr-17-0268. - DOI PMC PubMed
    1. Alumkal J.J., Slottke R., Schwartzman J., Cherala G., Munar M., Graff J.N., Beer T.M., Ryan C.W., Koop D.R., Gibbs A., et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate cancer. Investig. New Drugs. 2015;33:480–489. doi: 10.1007/s10637-014-0189-z. - DOI PMC PubMed
    1. Atwell L.L., Hsu A., Wong C.P., Stevens J.F., Bella D., Yu T.-W., Pereira C.B., Loehr C.V., Christensen J.M., Dashwood R.H., et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol. Nutr. Food Res. 2015;59:424–433. doi: 10.1002/mnfr.201400674. - DOI PMC PubMed
    1. Cramer J.M., Teran-Garcia M., Jeffery E.H. Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphanin-rich powder. Br. J. Nutr. 2012;107:1333–1338. doi: 10.1017/s0007114511004429. - DOI PubMed
    1. Clarke J.D., Hsu A., Riedl K., Bella D., Schwartz S.J., Stevens J.F., Ho E. Bioavailability and inter-conversion of sulforaphane and erucin in human subjects consuming broccoli sprouts or broccoli supplement in a cross-over study design. Pharmacol. Res. 2011;64:456–463. doi: 10.1016/j.phrs.2011.07.005. - DOI PMC PubMed
    1. Oliviero T., Lamers S., Capuano E., Dekker M., Verkerk R. Bioavailability of Isothiocyanates from Broccoli Sprouts in Protein, Lipid, and Fiber Gels. Mol. Nutr. Food Res. 2018;62:1700837. doi: 10.1002/mnfr.201700837. - DOI PMC PubMed
    1. Egner P.A., Chen J.G., Wang J.B., Wu Y., Sun Y., Lu J.H., Zhu J., Zhang Y.H., Chen Y.S., Friesen M.D., et al. Bioavailability of Sulforaphane from Two Broccoli Sprout Beverages: Results of a Short-term, Cross-over Clinical Trial in Qidong, China. Cancer Prev. Res. 2011;4:384–395. doi: 10.1158/1940-6207.capr-10-0296. - DOI PMC PubMed
    1. Oliviero T., Verkerk R., Vermeulen M., Dekker M. In vivo formation and bioavailability of isothiocyanates from glucosinolates in broccoli as affected by processing conditions. Mol. Nutr. Food Res. 2014;58:1447–1456. doi: 10.1002/mnfr.201300894. - DOI PubMed
    1. Sivapalan T., Melchini A., Saha S., Needs P.W., Traka M.H., Tapp H., Mithen R.F. Bioavailability of glucoraphanin and sulforaphane from high-glucoraphanin broccoli. Mol. Nutr. Food Res. 2018;62:e1700911. doi: 10.1002/mnfr.201700911. - DOI PMC PubMed
    1. Vermeulen M., Kloepping-Ketelaars I.W.A.A., van den Berg R., Vaes W.H.J. Bioavailability and Kinetics of Sulforaphane in Humans after Consumption of Cooked versus Raw Broccoli. J. Agric. Food Chem. 2008;56:10505–10509. doi: 10.1021/jf801989e. - DOI PubMed
    1. Charron C.S., Vinyard B.T., Jeffery E.H., Ross S.A., Seifried H.E., Novotny J.A. BMI Is Associated with Increased Plasma and Urine Appearance of Glucosinolate Metabolites After Consumption of Cooked Broccoli. Front. Nutr. 2020;7:575092. doi: 10.3389/fnut.2020.575092. - DOI PMC PubMed
    1. Charron C.S., Vinyard B.T., Ross S.A., Seifried H.E., Jeffery E.H., Novotny J.A. Absorption and metabolism of isothiocyanates formed from broccoli glucosinolates: Effects of BMI and daily consumption in a randomised clinical trial. Br. J. Nutr. 2018;120:1370–1379. doi: 10.1017/s0007114518002921. - DOI PubMed
    1. Kirsh V.A., Peters U., Mayne S.T., Subar A.F., Chatterjee N., Johnson C.C., Hayes R.B. Prospective study of fruit and vegetable intake and risk of prostate cancer. J. Natl. Cancer Inst. 2007;99:1200–1209. doi: 10.1093/jnci/djm065. - DOI PubMed
