Als u onze informatie op prijs stelt wordt dan donateur of ondersteun ons met een eenmalig bedrag op
rekeningnummer NL79 RABO 0372 9311 38 t.n.v. Stichting Gezondheid Actueel in Terneuzen. En als donateur kunt u korting krijgen bij verschillende bedrijven.
24 april 2019: Bronnen: You Tube, prof. dr. Thomas Seyfried, Met dank aan /Arthur die mij hierop wees.
6-Diazo-5-oxo-L-norleucine (DON) blokkeert de glutamine opname van een kankercel en samen met de effecten van een dieet gebaseerd op het kytogene dieet sterven daarmee kwaadaardige tumorcellen door uithongering.
Otto Warburg wordt altijd genoemd als grondlegger van de theorie dat veel kanker te voorkomen c.q. te genezen zou zijn met voeding en bepaalde voedingssupplementen. Eigenlijk zijn alle diëten op Warburg zijn theorie gebaseerd. Arthur wees me op een interview met prof. dr. Thomas Seyfried op You Tube. Seyfried bouwt verder op de theorie van Warburg, weerlegt ook bepaalde aannames, maar breidt dat ook uit met het metabolische proces op de kankerstamcellen / genafwijkingen en op de mutaties die ontstaan bij kanker en in de loop der jaren bekend zijn geworden.
Het interview op You Tube is ook naar aanleiding van prof. dr. Seyfried zijn boek:
Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer 1st Edition
en van recentere publicaties hoe bv. hersentumoren reageren op voedingstoffen en voedingssuppletie (zie referenties onderaan dit artikel).
Het boek behandelt controverses met betrekking tot de oorsprong van kanker en biedt oplossingen voor kankercontrole en kankerpreventie. Het boek behandelt de bekende theorie van Otto Warburg dat alle kanker een ziekte van energiemetabolisme is en gaat daarin nog een stap verder. Omdat Warburg zijn theorie niet koppelde aan de 'genetische kenmerken van kanker'. Dit boek is bedoeld om via casestudies aan te tonen dat kanker in de eerste plaats een stofwisselingsziekte is die metabole oplossingen vereist voor de controle / genezing en de preventie ervan.
Casuïstiek van hersentumoren wordt gepresenteerd als een bewijs van het principe voor metabole oplossingen voor ziektecontrole, maar overeenkomsten worden ook aangetroffen met andere vormen van kanker, waaronder borstkanker en darmkanker, vanwege dezelfde cellulaire mutaties die deze laten zien.
In dat interview op You tube gaat prof. dr. Seyfried vooral in op het uithongeren van kankercellen met een dieet gebaseerd op het ketogene dieet en een glutomine blokkade. Algemeen wordt verondersteld dat kankercellen veel glucose / energie gebruiken maar ook wordt vaak een tweede belangrijke brandstof glutomine genoemd. Door bij een kytogeen dieet een bepaalde stof 6-Diazo-5-oxo-L-norleucine (DON) erbij te nemen beweert prof. dr. Seyfried dat met name glutomine geblokkeerd waardoor de tumorcel als het ware uitgehongerd wordt.
Nadat Arthur me hierop heeft gewezen heb ik eerst advies gevraagd aan arts-bioloog drs. Enlgelbert Valstar maar die vond het een te commercieel praatje. Terwijl er op Wikipedia echt interessante informatie over 6-Diazo-5-oxo-L-norleucine (DON) te vinden is. En het product was eerder hier te koop bij Merck de leverancier / producent: https://www.sigmaaldrich.com/catalog/product/sial/33515?lang=en®ion=NL maar is inmiddels uit productie genomen.
Ik ben ook eens in pubmed gedoken en Arthur stuurde me ook een studierapport over het gebruik van 6-Diazo-5-oxo-L-norleucine bij longkankerpatienten en dat ziet er toch wel interessant uit vind ik.
Het studierapport: Glutamine Addiction and Therapeutic Strategies in Lung Cancer is gratis in te zien.
Het is wel een medisch technisch studierapport maar artsen en wetenschappers kunnen hier wel mee uit de voeten denk ik. Abstract staat onderaan dit artikel met refenrentielijst
Hier een grafiek uit dat studierapport van het metabolische proces waarin glutamine een cruciale rol speelt:
Glutamine metabolism in cancer cells. ALT, alanine aminotransferase; ASCT2, alanine-serine-cysteine-transporter-2; AST, aspartate aminotransferase; CTH, cystathionine gamma-lyase; EAA, essential amino acids; GLS, glutaminase; GLUD, glutamate dehydrogenase; GLUT, glucose transporter; GSH, reduced glutathione; GSHR, glutathione reductase; GSSG, oxidized glutathione; IDH, isocitrate dehydrogenase; α-KG, α-ketoglutarate; LAT1, ʟ-type amino acid transporter; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; MDH, malate dehydrogenase; ME, malic enzyme; MPC, mitochondrial pyruvate carrier; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NH4+, free ammonia; OAA, oxaloacetate; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PG, phosphoglycerate; SAM, S-adenosylmethionine; SLC7A11, solute carrier family member 7A11 (xCT). Glutaminolysis in pink.
Hieronder het abstract van laatst genoemde studie plus referentielijst.
Dit zijn de referenties die horen bij informatie van prof. dr. Seyfried:
Chinopoulos, Christos, and Thomas N. Seyfried. “Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis.” ASN Neuro, Jan. 2018, doi:10.1177/1759091418818261.
Elsakka, A.M.A., Bary, M.A., Abdelzaher, E., Elnaggar, M., Kalamian, M., Mukherjee, P., Seyfried, T.N., 2018. Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front Nutr 5, 20. https://doi.org/10.3389/fnut.2018.00020
Seyfried, T.N., Yu, G., Maroon, J.C., D’Agostino, D.P., 2017. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutrition & Metabolism 14, 19. https://doi.org/10.1186/s12986-017-0178-2
In this review, we explore the role of glutamine metabolism in lung cancer. Because lung cancer is the leading cause of cancer death with limited curative treatment options, we focus on the potential therapeutic approaches targeting the glutamine metabolism in cancer.
Glutamine Addiction and Therapeutic Strategies in Lung Cancer
,1,2,† ,1,† ,3 ,1,4 ,1,5 ,6 ,3 and 3,7,*
Abstract
Lung cancer cells are well-documented to rewire their metabolism and energy production networks to support rapid survival and proliferation. This metabolic reorganization has been recognized as a hallmark of cancer. The increased uptake of glucose and the increased activity of the glycolytic pathway have been extensively described. However, over the past years, increasing evidence has shown that lung cancer cells also require glutamine to fulfill their metabolic needs. As a nitrogen source, glutamine contributes directly (or indirectly upon conversion to glutamate) to many anabolic processes in cancer, such as the biosynthesis of amino acids, nucleobases, and hexosamines. It plays also an important role in the redox homeostasis, and last but not least, upon conversion to α-ketoglutarate, glutamine is an energy and anaplerotic carbon source that replenishes tricarboxylic acid cycle intermediates. The latter is generally indicated as glutaminolysis. In this review, we explore the role of glutamine metabolism in lung cancer. Because lung cancer is the leading cause of cancer death with limited curative treatment options, we focus on the potential therapeutic approaches targeting the glutamine metabolism in cancer.
Acknowledgments
This study is part of the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, which is supported by the foundation Limburg Sterk Merk, Province of Limburg, Flemish government, Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital. We would like to thank Erwin Vanherck for the graphic design (info@hethuisvandemeester.be).
Author Contributions
K.V. has contributed in writing the manuscript. G.-J.G., L.M., M.T., E.D., J.P.N., W.G. and P.A. have all contributed in the supervision (grammatical and content) of the manuscript. All authors read and approved the final manuscript.
Funding
This research received no external funding.
Conflicts of Interest
The authors declare no conflict of interest.
References
1.
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef] [Google Scholar]
3.
Kaushik A.K., DeBerardinis R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer. 2018;1870:2–14. doi: 10.1016/j.bbcan.2018.04.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4.
Chen W., Zu Y., Huang Q., Chen F., Wang G., Lan W., Bai C., Lu S., Yue Y., Deng F. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1h nmr spectroscopy and multivariate data analysis. Magn. Reson. Med. 2011;66:1531–1540. doi: 10.1002/mrm.22957. [PubMed] [CrossRef] [Google Scholar]
5.
Rocha C.M., Carrola J., Barros A.S., Gil A.M., Goodfellow B.J., Carreira I.M., Bernardo J., Gomes A., Sousa V., Carvalho L., et al. Metabolic signatures of lung cancer in biofluids: Nmr-based metabonomics of blood plasma. J. Proteome Res. 2011;10:4314–4324. doi: 10.1021/pr200550p. [PubMed] [CrossRef] [Google Scholar]
6.
Rocha C.M., Barros A.S., Gil A.M., Goodfellow B.J., Humpfer E., Spraul M., Carreira I.M., Melo J.B., Bernardo J., Gomes A., et al. Metabolic profiling of human lung cancer tissue by 1h high resolution magic angle spinning (hrmas) nmr spectroscopy. J. Proteome Res. 2010;9:319–332. doi: 10.1021/pr9006574. [PubMed] [CrossRef] [Google Scholar]
7.
Puchades-Carrasco L., Jantus-Lewintre E., Perez-Rambla C., Garcia-Garcia F., Lucas R., Calabuig S., Blasco A., Dopazo J., Camps C., Pineda-Lucena A. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget. 2016;7:12904–12916. doi: 10.18632/oncotarget.7354. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8.
Louis E., Adriaensens P., Guedens W., Bigirumurame T., Baeten K., Vanhove K., Vandeurzen K., Darquennes K., Vansteenkiste J., Dooms C., et al. Detection of lung cancer through metabolic changes measured in blood plasma. J. Thorac. Oncol. 2016;11:516–523. doi: 10.1016/j.jtho.2016.01.011. [PubMed] [CrossRef] [Google Scholar]
9.
Louis E., Adriaensens P., Guedens W., Vanhove K., Vandeurzen K., Darquennes K., Vansteenkiste J., Dooms C., de Jonge E., Thomeer M., et al. Metabolic phenotyping of human blood plasma: A powerful tool to discriminate between cancer types? Ann. Oncol. 2016;27:178–184. doi: 10.1093/annonc/mdv499. [PubMed] [CrossRef] [Google Scholar]
10.
Warburg O. On the origin of cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. [PubMed] [CrossRef] [Google Scholar]
13.
Yang M., Vousden K.H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer. 2016;16:650–662. doi: 10.1038/nrc.2016.81. [PubMed] [CrossRef] [Google Scholar]
15.
Eagle H. The minimum vitamin requirements of the l and hela cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 1955;102:595–600. doi: 10.1084/jem.102.5.595. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16.
Mohamed A., Deng X., Khuri F.R., Owonikoko T.K. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin. lung cancer. 2014;15:7–15. doi: 10.1016/j.cllc.2013.09.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19.
Santarius T., Shipley J., Brewer D., Stratton M.R., Cooper C.S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer. 2010;10:59–64. doi: 10.1038/nrc2771. [PubMed] [CrossRef] [Google Scholar]
22.
DeBerardinis R.J., Cheng T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–324. doi: 10.1038/onc.2009.358. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23.
Yang L., Venneti S., Nagrath D. Glutaminolysis: A hallmark of cancer metabolism. Ann. Rev. Biomed. Eng. 2017;19:163–194. doi: 10.1146/annurev-bioeng-071516-044546. [PubMed] [CrossRef] [Google Scholar]
25.
Hassanein M., Hoeksema M.D., Shiota M., Qian J., Harris B.K., Chen H., Clark J.E., Alborn W.E., Eisenberg R., Massion P.P. Slc1a5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 2013;19:560–570. doi: 10.1158/1078-0432.CCR-12-2334. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
26.
Kaira K., Oriuchi N., Takahashi T., Nakagawa K., Ohde Y., Okumura T., Murakami H., Shukuya T., Kenmotsu H., Naito T., et al. Lat1 expression is closely associated with hypoxic markers and mtor in resected non-small cell lung cancer. Am. J. Trans. Res. 2011;3:468–478. [PMC free article] [PubMed] [Google Scholar]
27.
Takeuchi K., Ogata S., Nakanishi K., Ozeki Y., Hiroi S., Tominaga S., Aida S., Matsuo H., Sakata T., Kawai T. Lat1 expression in non-small-cell lung carcinomas: Analyses by semiquantitative reverse transcription-pcr (237 cases) and immunohistochemistry (295 cases) Lung Cancer. 2010;68:58–65. doi: 10.1016/j.lungcan.2009.05.020. [PubMed] [CrossRef] [Google Scholar]
28.
Imai H., Kaira K., Oriuchi N., Shimizu K., Tominaga H., Yanagitani N., Sunaga N., Ishizuka T., Nagamori S., Promchan K., et al. Inhibition of l-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 2010;30:4819–4828. [PubMed] [Google Scholar]
29.
Ji X., Qian J., Rahman S.M.J., Siska P.J., Zou Y., Harris B.K., Hoeksema M.D., Trenary I.A., Heidi C., Eisenberg R., et al. Xct (slc7a11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene. 2018;37:5007–5019. doi: 10.1038/s41388-018-0307-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30.
Baek S., Choi C.M., Ahn S.H., Lee J.W., Gong G., Ryu J.S., Oh S.J., Bacher-Stier C., Fels L., Koglin N., et al. Exploratory clinical trial of (4s)-4-(3-fluoropropyl)-l-glutamate for imaging xc-transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin. Cancer Res. 2012;18:5427–5437. doi: 10.1158/1078-0432.CCR-12-0214. [PubMed] [CrossRef] [Google Scholar]
31.
Katt W.P., Cerione R.A. Glutaminase regulation in cancer cells: A druggable chain of events. Drug Discov. Today. 2014;19:450–457. doi: 10.1016/j.drudis.2013.10.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
32.
Cooper A.J., Shurubor Y.I., Dorai T., Pinto J.T., Isakova E.P., Deryabina Y.I., Denton T.T., Krasnikov B.F. Omega-amidase: An underappreciated, but important enzyme in l-glutamine and l-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Amino Acids. 2016;48:1–20. doi: 10.1007/s00726-015-2061-7. [PubMed] [CrossRef] [Google Scholar]
33.
van den Heuvel A.P., Jing J., Wooster R.F., Bachman K.E. Analysis of glutamine dependency in non-small cell lung cancer: Gls1 splice variant gac is essential for cancer cell growth. Cancer Biol. Ther. 2012;13:1185–1194. doi: 10.4161/cbt.21348. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
34.
Hu W., Zhang C., Wu R., Sun Y., Levine A., Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA. 2010;107:7455–7460. doi: 10.1073/pnas.1001006107. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
35.
Jiang Z.F., Wang M., Xu J.L., Ning Y.J. Hypoxia promotes mitochondrial glutamine metabolism through hif1alpha-gdh pathway in human lung cancer cells. Biochem. Biophys. Res. Commun. 2017;483:32–38. doi: 10.1016/j.bbrc.2017.01.015. [PubMed] [CrossRef] [Google Scholar]
36.
Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075. doi: 10.1038/nature06639. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
37.
Eng C.H., Yu K., Lucas J., White E., Abraham R.T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 2010;3:ra31. doi: 10.1126/scisignal.2000911. [PubMed] [CrossRef] [Google Scholar]
38.
Ghesquiere B., Wong B.W., Kuchnio A., Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511:167–176. doi: 10.1038/nature13312. [PubMed] [CrossRef] [Google Scholar]
39.
Davidson S.M., Papagiannakopoulos T., Olenchock B.A., Heyman J.E., Keibler M.A., Luengo A., Bauer M.R., Jha A.K., O’Brien J.P., Pierce K.A., et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 2016;23:517–528. doi: 10.1016/j.cmet.2016.01.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40.
Yang L., Achreja A., Yeung T.L., Mangala L.S., Jiang D., Han C., Baddour J., Marini J.C., Ni J., Nakahara R., et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016;24:685–700. doi: 10.1016/j.cmet.2016.10.011. [PubMed] [CrossRef] [Google Scholar]
41.
Kim J., Hu Z., Cai L., Li K., Choi E., Faubert B., Bezwada D., Rodriguez-Canales J., Villalobos P., Lin Y.F., et al. Cps1 maintains pyrimidine pools and DNA synthesis in kras/lkb1-mutant lung cancer cells. Nature. 2017;546:168–172. doi: 10.1038/nature22359. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42.
Lee J.S., Kang J.H., Lee S.H., Hong D., Son J., Hong K.M., Song J., Kim S.Y. Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in nsclc. Cell Death Dis. 2016;7:e2511. doi: 10.1038/cddis.2016.404. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
43.
Sellers K., Fox M.P., Bousamra M., 2nd, Slone S.P., Higashi R.M., Miller D.M., Wang Y., Yan J., Yuneva M.O., Deshpande R., et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 2015;125:687–698. doi: 10.1172/JCI72873. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44.
Schulze A., Harris A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–373. doi: 10.1038/nature11706. [PubMed] [CrossRef] [Google Scholar]
45.
Wise D.R., Ward P.S., Shay J.E., Cross J.R., Gruber J.J., Sachdeva U.M., Platt J.M., DeMatteo R.G., Simon M.C., Thompson C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA. 2011;108:19611–19616. doi: 10.1073/pnas.1117773108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
46.
Solaini G., Sgarbi G., Baracca A. Oxidative phosphorylation in cancer cells. Biomed. Biochim. Acta. 2011;1807:534–542. doi: 10.1016/j.bbabio.2010.09.003. [PubMed] [CrossRef] [Google Scholar]
47.
Santos C.R., Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–2623. doi: 10.1111/j.1742-4658.2012.08644.x. [PubMed] [CrossRef] [Google Scholar]
48.
Tan F., Jiang Y., Sun N., Chen Z., Lv Y., Shao K., Li N., Qiu B., Gao Y., Li B., et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol. Cell. Proteom. 2012;11:M111-008821. doi: 10.1074/mcp.M111.008821. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49.
Rydstrom J. Mitochondrial nadph, transhydrogenase and disease. Biomed. Biochim. Acta. 2006;1757:721–726. doi: 10.1016/j.bbabio.2006.03.010. [PubMed] [CrossRef] [Google Scholar]
50.
Metallo C.M., Gameiro P.A., Bell E.L., Mattaini K.R., Yang J., Hiller K., Jewell C.M., Johnson Z.R., Irvine D.J., Guarente L., et al. Reductive glutamine metabolism by idh1 mediates lipogenesis under hypoxia. Nature. 2011;481:380–384. doi: 10.1038/nature10602. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51.
Corbet C., Draoui N., Polet F., Pinto A., Drozak X., Riant O., Feron O. The sirt1/hif2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res. 2014;74:5507–5519. doi: 10.1158/0008-5472.CAN-14-0705. [PubMed] [CrossRef] [Google Scholar]
52.
Corbet C., