Zie ook in gerelateerde artikelen

Zie ook dit artikel over CD27 al in 2018 gepubliceerd en ook in dat artikel wordt een betere effectiviteit voorspelt: https://kanker-actueel.nl/NL/nieuwe-biomarkers-mutaties-cd27-pos-cd45ro-negen-cd8-car-t-cellen-voorspellen-waarom-immuuntherapie-met-t-car-cells-bij-cll-chronische-lymfatische-leukemie-effectief-zal-zijn.html

3 februari 2026: Bron: Science d.d. 25 december 2025

20 jaar na een onderzoek naar een borstkankervaccin gericht op de humane epidermale groeireceptor 2+, de HER2+ receptor blijkt dat alle deelnemende patiënten met vergevorderde uitgezaaide borstkanker en in het laatste stadium van hun leven - de meesten verbleven al in een hospice - anno 2026 nog in leven zijn.

Deze patiënten hadden een op dendritische cellen gebaseerd vaccin gekregen gericht tegen de humane epidermale groeireceptor 2+, de HER2+. Een resultaat voor uitgezaaide borstkanker dat eigenlijk niet mogelijk is volgens de bestaande literatuur van immuuntherapie bij patiënten met uitgezaaide borstkanker

Onderzoekers aan de Duke Health universiteit die een hernieuwde analyse van de studie hadden gemaakt en dus zagen dat alle deelnemende patiënten 18 jaar na de studie nog in leven waren zagen in bloedanalyses dat deze patiënten allemaal HER2-specifieke CD27 geheugen cellen en CD4 T-cellen en CD8 T-cellen in hun perifere bloed hadden, wat wijst op de aanwezigheid van een specifieke subgroep van langlevende geheugen-T-cellen. Waarbij de CD4 T-cellen een cruciale rol lijken te spelen in het versterken van de immuniteit. 

Dit wetende hebben de onderzoekers onder leiding van dr. Zachari Conrad Hartman proeven gedaan bij transgene muizen en bracht in die studies humaan CD27 tot expressie. Met als resultaat dat de muizen veel langer leefden. Deze studie bevestigt daarmee dat primaire HER2-vaccinatie in combinatie met een agonistisch anti-CD27 monoklonaal antilichaam (mAb) de antitumorrespons versterkte, met name in combinatie met een anti-PD-1 mAb-behandeling.

CD4 T-cellen bleken het cruciale celtype te zijn voor het organiseren van de antitumorrespons, en samen benadrukken deze resultaten het potentiële voordeel van tumorvaccins in combinatie met CD27-agonisme. Opmerkelijk is ook dat slecht 1 injectie met CD27 nodig is tegelijk met het HER2 vaccin voor een optimaal effect.

Ik heb gezocht naar de eerste studie maar kan die niet vinden en wordt ook niet specifiek genoemd in het studieverslag noch in de media die hierover berichten. Ik weet dus niet om hoeveel patiënten het gaat in die eerste studie die onder leiding stond van prof. dr. Herbert Kim Leyerly. Maar deze professor heeft zijn naam verbonden aan gigantisch veel studies en zie tot nu toe niet welke studie bedoeld wordt in de studie van de universiteit van de Duke Health universiteit. Zie deze publicatielijst van prof. dr. Herbert Kim Leyerly.
Misschien is het deze studie uit 2002 dan zou het gaan om 3 patiënten die dus nu nog steeds in leven zijn. Of deze studie uit 2007 dan zou het gaan om 7 patiënten. 

Het volledig studierapport van de nieuwe studie is niet gratis en moet voor worden betaald. Al kunnen artsen en oncologen dit studierapport wel gratis inzien of downloaden. Misschien wil iemand dit aan mij toesturen? Via dit e-mailadres: info@kanker-actueel.nl.    

Hier het abstract van de studie:

CD27 agonism enhances long-lived CD4 T cell vaccine responses critical for antitumor immunity

Science Immunology
19 Dec 2025
Vol 10Issue 114
DOI: 10.1126/sciimmunol.adz2294  

Editor’s summary

Tumor antigen vaccines have been considered a promising approach to cancer treatment but have struggled to progress because of limited efficacy. Hwang et al. followed a cohort of surviving patients with breast cancer vaccinated ~18 years ago with a human epidermal growth receptor 2+ (HER2+)–targeting dendritic cell–based vaccine. These patients all had HER2-specific CD27+ memory CD4 and CD8 T cells in their peripheral blood, suggesting the presence of a specific subset of long-lived memory T cells. Further analysis in transgenic mice expressing human CD27 confirmed that primary HER2 vaccination combined with an agonistic anti-CD27 monoclonal antibody (mAb) enhanced antitumor responses, especially in combination with anti–PD-1 mAb treatment. CD4 T cells were the critical cell type for orchestrating antitumor responses, and, together, these results highlight the potential benefit of tumor vaccines combined with CD27 agonism. —Christiana N. Fogg

Abstract

Tumor antigen vaccination represents an appealing approach for cancer but has failed to materialize as oncologic standard of care. To understand long-term vaccine efficacy, we conducted a retrospective analysis of patients with human epidermal growth receptor 2+ (HER2+) breast cancer who received HER2-targeting vaccines and survived for >18 years. PBMC analysis revealed HER2-specific CD27+ memory CD4 and CD8 T cells, suggesting that CD27 signaling supports long-term immune memory. In human CD27 transgenic mice, combining HER2 vaccination with anti-CD27 agonism enhanced HER2-specific responses, particularly long-lived CD4 memory T cells. Murine models demonstrated ~40% tumor regression with combined therapy compared with vaccine alone (~6%). Additional scRNA-seq analysis identified CD4 T cells with a distinct gene expression profile, and depletion/adoptive transfer studies validated that CD4 T cells were essential for this effect. These findings suggest that CD27 agonism enhances vaccine-induced antigen-specific CD4 T cell responses, enabling durable antitumor immunity not entirely dependent on CD8 T cells.

Access the full article

View all access options to continue reading this article.

Supplementary Materials

The PDF file includes:

Figs. S1 to S21
Tables S1, S4, S5, S9, S11
Legends for tables S2, S3, S6 to S8, and S10

Other Supplementary Material for this manuscript includes the following:

