2 augustus 2025: Bron: Metabolic Risk/Epidemiology d.d. juni 2025

Wie dagelijks 300 gram of meer ultrabewerkt voedsel eet en drinkt vergroot daarmee het risico op het krijgen van diabetes-type 2. Zo blijkt uit een meta-analyse van 12 prospectieve studies met totaal 714,199 volwassenen in Amerika. De onderzoekers vonden dat de mensen met het hoogste gebruik van ultrabewerkt voedsel 48 procent meer risico op het krijgen van diabetes-type 2 hadden in vergelijking met de mensen die het minste ultrabewerkt voedsel dagelijks gebruikten. En dat blijkt onafhankelijk te zijn van hoeveel mensen aten of wat ze aten of hoe zwaar mensen waren (BMI - Body Mass Index). 

Het gaat dus niet alleen om hoeveel je eet, maar vooral om wat je eet. En dit gaat op voor zowel westerse als niet-westerse bevolkingsgroepen, hoewel het risico in Europa en Noord-Amerika hoger bleek.
Bewerkt vlees en zoete dranken blijken de grootste boosdoeners. Toen de onderzoekers naar specifieke categorieën ultrabewerkt voedsel keken, ontdekten ze dat bewerkt vlees zoals plakjes vleeswaren en worstjes het risico op diabetes het meest verhoogden, met 34%. Suikerhoudende dranken hadden ook een opmerkelijk effect en verhoogden het risico met ongeveer 5% voor elke extra portie.
Het risico neemt toe vanaf 300 gram per dag. Het risico neemt toe met elke 100 gram extra inname van ultrabewerkt voedsel. 300 gram is ongeveer het gewicht van één typische fastfoodmaaltijd.
De onderzoeksgegevens tonen aan dat elke 100 gram boven de 300 gram het risico op diabetes met 5% verhoogde en hoe hoger je komt, hoe agressiever het risico toeneemt.

In het studieverslag staat ook deze grafiek van de studieresultaten

dmj-2024-0706f3.jpg

Het volledige studieverslag is gratis in te zien of te downloaden, hier het abstract van de studie:

Original Article
Metabolic Risk/EpidemiologyUltra-Processed Food Intake and Risk of Type 2 Diabetes Mellitus: A Dose-Response Meta-Analysis of Prospective Studies
Yujin Kim1orcidYoonkyoung Cho1,2Jin Eui Kim1Dong Hoon Lee3,4Hannah Oh1,5orcidcorresp_icon
DOI: https://doi.org/10.4093/dmj.2024.0706
Published online: June 9, 2025
  • 1,254Views
  • 112Download
  •  
  • Background Although some studies suggest a positive association between ultra-processed food (UPF) intake and type 2 diabetes mellitus (T2DM), little is known about the exact shape and risks associated with different units (percentage of g/day, absolute g/day, serving/day) of UPF intake and whether the association is independent of diet quality, total energy intake, and body mass index (BMI).
  • Methods Prospective studies published through January 2024 were identified by searching PubMed, Embase, and Web of Science. Summary relative risks (RRs) and 95% confidence intervals (CIs) were estimated using random-effects models. A nonlinear dose-response meta-analysis was conducted using restricted cubic spline analysis.
  • Results After screening 569 publications, a total of 12 prospective cohort studies were included. Comparing the highest vs. lowest categories of intake, summary RR for T2DM risk was 1.48 (95% CI, 1.36 to 1.61). Higher summary RRs were observed among studies from Europe and North America. Among individual UPF subgroups, processed meats (summary RR, 1.34; 95% CI, 1.16 to 1.54) were positively associated, whereas ultra-processed cereals and breads (0.98; 95% CI, 0.97 to 0.99) and packaged savory snacks (0.92; 95% CI, 0.88 to 0.95) were inversely associated. The summary RRs associated with every 10% (of g/day), 100-g/day, and 1-serving/day increase in UPF intake were 1.14 (95% CI, 1.11 to 1.17), 1.05 (95% CI, 1.03 to 1.06), and 1.04 (95% CI, 1.03 to 1.05), respectively. The dose-response curve for absolute g/d intake suggested nonlinearity, showing a steeper risk increase approximately at >300 g/day. The associations persisted after adjustment for diet quality, energy intake, or BMI.
  • Conclusion Our data suggest that UPF intake increases diabetes risk, with a potential threshold effect at 300 g/day.
• Ultra-processed food intake is associated with an increased type 2 diabetes risk.• The association was independent of diet quality, total energy intake, and BMI.• A threshold effect was observed at intake exceeding 300 g/day.• Among subgroups, processed meat intake increases diabetes risk.• Ultra-processed cereals or breads and savory snacks are inversely associated.