    1. Michaud D.S., Spiegelman D., Clinton S.K., Rimm E.B., Willett W.C., Giovannucci E.L. Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. Jnci J. Natl. Cancer Inst. 1999;91:605–613. doi: 10.1093/jnci/91.7.605. - DOI PubMed
    1. Fontham E.T.H., Pickle L.W., Haenszel W., Correa P., Lin Y., Falk R.T. Dietary vitamin-a and vitamin-c and lung-cancer risk in louisiana. Cancer. 1988;62:2267–2273. doi: 10.1002/1097-0142(19881115)62:10<2267::aid-cncr2820621033>3.0.co;2-e. - DOI PubMed
    1. Morrison M.E.W., Joseph J.M., McCann S.E., Tang L., Almohanna H.M., Moysich K.B. Cruciferous Vegetable Consumption and Stomach Cancer: A Case-Control Study. Nutr. Cancer Int. J. 2020;72:52–61. doi: 10.1080/01635581.2019.1615100. - DOI PMC PubMed
    1. Azeem K., Horakova D., Tomaskova H., Prochazka V., Shonova O., Martinek A., Kysely Z., Janout V., Kollarova H. Evaluation of Dietary Habits in the Study of Pancreatic Cancer. Klin. Onkol. Cas. Ceske A Slov. Onkol. Spol. 2016;29:196–203. doi: 10.14735/amko2016196. - DOI PubMed
    1. Shen Y., Wu Y., Lu Q., Ren M. Vegetarian diet and reduced uterine fibroids risk: A case-control study in Nanjing, China. J. Obstet. Gynaecol. Res. 2016;42:87–94. doi: 10.1111/jog.12834. - DOI PubMed
    1. Colditz G.A., Branch L.G., Lipnick R.J., Willett W.C., Rosner B., Posner B.M., Hennekens C.H. Increased green and yellow vegetable intake and lowered cancer deaths in an elderly population. Am. J. Clin. Nutr. 1985;41:32–36. doi: 10.1093/ajcn/41.1.32. - DOI PubMed
    1. Steinmetz K.A., Potter J.D., Folsom A.R. Vegetables, fruit, and lung-cancer in the iowa-womens-health-study. Cancer Res. 1993;53:536–543. - PubMed
    1. Correa P., Fontham E., Pickle L.W., Chen V., Lin Y., Haenszel W. Dietary determinants of gastric-cancer in south louisiana inhabitants. Jnci J. Natl. Cancer Inst. 1985;75:645–654. - PubMed
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. J. Clin. Epidemiol. 2021;134:178–189. doi: 10.1016/j.jclinepi.2021.03.001. - DOI PubMed
    1. Clark J.M., Sanders S., Carter M., Honeyman D., Cleo G., Auld Y., Booth D., Condron P., Dalais C., Bateup S., et al. Improving the translation of search strategies using the Polyglot Search Translator: A randomized controlled trial. J. Med. Libr. Assoc. 2020;108:195–207. doi: 10.5195/jmla.2020.834. - DOI PMC PubMed
    1. Haddaway N.R., Grainger M.J., Gray C.T. Citationchaser: A tool for transparent and efficient forward and backward citation chasing in systematic searching. Res. Synth. Methods. 2022;13:533–545. doi: 10.1002/jrsm.1563. - DOI PubMed
    1. Rathbone J., Hoffmann T., Glasziou P. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Syst. Rev. 2015;4:80. doi: 10.1186/s13643-015-0067-6. - DOI PMC PubMed
    1. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol. 2010;25:603–605. doi: 10.1007/s10654-010-9491-z. - DOI PubMed
    1. Booth A.M., Wright K.E., Outhwaite H. Centre for Reviews and Dissemination databases: Value, content, and developments. Int. J. Technol. Assess. Health Care. 2010;26:470–472. doi: 10.1017/s0266462310000978. - DOI PubMed
    1. Higgins J.P.T., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. doi: 10.1002/sim.1186. - DOI PubMed
    1. Egger M., Smith G.D., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. Br. Med. J. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629. - DOI PMC PubMed
    1. Begg C.B., Mazumdar M. Operating characteristics of a bank correlation test for publication bias. Biometrics. 1994;50:1088–1101. doi: 10.2307/2533446. - DOI PubMed
    1. Wang L., Lee I.M., Zhang S.M., Blumberg J.B., Buring J.E., Sesso H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009;89:905–912. doi: 10.3945/ajcn.2008.26913. - DOI PMC PubMed
    1. Adebamowo C.A., Cho E., Sampson L., Katan M.B., Spiegelman D., Willett W.C., Holmes M.D. Dietary flavonols and flavonol-rich foods intake and the risk of breast cancer. Int. J. Cancer. 2005;114:628–633. doi: 10.1002/ijc.20741. - DOI PubMed
    1. Ambrosini G.L., de Klerk N.H., Fritschi L., Mackerras D., Musk B. Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer Prostatic Dis. 2008;11:61–66. doi: 10.1038/sj.pcan.4500979. - DOI PubMed
    1. Tang L., Zirpoli G.R., Guru K., Moysich K.B., Zhang Y., Ambrosone C.B., McCann S.E. Intake of Cruciferous Vegetables Modifies Bladder Cancer Survival. Cancer Epidemiol. Biomark. Prev. 2010;19:1806–1811. doi: 10.1158/1055-9965.epi-10-0008. - DOI PMC PubMed
    1. Gates M.A., Tworoger S.S., Hecht J.L., De Vivo I., Rosner B., Hankinson S.E. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. Int. J. Cancer. 2007;121:2225–2232. doi: 10.1002/ijc.22790. - DOI PubMed
    1. Braganza M.Z., Potischman N., Park Y., Thompson F.E., Hollenbeck A.R., Kitahara C.M. Adolescent and mid-life diet and subsequent risk of thyroid cancer in the NIH-AARP diet and health study. Int. J. Cancer. 2015;137:2413–2423. doi: 10.1002/ijc.29600. - DOI PMC PubMed
    1. Thompson C.A., Habermann T.M., Wang A.H., Vierkant R.A., Folsom A.R., Ross J.A., Cerhan J.R. Antioxidant intake from fruits, vegetables and other sources and risk of non-Hodgkin’s lymphoma: The Iowa Women’s Health Study. Int. J. Cancer. 2010;126:992–1003. doi: 10.1002/ijc.24830. - DOI PMC PubMed
    1. Chang E.T., Lee V.S., Canchola A.J., Clarke C.A., Purdie D.M., Reynolds P., Anton-Culver H., Bernstein L., Deapen D., Peel D., et al. Diet and risk of ovarian cancer in the California teachers study cohort. Am. J. Epidemiol. 2007;165:802–813. doi: 10.1093/aje/kwk065. - DOI PMC PubMed
    1. Steinmetz K.A., Kushi L.H., Bostick R.M., Folsom A.R., Potter J.D. Vegetables, fruit, and colon-cancer in the iowa womens health study. Am. J. Epidemiol. 1994;139:1–15. doi: 10.1093/oxfordjournals.aje.a116921. - DOI PubMed
    1. Flood A., Velie E.M., Chaterjee N., Subar A.F., Thompson F.E., Lacey J.V., Jr., Schatzkin A. Fruit and vegetable intakes and the risk of colorectal cancer in the Breast Cancer Detection Demonstration Project follow-up cohort. Am. J. Clin. Nutr. 2002;75:936–943. doi: 10.1093/ajcn/75.5.936. - DOI PubMed
    1. Nomura A.M., Wilkens L.R., Murphy S.P., Hankin J.H., Henderson B.E., Pike M.C., Kolonel L.N. Association of vegetable, fruit, and grain intakes with colorectal cancer: The Multiethnic Cohort Study. Am. J. Clin. Nutr. 2008;88:730–737. doi: 10.1093/ajcn/88.3.730. - DOI PMC PubMed
    1. Giovannucci E., Rimm E.B., Liu Y., Stampfer M.J., Willett W.C. A prospective study of cruciferous vegetables and prostate cancer. Cancer Epidemiol. Biomark. Prev. 2003;12:1403–1409. - PubMed