Tables S2, S3, S6 to S8, and S10
Data file S1
MDAR Reproducibility Checklist

REFERENCES AND NOTES

1
P. W. Kantoff, C. S. Higano, N. D. Shore, E. R. Berger, E. J. Small, D. F. Penson, C. H. Redfern, A. C. Ferrari, R. Dreicer, R. B. Sims, Y. Xu, M. W. Frohlich, P. F. Schellhammer, IMPACT Study Investigators, Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).
2
S. I. M. Sutherland, X. Ju, L. G. Horvath, G. J. Clark, Moving on from sipuleucel-T: New dendritic cell vaccine strategies for prostate cancer. Front. Immunol. 12, 641307 (2021).
3
R. A. Madan, E. S. Antonarakis, C. G. Drake, L. Fong, E. Y. Yu, D. G. M. Neel, D. W. Lin, N. N. Chang, N. A. Sheikh, J. L. Gulley, Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T. J. Natl. Cancer Inst. 112, 562–573 (2020).
4
O. J. Finn, The dawn of vaccines for cancer prevention. Nat. Rev. Immunol. 18, 183–194 (2018).
5
M. A. Morse, T. M. Clay, K. Colling, A. Hobeika, K. Grabstein, M. A. Cheever, H. K. Lyerly, HER2 dendritic cell vaccines. Clin. Breast Cancer 3, S164–S172 (2003).
6
M. A. Morse, A. Hobeika, T. Osada, D. Niedzwiecki, P. K. Marcom, K. L. Blackwell, C. Anders, G. R. Devi, H. K. Lyerly, T. M. Clay, Long term disease-free survival and T cell and antibody responses in women with high-risk Her2+ breast cancer following vaccination against Her2. J. Transl. Med. 5, 42 (2007).
7
J. Hendriks, L. A. Gravestein, K. Tesselaar, R. A. van Lier, T. N. Schumacher, J. Borst, CD27 is required for generation and long-term maintenance of T cell immunity. Nat. Immunol. 1, 433–440 (2000).
8
R. A. van Lier, J. Borst, T. M. Vroom, H. Klein, P. Van Mourik, W. P. Zeijlemaker, C. J. Melief, Tissue distribution and biochemical and functional properties of Tp55 (CD27), a novel T cell differentiation antigen. J. Immunol. 139, 1589–1596 (1987).
9
M. R. Bowman, M. A. Crimmins, J. Yetz-Aldape, R. Kriz, K. Kelleher, S. Herrmann, The cloning of CD70 and its identification as the ligand for CD27. J. Immunol. 152, 1756–1761 (1994).
10
J. Borst, J. Hendriks, Y. Xiao, CD27 and CD70 in T cell and B cell activation. Curr. Opin. Immunol. 17, 275–281 (2005).
11
J. Hendriks, Y. Xiao, J. Borst, CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369–1380 (2003).
12
T. Flieswasser, A. Van den Eynde, J. Van Audenaerde, J. De Waele, F. Lardon, C. Riether, H. de Haard, E. Smits, P. Pauwels, J. Jacobs, The CD70-CD27 axis in oncology: The new kids on the block. J. Exp. Clin. Cancer Res. 41, 12 (2022).
13
E. J. Grant, S. Nüssing, S. Sant, E. B. Clemens, K. Kedzierska, K. Kedzierska, The role of CD27 in anti-viral T-cell immunity. Curr. Opin. Virol. 22, 77–88 (2017).
14
L. A. Vitale, L.-Z. He, L. J. Thomas, J. Widger, J. Weidlick, A. Crocker, T. O’Neil, J. Storey, M. J. Glennie, D. M. Grote, S. M. Ansell, H. Marsh, T. Keler, Development of a human monoclonal antibody for potential therapy of CD27-expressing lymphoma and leukemia. Clin. Cancer Res. 18, 3812–3821 (2012).
15
F. Lutfi, L. Wu, S. Sunshine, X. Cao, Targeting the CD27-CD70 pathway to improve outcomes in both checkpoint immunotherapy and allogeneic hematopoietic cell transplantation. Front. Immunol. 12, 715909 (2021).
16
S. M. Ansell, I. Flinn, M. H. Taylor, B. I. Sikic, J. Brody, J. Nemunaitis, A. Feldman, T. R. Hawthorne, T. Rawls, T. Keler, M. J. Yellin, Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, for hematologic malignancies. Blood Adv. 4, 1917–1926 (2020).
17
R. E. Sanborn, M. J. Pishvaian, M. K. Callahan, A. Weise, B. I. Sikic, O. Rahma, D. C. Cho, N. A. Rizvi, M. Sznol, J. Lutzky, J. E. Bauman, R. L. Bitting, A. Starodub, A. Jimeno, D. A. Reardon, T. Kaley, F. Iwamoto, J. M. Baehring, D. S. Subramaniam, J. B. Aragon-Ching, T. R. Hawthorne, T. Rawls, M. Yellin, T. Keler, Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J. Immunother. Cancer 10, e005147 (2022).
18
H. A. Burris, J. R. Infante, S. M. Ansell, J. J. Nemunaitis, G. R. Weiss, V. M. Villalobos, B. I. Sikic, M. H. Taylor, D. W. Northfelt, W. E. Carson III, T. R. Hawthorne, T. A. Davis, M. J. Yellin, T. Keler, T. Bullock, Safety and activity of varlilumab, a novel and first-in-class agonist anti-CD27 antibody, in patients with advanced solid tumors. J. Clin. Oncol. 35, 2028–2036 (2017).
19
V. Ramakrishna, K. Sundarapandiyan, B. Zhao, M. Bylesjo, H. C. Marsh, T. Keler, Characterization of the human T cell response to in vitro CD27 costimulation with varlilumab. J. Immunother. Cancer 3, 37 (2015).
20
J. L. Bernal, N. Andrews, C. Gower, E. Gallagher, R. Simmons, S. Thelwall, J. Stowe, E. Tessier, N. Groves, G. Dabrera, R. Myers, C. Campbell, G. Amirthalingam, M. Edmunds, M. Zambon, K. Brown, S. Hopkins, M. Chand, M. Ramsay, Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) Variant. N. Engl. J. Med. 385, 7 (2021).
21
E. J. Crosby, W. Gwin, K. Blackwell, P. K. Marcom, S. Chang, H. T. Maecker, G. Broadwater, T. Hyslop, S. Kim, A. Rogatko, V. Lubkov, J. C. Snyder, T. Osada, A. C. Hobeika, M. A. Morse, H. K. Lyerly, Z. C. Hartman, Vaccine-induced memory CD8+ T cells provide clinical benefit in HER2 expressing breast cancer: A mouse to human translational study. Clin. Cancer Res. 25, 2725–2736 (2019).
22
M. A. Morse, E. J. Crosby, J. Force, T. Osada, A. C. Hobeika, Z. C. Hartman, P. Berglund, J. Smith, H. K. Lyerly, Clinical trials of self-replicating RNA-based cancer vaccines. Cancer Gene Ther. 30, 803–811 (2023).
23
L.-Z. He, N. Prostak, L. J. Thomas, L. Vitale, J. Weidlick, A. Crocker, C. D. Pilsmaker, S. M. Round, A. Tutt, M. J. Glennie, H. Marsh, T. Keler, Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. J. Immunol. 191, 4174–4183 (2013).
24
Z. C. Hartman, J. Wei, T. Osada, O. Glass, G. Lei, X.-Y. Yang, S. Peplinski, D.-W. Kim, W. Xia, N. Spector, J. Marks, W. Barry, A. Hobeika, G. Devi, A. Amalfitano, M. A. Morse, H. K. Lyerly, T. M. Clay, An adenoviral vaccine encoding full-length inactivated human Her2 exhibits potent immunogenicty and enhanced therapeutic efficacy without oncogenicity. Clin. Cancer Res. 16, 1466–1477 (2010).
25
E. J. Crosby, C. R. Acharya, A.-F. Haddad, C. A. Rabiola, G. Lei, J.-P. Wei, X.-Y. Yang, T. Wang, C.-X. Liu, K. U. Wagner, W. J. Muller, L. A. Chodosh, G. Broadwater, T. Hyslop, J. H. Shepherd, D. P. Hollern, X. He, C. M. Perou, S. Chai, B. K. Ashby, B. G. Vincent, J. C. Snyder, J. Force, M. A. Morse, H. K. Lyerly, Z. C. Hartman, Stimulation of oncogene-specific tumor-infiltrating T cells through combined vaccine and αPD-1 enable sustained antitumor responses against established HER2 breast cancer. Clin. Cancer Res. 26, 4670–4681 (2020).
26
S. Dutta, P. Sengupta, Men and mice: Relating their ages. Life Sci. 152, 244–248 (2016).
27
J. Turpin, C. Ling, E. J. Crosby, Z. C. Hartman, A. M. Simond, L. A. Chodosh, J. P. Rennhack, E. R. Andrechek, J. Ozcelik, M. Hallett, G. B. Mills, R. D. Cardiff, J. W. Gray, O. L. Griffith, W. J. Muller, The ErbB2ΔEx16 splice variant is a major oncogenic driver in breast cancer that promotes a pro-metastatic tumor microenvironment. Oncogene 35, 6053–6064 (2016).
28
T. Sumi, W. Ishida, A. Ojima, M. Kajisako, T. Sakanishi, H. Yagita, A. Fukushima, CD27 and CD70 do not play a critical role in the development of experimental allergic conjunctivitis in mice. Immunol. Lett. 119, 91–96 (2008).
29
M. L. Telli, H. Nagata, I. Wapnir, C. R. Acharya, K. Zablotsky, B. A. Fox, C. B. Bifulco, S. M. Jensen, C. Ballesteros-Merino, M. H. Le, R. H. Pierce, E. Browning, R. Hermiz, L. Svenson, D. Bannavong, K. Jaffe, J. Sell, K. M. Foerter, D. A. Canton, C. G. Twitty, T. Osada, H. K. Lyerly, E. J. Crosby, Intratumoral plasmid IL12 expands CD8þ T cells and induces a CXCR3 gene signature in triple-negative breast tumors that sensitizes patients to anti–PD-1 therapy. Clin. Cancer Res. 27, 2481–2493 (2021).
30
S. S. Ng, F. De Labastida Rivera, J. Yan, D. Corvino, I. Das, P. Zhang, R. Kuns, S. B. Chauhan, J. Hou, X. Y. Li, T. C. M. Frame, B. A. McEnroe, E. Moore, J. Na, J. A. Engel, M. S. F. Soon, B. Singh, A. J. Kueh, M. J. Herold, M. Montes de Oca, S. S. Singh, P. T. Bunn, A. R. Aguilera, M. Casey, M. Braun, N. Ghazanfari, S. Wani, Y. Wang, F. H. Amante, C. L. Edwards, A. Haque, W. C. Dougall, O. P. Singh, A. G. Baxter, M. W. L. Teng, A. Loukas, N. L. Daly, N. Cloonan, M. A. Degli-Esposti, J. Uzonna, W. R. Heath, T. Bald, S. K. Tey, K. Nakamura, G. R. Hill, R. Kumar, S. Sundar, M. J. Smyth, C. R. Engwerda, The NK cell granule protein NKG7 regulates cytotoxic granule exocytosis and inflammation. Nat. Immunol. 21, 1205–1218 (2020).
31
L. Liu, J. Chen, H. Zhang, J. Ye, C. Moore, C. Lu, Y. Fang, Y. X. Fu, B. Li, Concurrent delivery of immune checkpoint blockade modulates T cell dynamics to enhance neoantigen vaccine-generated antitumor immunity. Nat. Cancer 3, 437–452 (2022).
32
E. J. Crosby, J. Wei, X. Y. Yang, G. Lei, T. Wang, C.-X. Liu, P. Agarwal, A. J. Korman, M. A. Morse, K. Gouin, S. R. V. Knott, H. K. Lyerly, Z. C. Hartman, Complimentary mechanisms of dual checkpoint blockade expand unique T-cell repertoires and activate adaptive anti-tumor immunity in triple-negative breast tumors. Oncoimmunology 7, e1421891 (2018).
33
T. Ahrends, N. Bąbała, Y. Xiao, H. Yagita, H. van Eenennaam, J. Borst, CD27 agonism Plus PD-1 blockade recapitulates CD4+ T-cell help in therapeutic anticancer vaccination. Cancer Res. 76, 2921–2931 (2016).
34
K. A. Riccione, L. Z. He, P. E. Fecci, P. K. Norberg, C. M. Suryadevara, A. Swartz, P. Healy, E. Reap, T. Keler, Q. J. Li, K. L. Congdon, L. Sanchez-Perez, J. H. Sampson, CD27 stimulation unveils the efficacy of linked class I/II peptide vaccines in poorly immunogenic tumors by orchestrating a coordinated CD4/CD8 T cell response. Oncoimmunology 7, e1502904 (2018).
35
J. Chen, M. Trounstine, F. W. Alt, F. Young, C. Kurahara, J. F. Loring, D. Huszar, Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 (1993).
36
N. Friedlová, F. Zavadil Kokáš, T. R. Hupp, B. Vojtěšek, M. Nekulová, IFITM protein regulation and functions: Far beyond the fight against viruses. Front. Immunol. 13, 1042368 (2022).
37
M. Gómez-Herranz, J. Taylor, R. D. Sloan, IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J. Biol. Chem. 299, 102741 (2023).
38
L. Poncette, J. Bluhm, T. Blankenstein, The role of CD4 T cells in rejection of solid tumors. Curr. Opin. Immunol. 74, 18–24 (2022).
39
E. Montauti, D. Y. Oh, L. Fong, CD4+ T cells in antitumor immunity. Trends Cancer 10, 969–985 (2024).
40
B. Kruse, A. C. Buzzai, N. Shridhar, A. D. Braun, S. Gellert, K. Knauth, J. Pozniak, J. Peters, P. Dittmann, M. Mengoni, T. C. van der Sluis, S. Höhn, A. Antoranz, A. Krone, Y. Fu, D. Yu, M. Essand, R. Geffers, D. Mougiakakos, S. Kahlfuß, H. Kashkar, E. Gaffal, F. M. Bosisio, O. Bechter, F. Rambow, J.-C. Marine, W. Kastenmüller, A. J. Müller, T. Tüting, CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 618, 1033–1040 (2023).
41
K. A. Remedios, L. Meyer, B. Zirak, M. L. Pauli, H.-A. Truong, D. Boda, M. D. Rosenblum, CD27 promotes CD4+ effector T cell survival in response to tissue self-antigen. J. Immunol. 203, 639–646 (2019).
42
A. Perez-Diez, N. T. Joncker, K. Choi, W. F. N. Chan, C. C. Anderson, O. Lantz, P. Matzinger, CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).
43
E. Tran, S. Turcotte, A. Gros, P. F. Robbins, Y.-C. Lu, M. E. Dudley, J. R. Wunderlich, R. P. Somerville, K. Hogan, C. S. Hinrichs, M. R. Parkhurst, J. C. Yang, S. A. Rosenberg, Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).
44
N. N. Hunder, H. Wallen, J. Cao, D. W. Hendricks, J. Z. Reilly, R. Rodmyre, A. Jungbluth, S. Gnjatic, J. A. Thompson, C. Yee, Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N. Engl. J. Med. 358, 2698–2703 (2008).
45
E. R. Puppala, L. Wu, X. Fan, X. Cao, CD27 signaling inhibits tumor growth and metastasis via CD8 + T cell-independent mechanisms in the B16–F10 melanoma model. Cancer Immunol. Immunother. 73, 198 (2024).
46
S. A. Rosenberg, J. C. Yang, N. P. Restifo, Cancer immunotherapy: Moving beyond current vaccines. Nat. Med. 10, 909–915 (2004).
47
U. Sahin, P. Oehm, E. Derhovanessian, R. A. Jabulowsky, M. Vormehr, M. Gold, D. Maurus, D. Schwarck-Kokarakis, A. N. Kuhn, T. Omokoko, L. M. Kranz, M. Diken, S. Kreiter, H. Haas, S. Attig, R. Rae, K. Cuk, A. Kemmer-Brück, A. Breitkreuz, C. Tolliver, J. Caspar, J. Quinkhardt, L. Hebich, M. Stein, A. Hohberger, I. Vogler, I. Liebig, S. Renken, J. Sikorski, M. Leierer, V. Müller, H. Mitzel-Rink, M. Miederer, C. Huber, S. Grabbe, J. Utikal, A. Pinter, R. Kaufmann, J. C. Hassel, C. Loquai, Ö. Türeci, An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).
48
Z. Hu, P. A. Ott, C. J. Wu, Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol. 18, 168–182 (2018).
49
R. E. Sanborn, M. J. Pishvaian, M. K. Callahan, A. Weise, B. I. Sikic, O. Rahma, D. C. Cho, N. A. Rizvi, M. Sznol, J. Lutzky, J. E. Bauman, R. L. Bitting, A. Starodub, A. Jimeno, D. A. Reardon, T. Kaley, F. Iwamoto, J. M. Baehring, D. S. Subramaniam, J. B. Aragon-Ching, T. R. Hawthorne, T. Rawls, M. Yellin, T. Keler, Safety, tolerability and efficacy of CD27 antibody (varlilumab) administered in combination with anti- 1 (nivolumab) in advanced solid tumors. J. Immunother. Cancer 10, e005147 (2022).
50
M. F. van Oosterwijk, H. Juwana, R. Arens, K. Tesselaar, M. H. J. van Oers, E. Eldering, R. A. W. van Lier, CD27-CD70 interactions sensitise naive CD4+ T cells for IL-12-induced Th1 cell development. Int. Immunol. 19, 713–718 (2007).
51
E. J. Crosby, H. Kim Lyerly, Z. C. Hartman, Cancer vaccines: The importance of targeting oncogenic drivers and the utility of combinations with immune checkpoint inhibitors. Oncotarget 11, 1–3 (2021).
52
J. S. Weber, M. S. Carlino, A. Khattak, T. Meniawy, G. Ansstas, M. H. Taylor, K. B. Kim, M. McKean, G. V. Long, R. J. Sullivan, M. Faries, T. T. Tran, C. L. Cowey, A. Pecora, M. Shaheen, J. Segar, T. Medina, V. Atkinson, G. T. Gibney, J. J. Luke, S. Thomas, E. I. Buchbinder, J. A. Healy, M. Huang, M. Morrissey, I. Feldman, V. Sehgal, C. Robert-Tissot, P. Hou, L. Zhu, M. Brown, P. Aanur, R. S. Meehan, T. Zaks, Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): A randomised, phase 2b study. Lancet 403, 632–644 (2024).
53
I. Garzia, L. Nocchi, L. Avalle, F. Troise, G. Leoni, L. Seclì, L. Antonucci, G. Cotugno, S. Allocca, G. Romano, L. Conti, C. Caiazza, M. Mallardo, V. Poli, E. Scarselli, A. M. D’Alise, Tumor burden dictates the neoantigen features required to generate an effective cancer vaccine. Cancer Immunol. Res. 12, 440–452 (2024).
54
C. L. Slingluff, Optimal neoantigen cancer vaccines target CD8+ and CD4+ T cells with multiple antigens. Cancer Immunol. Res. 12, 382 (2024).
55
A. C. Chen, R. Xu, T. Wang, J. Wei, X. Y. Yang, C. X. Liu, G. Lei, H. K. Lyerly, T. Heiland, Z. C. Hartman, HER2-LAMP vaccines effectively traffic to endolysosomal compartments and generate enhanced polyfunctional T cell responses that induce complete tumor regression. J. Immunother. Cancer 8, e000258 (2020).
56
R. D. Marek, S. Halabi, M. E. Wang, J. McBane, J. Wei, T. Wang, X. Yang, C. Liu, G. Lei, H. K. Lyerly, M. Chen, T. N. Trotter, Z. C. Hartman, Vaccination against androgen receptor splice variants to immunologically target prostate cancer. Vaccines 12, 1273 (2024).
57
T. N. Trotter, C. E. Dagotto, D. Serra, T. Wang, X. Yang, C. R. Acharya, J. Wei, G. Lei, H. Kim Lyerly, Z. C. Hartman, Dormant tumors circumvent tumor-specific adaptive immunity by establishing a Treg-dominated niche via DKK3. JCI Insight 8, e174458 (2023).
58
L.-C. Tsao, J. S. Wang, X. Ma, S. Sodhi, J. V. Ragusa, B. Liu, J. M. Bane, T. Wang, J. Wei, C.-X. Liu, X. Yang, G. Lei, I. Spasojevic, P. Fan, T. N. Trotter, M. Morse, H. K. Lyerly, Z. C. Hartman, Effective extracellular payload release and immunomodulatory interactions govern the therapeutic effect of trastuzumab deruxtecan (T-DXd). Nat. Commun. 16, 3167 (2025).
59
B. J. Hwang, L. C. Tsao, C. R. Acharya, T. Trotter, P. Agarwal, J. Wei, T. Wang, X. Y. Yang, G. Lei, T. Osada, H. K. Lyerly, M. A. Morse, Z. C. Hartman, Sensitizing immune unresponsive colorectal cancers to immune checkpoint inhibitors through MAVS overexpression. J. Immunother. Cancer 10, e003721 (2022).
60
S. Van Gassen, B. Callebaut, M. J. Van Helden, B. N. Lambrecht, P. Demeester, T. Dhaene, Y. Saeys, FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 87, 636–645 (2015).
61
E.-A. D. Amir, B. Lee, P. Badoual, M. Gordon, X. V. Guo, M. Merad, A. H. Rahman, Development of a comprehensive antibody staining database using a standardized analytics pipeline. Front. Immunol. 10, 1315 (2019).
62
G. Finak, M. Langweiler, M. Jaimes, M. Malek, J. Taghiyar, Y. Korin, K. Raddassi, L. Devine, G. Obermoser, M. L. Pekalski, N. Pontikos, A. Diaz, S. Heck, F. Villanova, N. Terrazzini, F. Kern, Y. Qian, R. Stanton, K. Wang, A. Brandes, J. Ramey, N. Aghaeepour, T. Mosmann, R. H. Scheuermann, E. Reed, K. Palucka, V. Pascual, B. B. Blomberg, F. Nestle, R. B. Nussenblatt, R. R. Brinkman, R. Gottardo, H. Maecker, J. P. McCoy, Standardizing flow cytometry immunophenotyping analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep. 6, 20686 (2016).
63
H. T. Maecker, J. P. McCoy, R. Nussenblatt, Standardizing immunophenotyping for the Human Immunology Project. Nat. Rev. Immunol. 12, 191–200 (2012).
64
M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
65
D. J. McCarthy, Y. Chen, G. K. Smyth, Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).
66
A. T. L. Lun, A. C. Richard, J. C. Marioni, Testing for differential abundance in mass cytometry data. Nat. Methods 14, 707–709 (2017).
67
M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law, W. Shi, G. K. Smyth, Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
68
L. M. Weber, M. Nowicka, C. Soneson, M. D. Robinson, diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering. Commun. Biol. 2, (2019).
69
E. N. Kanu, A. A. Fletcher, J. Bao, E. S. Agritelley, J. Button, A. M. Eckhoff, K. Comatas, T. Wang, B. J. Hwang, M. E. Lidsky, S. Zani, D. G. Blazer, P. J. Allen, Z. Ji, F. J. Lowery, S. Krishna, N. D. Klemen, D. P. Nussbaum, E. J. Crosby, A platform for multisite immune profiling of premetastatic pancreatic cancer at single-cell resolution. Cancer Immunol. Immunother. 74, 291 (2025).
70
R Core Team, R: A language and environment for statistical computing (2024); www.R-project.org.
71
A. Butler, P. Hoffman, P. Smibert, E. Papalexi, R. Satija, Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
72
P. L. Germain, A. Lun, W. Macnair, M. D. Robinson, Doublet identification in single-cell sequencing data using scDblFinderF1000Res 10, 979 (2021).
73
C. Hafemeister, R. Satija, Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).
74
N. Borcherding, N. L. Bormann, scRepertoire: An R-based toolkit for single-cell immune receptor analysis. F1000Res 9, 47 (2020).
75
Hadley Wickham, Ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).





Plaats een reactie ...

Reageer op "HER2-vaccinatie in combinatie met een anti-CD27 monoklonaal antilichaam + anti-PD-1 mAb-behandeling houdt alle patienten met uitgezaaide borstkanker in laatste stadium van hun leven al 18 jaar in leven"


Gerelateerde artikelen