Related articles

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

AUTHOR CONTRIBUTIONS

Conception or design: H.O.

Acquisition, analysis, or interpretation of data: all authors.

Drafting the work or revising: all authors.

Final approval of the manuscript: all authors.

FUNDING

This work was supported by National Research Foundation of Korea grants (RS-2025-00563263; H.O., Y.K.; NRF-2023S1A5 C2A03095169; H.O.) and Korea University grant (K2402691; H.O.). The study funder was not involved in the design of the study; the collection, analysis, and interpretation of data; writing the report; and did not impose any restrictions regarding the publication of the report.

ACKNOWLEDGMENTS

None

  • 1. Monteiro CA, Cannon G, Lawrence M, da Costa Louzada ML, Pereira Machado P. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome: Food and Agriculture Organization of the United Nations: 2019.
  • 2. Monteiro CA, Cannon G, Levy RB, Moubarac JC, Louzada ML, Rauber F, et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutr 2019;22:936-41.ArticlePubMedPMC
  • 3. Martini D, Godos J, Bonaccio M, Vitaglione P, Grosso G. Ultra-processed foods and nutritional dietary profile: a meta-analysis of nationally representative samples. Nutrients 2021;13:3390.ArticlePubMedPMC
  • 4. Moubarac JC, Batal M, Louzada ML, Martinez Steele E, Monteiro CA. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017;108:512-20.ArticlePubMed
  • 5. Liu J, Steele EM, Li Y, Karageorgou D, Micha R, Monteiro CA, et al. Consumption of ultra-processed foods and diet quality Among U.S. children and adults. Am J Prev Med 2022;62:252-64.ArticlePubMed
  • 6. Beslay M, Srour B, Mejean C, Alles B, Fiolet T, Debras C, et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: a prospective analysis of the French NutriNet-Sante cohort. PLoS Med 2020;17:e1003256.ArticlePubMedPMC
  • 7. Moradi S, Entezari MH, Mohammadi H, Jayedi A, Lazaridi AV, Kermani MA, et al. Ultra-processed food consumption and adult obesity risk: a systematic review and dose-response meta-analysis. Crit Rev Food Sci Nutr 2023;63:249-60.ArticlePubMed
  • 8. Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Mejean C, Andrianasolo RM, et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Sante). BMJ 2019;365:l1451.PubMedPMC
  • 9. Moradi S, Hojjati Kermani MA, Bagheri R, Mohammadi H, Jayedi A, Lane MM, et al. Ultra-processed food consumption and adult diabetes risk: a systematic review and dose-response meta-analysis. Nutrients 2021;13:4410.ArticlePubMedPMC
  • 10. Canhada SL, Vigo A, Levy R, Luft VC, da Fonseca MJ, Giatti L, et al. Association between ultra-processed food consumption and the incidence of type 2 diabetes: the ELSA-Brasil cohort. Diabetol Metab Syndr 2023;15:233.ArticlePubMedPMCPDF
  • 11. Cho Y, Ryu S, Kim R, Shin MJ, Oh H. Ultra-processed food intake and risk of type 2 diabetes in Korean adults. J Nutr 2024;154:243-51.ArticlePubMed
  • 12. Paula Neto HA, Ausina P, Gomez LS, Leandro JG, Zancan P, Sola-Penna M. Effects of food additives on immune cells as contributors to body weight gain and immune-mediated metabolic dysregulation. Front Immunol 2017;8:1478.PubMedPMC
  • 13. Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X. Impact of food additives on the composition and function of gut microbiota: a review. Trends Food Sci Technol 2020;99:295-310.Article
  • 14. Sen A, Brazeau AS, Deschenes S, Ramiro Melgar-Quinonez H, Schmitz N. The role of ultra-processed food consumption and depression on type 2 diabetes incidence: a prospective community study in Quebec, Canada. Public Health Nutr 2023;26:2294-303.ArticlePubMed
  • 15. Chen Z, Khandpur N, Desjardins C, Wang L, Monteiro CA, Rossato SL, et al. Ultra-processed food consumption and risk of type 2 diabetes: three large prospective U.S. cohort studies. Diabetes Care 2023;46:1335-44.PubMedPMC
  • 16. Duan MJ, Vinke PC, Navis G, Corpeleijn E, Dekker LH. Ultra-processed food and incident type 2 diabetes: studying the underlying consumption patterns to unravel the health effects of this heterogeneous food category in the prospective Lifelines cohort. BMC Med 2022;20:7.ArticlePubMedPMCPDF
  • 17. Levy RB, Rauber F, Chang K, Louzada ML, Monteiro CA, Millett C, et al. Ultra-processed food consumption and type 2 diabetes incidence: a prospective cohort study. Clin Nutr 2021;40:3608-14.ArticlePubMed
  • 18. Pant A, Gribbin S, Machado P, Hodge A, Wasfy JH, Moran L, et al. Ultra-processed foods and incident cardiovascular disease and hypertension in middle-aged women. Eur J Nutr 2024;63:713-25.ArticlePubMedPDF
  • 19. Cordova R, Viallon V, Fontvieille E, Peruchet-Noray L, Jansana A, Wagner KH, et al. Consumption of ultra-processed foods and risk of multimorbidity of cancer and cardiometabolic diseases: a multinational cohort study. Lancet Reg Health Eur 2023;35:100771.ArticlePubMedPMC
  • 20. Llavero-Valero M, Escalada-San Martin J, Martinez-Gonzalez MA, Basterra-Gortari FJ, de la Fuente-Arrillaga C, Bes-Rastrollo M. Ultra-processed foods and type-2 diabetes risk in the SUN project: a prospective cohort study. Clin Nutr 2021;40:2817-24.ArticlePubMed
  • 21. Srour B, Fezeu LK, Kesse-Guyot E, Alles B, Debras C, Druesne-Pecollo N, et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Sante prospective cohort. JAMA Intern Med 2020;180:283-91.ArticlePubMed
  • 22. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA 2000;283:2008-12.ArticlePubMed
  • 23. Wells GA, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (cited 2025 Mar 10).
  • 24. Center for Evidence-Based Medicine. The Oxford 2011 levels of evidence. Available from: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence (cited 2025 Mar 10).
  • 25. Dettori JR, Norvell DC, Chapman JR. Fixed-effect vs random-effects models for meta-analysis: 3 points to consider. Global Spine J 2022;12:1624-6.ArticlePubMedPMCPDF
  • 26. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.ArticlePubMed
  • 27. Greenland S, Longnecker MP. Methods for trend estimation from summarized dose-response data, with applications to meta-analysis. Am J Epidemiol 1992;135:1301-9.ArticlePubMed
  • 28. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose: response data. Stata J 2006;6:40-57.ArticlePDF
  • 29. Harrell FE Jr, Lee KL, Pollock BG. Regression models in clinical studies: determining relationships between predictors and response. J Natl Cancer Inst 1988;80:1198-202.ArticlePubMed
  • 30. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629-34.ArticlePubMedPMC
  • 31. Huedo-Medina TB, Sanchez-Meca J, Marin-Martinez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods 2006;11:193-206.PubMed
  • 32. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;21:1539-58.ArticlePubMed
  • 33. Lee JE, McLerran DF, Rolland B, Chen Y, Grant EJ, Vedanthan R, et al. Meat intake and cause-specific mortality: a pooled analysis of Asian prospective cohort studies. Am J Clin Nutr 2013;98:1032-41.ArticlePubMedPMC
  • 34. Zeng L, Ruan M, Liu J, Wilde P, Naumova EN, Mozaffarian D, et al. Trends in processed meat, unprocessed red meat, poultry, and fish consumption in the United States, 1999-2016. J Acad Nutr Diet 2019 119:1085-98. e12.ArticlePubMedPMC
  • 35. Rohrmann S, Overvad K, Bueno-de-Mesquita HB, Jakobsen MU, Egeberg R, Tjonneland A, et al. Meat consumption and mortality: results from the European Prospective Investigation into Cancer and Nutrition. BMC Med 2013;11:63.PubMedPMC
  • 36. Zelber-Sagi S, Ivancovsky-Wajcman D, Fliss Isakov N, Webb M, Orenstein D, Shibolet O, et al. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J Hepatol 2018;68:1239-46.ArticlePubMed
  • 37. Chai W, Morimoto Y, Cooney RV, Franke AA, Shvetsov YB, Le Marchand L, et al. Dietary red and processed meat intake and markers of adiposity and inflammation: the multiethnic cohort study. J Am Coll Nutr 2017;36:378-85.ArticlePubMedPMC
  • 38. Li T, Lu X, Sun Y, Yang X. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption. Food Nutr Res 2016;60:32010.ArticlePubMed
  • 39. Helgason T, Ewen SW, Ross IS, Stowers JM. Diabetes produced in mice by smoked/cured mutton. Lancet 1982;2:1017-22.ArticlePubMed
  • 40. Yuan S, Li X, Jin Y, Lu J. Chocolate consumption and risk of coronary heart disease, stroke, and diabetes: a meta-analysis of prospective studies. Nutrients 2017;9:688.ArticlePubMedPMC
  • 41. Grassi D, Desideri G, Mai F, Martella L, De Feo M, Soddu D, et al. Cocoa, glucose tolerance, and insulin signaling: cardiometabolic protection. J Agric Food Chem 2015;63:9919-26.ArticlePubMed
  • 42. Grassi D, Desideri G, Ferri C. Protective effects of dark chocolate on endothelial function and diabetes. Curr Opin Clin Nutr Metab Care 2013;16:662-8.ArticlePubMed
  • 43. Tsilas CS, de Souza RJ, Mejia SB, Mirrahimi A, Cozma AI, Jayalath VH, et al. Relation of total sugars, fructose and sucrose with incident type 2 diabetes: a systematic review and meta-analysis of prospective cohort studies. CMAJ 2017;189:E711-20.ArticlePubMedPMC
  • 44. Lin X, Zhang I, Li A, Manson JE, Sesso HD, Wang L, et al. Cocoa flavanol intake and biomarkers for cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Nutr 2016;146:2325-33.ArticlePubMedPMC
  • 45. Cordero-Herrera I, Martin MA, Bravo L, Goya L, Ramos S. Cocoa flavonoids improve insulin signalling and modulate glucose production via AKT and AMPK in HepG2 cells. Mol Nutr Food Res 2013;57:974-85.PubMed
  • 46. Fardet A. Minimally processed foods are more satiating and less hyperglycemic than ultra-processed foods: a preliminary study with 98 ready-to-eat foods. Food Funct 2016;7:2338-46.ArticlePubMed
  • 47. Golay A, Ybarra J. Link between obesity and type 2 diabetes. Best Pract Res Clin Endocrinol Metab 2005;19:649-63.ArticlePubMed
  • 48. Boden G, Chen X, DeSantis RA, Kendrick Z. Effects of age and body fat on insulin resistance in healthy men. Diabetes Care 1993;16:728-33.PubMed
  • 49. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014;514:181-6.ArticlePubMedPDF
  • 50. Plaza-Diaz J, Pastor-Villaescusa B, Rueda-Robles A, Abadia-Molina F, Ruiz-Ojeda FJ. Plausible biological interactions of low- and non-calorie sweeteners with the intestinal microbiota: an update of recent studies. Nutrients 2020;12:1153.ArticlePubMedPMC

dmj-2024-0706f3.jpg
dmj-2024-0706f1.jpg
Download Table

Download Table
dmj-2024-0706f2.jpg

    Image
    Kim Y, Cho Y, Kim JE, Lee DH, Oh H. Ultra-Processed Food Intake and Risk of Type 2 Diabetes Mellitus: A Dose-Response Meta-Analysis of Prospective Studies. Diabetes Metab J. 2025 Jun 9. doi: 10.4093/dmj.2024.0706. Epub ahead of print.
    Received: Nov 09, 2024; Accepted: Dec 20, 2024
    DOI: https://doi.org/10.4093/dmj.2024.0706.


    Plaats een reactie ...

    Reageer op "ultrabewerkt voedsel geeft al bij 300 gram per dag hoger risico op diabetes type 2 ongeacht hoeveel je eet en hoe hoog je BMI is"


    Gerelateerde artikelen
     

    Gerelateerde artikelen

    ultrabewerkt voedsel geeft >> Rogge houdt door hoge vezelgehalte >> Vitamine D kan ontstaan van >> Calciumrijke voeding en calcium >> Koolsoorten en broccoli, bloemkool, >> Ultra bewerkt voedsel blijkt >> 60 plussers die dagelijks >> Broccoli blijkt risico op >> Olijfolie dagelijks vermindert >> Mediterrane dieet staat op >>