    1. Zhao L., Jin L., Petrick J.L., Zeng H., Wang F., Tang L., Smith-Warner S.A., Eliassen A.H., Zhang F.F., Campbell P.T., et al. Specific botanical groups of fruit and vegetable consumption and liver cancer and chronic liver disease mortality: A prospective cohort study. Am. J. Clin. Nutr. 2023;117:278–285. doi: 10.1016/j.ajcnut.2022.12.004. - DOI PMC PubMed
    1. Lin T., Zirpoli G.R., McCann S.E., Moysich K.B., Ambrosone C.B., Tang L. Trends in Cruciferous Vegetable Consumption and Associations with Breast Cancer Risk: A Case-Control Study. Curr. Dev. Nutr. 2017;1:e000448. doi: 10.3945/cdn.117.000448. - DOI PMC PubMed
    1. Ambrosone C.B., McCann S.E., Freudenheim J.L., Marshall J.R., Zhang Y., Shields P.G. Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. J. Nutr. 2004;134:1134–1138. doi: 10.1093/jn/134.5.1134. - DOI PubMed
    1. Tarrazo-Antelo A.M., Ruano-Ravina A., Abal Arca J., Miguel Barros-Dios J. Fruit and Vegetable Consumption and Lung Cancer Risk: A Case-Control Study in Galicia, Spain. Nutr. Cancer Int. J. 2014;66:1030–1037. doi: 10.1080/01635581.2014.936951. - DOI PubMed
    1. Steinmetz K.A., Potter J.D. Food-group consumption and colon cancer in the adelaide case-control study. I. vegetables and fruit. Int. J. Cancer. 1993;53:711–719. doi: 10.1002/ijc.2910530502. - DOI PubMed
    1. García-Lavandeira J.A., Ruano-Ravina A., Torres-Durán M., Parente-Lamelas I., Provencio M., Varela-Lema L., Fernández-Villar A., Piñeiro M., Barros-Dios J.M., Pérez-Ríos M. Fruits and Vegetables and Lung Cancer Risk in Never Smokers. A Multicentric and Pooled Case-Control Study. Nutr. Cancer. 2022;74:613–621. doi: 10.1080/01635581.2021.1918732. - DOI PubMed
    1. Hansson L.E., Nyren O., Bergstrom R., Wolk A., Lindgren A., Baron J., Adami H.O. Diet and risk of gastric-cancer—A population-based case-control study in sweden. Int. J. Cancer. 1993;55:181–189. doi: 10.1002/ijc.2910550203. - DOI PubMed
    1. Hara M., Hanaoka T., Kobayashi M., Otani T., Adachi H.Y., Montani A., Natsukawa S., Shaura K., Koizumi Y., Kasuga Y., et al. Cruciferous vegetables, mushrooms, and gastrointestinal cancer risks in a multicenter, hospital-based case-control study in Japan. Nutr. Cancer Int. J. 2003;46:138–147. doi: 10.1207/s15327914nc4602_06. - DOI PubMed
    1. Witte J.S., Longnecker M.P., Bird C.L., Lee E.R., Frankl H.D., Haile R.W. Relation of vegetable, fruit, and grain consumption to colorectal adenomatous polyps. Am. J. Epidemiol. 1996;144:1015–1025. doi: 10.1093/oxfordjournals.aje.a008872. - DOI PubMed
    1. Lin H.J., Probst-Hensch N.M., Louie A., Kau I.H., Witte J.S., Ingles S.A., Frankl H.D., Lee E.R., Haile R.W. Glutathione transferase null genotype, broccoli, and lower prevalence of colorectal adenomas. Cancer Epidemiol. Biomark. Prev. 1998;7:647–652. - PubMed
    1. Evans R.C., Fear S., Ashby D., Hackett A., Williams E., Van Der Vliet M., Dunstan F.D., Rhodes J.M. Diet and colorectal cancer: An investigation of the lectin/galactose hypothesis. Gastroenterology. 2002;122:1784–1792. doi: 10.1053/gast.2002.33659. - DOI PubMed
    1. Mahfouz E.M., Sadek R.R., Abdel-Latief W.M., Mosallem F.A.-H., Hassan E.E. The role of dietary and lifestyle factors in the development of colorectal cancer: Case control study in minia, egypt. Cent. Eur. J. Public Health. 2014;22:215–222. doi: 10.21101/cejph.a3919. - DOI PubMed
    1. Le Marchand L., Hankin J.H., Wilkens L.R., Kolonel L.N., Englyst H.N., Lyu L.C. Dietary fiber and colorectal cancer risk. Epidemiology. 1997;8:658–665. doi: 10.1097/00001648-199710000-00008. - DOI PubMed
    1. Joseph M.A., Moysich K.B., Freudenheim J.L., Shields P.G., Bowman E.D., Zhang Y., Marshall J.R., Ambrosone C.B. Cruciferous vegetables, genetic polymorphisms in glutathione S-transferases M1 and T1, and prostate cancer risk. Nutr. Cancer. 2004;50:206–213. doi: 10.1207/s15327914nc5002_11. - DOI PubMed
    1. Castelao J.E., Yuan J.M., Gago-Dominguez M., Skipper P.L., Tannenbaum S.R., Chan K.K., Watson M.A., Bell D.A., Coetzee G.A., Ross R.K., et al. Carotenoids/vitamin C and smoking-related bladder cancer. Int. J. Cancer. 2004;110:417–423. doi: 10.1002/ijc.20104. - DOI PubMed
    1. Lin J., Kamat A., Gu J., Chen M., Dinney C.P., Forman M.R., Wu X. Dietary intake of vegetables and fruits and the modification effects of GSTM1 and NAT2 genotypes on bladder cancer risk. Cancer Epidemiol. Biomark. Prev. 2009;18:2090–2097. doi: 10.1158/1055-9965.EPI-08-1174. - DOI PubMed
    1. Tang L., Zirpoli G.R., Guru K., Moysich K.B., Zhang Y., Ambrosone C.B., McCann S.E. Consumption of raw cruciferous vegetables is inversely associated with bladder cancer risk. Cancer Epidemiol. Biomark. Prev. 2008;17:938–944. doi: 10.1158/1055-9965.EPI-07-2502. - DOI PubMed
    1. Barbone F., Austin H., Partridge E.E. Diet and endometrial cancer—A case-control study. Am. J. Epidemiol. 1993;137:393–403. doi: 10.1093/oxfordjournals.aje.a116687. - DOI PubMed
    1. Mettlin C. Milk drinking, other beverage habits, and lung-cancer risk. Int. J. Cancer. 1989;43:608–612. doi: 10.1002/ijc.2910430412. - DOI PubMed
    1. Goodman M.T., Kolonel L.N., Wilkens L.R., Yoshizawa C.N., Lemarchand L., Hankin J.H. Dietary factors in lung-cancer prognosis. Eur. J. Cancer. 1992;28A:495–501. doi: 10.1016/s0959-8049(05)80086-3. - DOI PubMed
    1. Graham S., Dayal H., Swanson M., Mittelman A., Wilkinson G. Diet in epidemiology of cancer of colon and rectum. Jnci J. Natl. Cancer Inst. 1978;61:709–714. - PubMed
    1. Graham S., Mettlin C., Marshall J., Priore R., Rzepka T., Shedd D. Dietary factors in the epidemiology of cancer of the larynx. Am. J. Epidemiol. 1981;113:675–680. doi: 10.1093/oxfordjournals.aje.a113147. - DOI PubMed
    1. Graham S., Schotz W., Martino P. Alimentary factors in epidemiology of gastric cancer. Cancer. 1972;30:927. doi: 10.1002/1097-0142(197210)30:4<927::aid-cncr2820300411>3.0.co;2-l. - DOI PubMed
    1. Miller A.B., Howe G.R., Jain M., Craib K.J.P., Harrison L. Food items and food groups as risk-factors in a case-control study of diet and colo-rectal cancer. Int. J. Cancer. 1983;32:155–161. doi: 10.1002/ijc.2910320204. - DOI PubMed
    1. Freudenheim J.L., Graham S., Marshall J.R., Haughey B.P., Wilkinson G. A case-control study of diet and rectal-cancer in western New-York. Am. J. Epidemiol. 1990;131:612–624. doi: 10.1093/oxfordjournals.aje.a115545. - DOI PubMed
    1. Slattery M.L., Kampman E., Samowitz W., Caan B.J., Potter J.D. Interplay between dietary inducers of GST and the GSTM-1 genotype in colon cancer. Int. J. Cancer. 2000;87:728–733. doi: 10.1002/1097-0215(20000901)87:5<728::aid-ijc16>3.0.co;2-g. - DOI PubMed
    1. Lin H.J., Zhou H.Y., Dai A.H., Huang H.F., Lin J.H., Frankl H.D., Lee E.R., Haile R.W. Glutathione transferase GSTT1, broccoli, and prevalence of colorectal adenomas. Pharmacogenetics. 2002;12:175–179. doi: 10.1097/00008571-200203000-00011. - DOI PubMed
    1. Ron E., Kleinerman R.A., Boice J.D., Livolsi V.A., Flannery J.T., Fraumeni J.F. A population-based case control study of thyroid-cancer. Jnci J. Natl. Cancer Inst. 1987;79:1–12. - PubMed
    1. Yu P., Yu L., Lu Y. Dietary consumption of cruciferous vegetables and bladder cancer risk: A systematic review and meta-analysis. Front. Nutr. 2022;9:944451. doi: 10.3389/fnut.2022.944451. - DOI PMC PubMed
    1. Verhoeven D.T.H., Goldbohm R.A., van Poppel G., Verhagen H., van den Brandt P.A. Epidemiological studies on brassica vegetables and cancer risk. Cancer Epidemiol. Biomark. Prev. 1996;5:733–748. - PubMed
    1. Coutinho L.L., Junior T.C.T., Rangel M.C. Sulforaphane: An emergent anti-cancer stem cell agent. Front. Oncol. 2023;13:1089115. doi: 10.3389/fonc.2023.1089115. - DOI PMC PubMed
    1. Bagheri M., Fazli M., Saeednia S., Gholami Kharanagh M., Ahmadiankia N. Sulforaphane Modulates Cell Migration and Expression of β-Catenin and Epithelial Mesenchymal Transition Markers in Breast Cancer Cells. Iran. J. Public Health. 2020;49:77–85. - PMC PubMed
    1. Bose C., Awasthi S., Sharma R., Beneš H., Hauer-Jensen M., Boerma M., Singh S.P. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS ONE. 2018;13:e0193918. doi: 10.1371/journal.pone.0193918. - DOI PMC PubMed
    1. Rudolf E., Cervinka M. Sulforaphane induces cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with deleted p53. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA. 2011;25:1302–1309. doi: 10.1016/j.tiv.2011.04.019. - DOI PubMed
    1. Liu K.C., Shih T.Y., Kuo C.L., Ma Y.S., Yang J.L., Wu P.P., Huang Y.P., Lai K.C., Chung J.G. Sulforaphane Induces Cell Death Through G2/M Phase Arrest and Triggers Apoptosis in HCT 116 Human Colon Cancer Cells. Am. J. Chin. Med. 2016;44:1289–1310. doi: 10.1142/S0192415X16500725. - DOI PubMed
    1. Nandini D.B., Rao R.S., Deepak B.S., Reddy P.B. Sulforaphane in broccoli: The green chemoprevention!! Role in cancer prevention and therapy. J. Oral Maxillofac. Pathol. 2020;24:405. doi: 10.4103/jomfp.JOMFP_126_19. - DOI PMC PubMed
    1. Peng X., Zhou Y., Tian H., Yang G., Li C., Geng Y., Wu S., Wu W. Sulforaphane inhibits invasion by phosphorylating ERK1/2 to regulate E-cadherin and CD44v6 in human prostate cancer DU145 cells. Oncol. Rep. 2015;34:1565–1572. doi: 10.3892/or.2015.4098. - DOI PubMed
    1. Vyas A.R., Moura M.B., Hahm E.R., Singh K.B., Singh S.V. Sulforaphane Inhibits c-Myc-Mediated Prostate Cancer Stem-Like Traits. J. Cell. Biochem. 2016;117:2482–2495. doi: 10.1002/jcb.25541. - DOI PMC PubMed
    1. Li N., Wu X., Zhuang W., Wu C., Rao Z., Du L., Zhou Y. Cruciferous vegetable and isothiocyanate intake and multiple health outcomes. Food Chem. 2022;375:131816. doi: 10.1016/j.foodchem.2021.131816. - DOI PubMed




Plaats een reactie ...

Reageer op "Broccoli blijkt risico op kanker sterk te verminderen blijkt uit meta-analyse van 37 studies waaronder 23 case control studies"


Gerelateerde artikelen
 

Gerelateerde artikelen

Ultra bewerkt voedsel blijkt >> 60 plussers die dagelijks >> Broccoli blijkt risico op >> Olijfolie dagelijks vermindert >> Mediterrane dieet staat op >> Gezondheidsraad adviseert >> Plantaardige voeding en bewegen >> Mediterraan dieet plus olijfolie >> Gepersonaliseerd dieet gesplitst >> Sterk bewerkte voedingsmiddelen >>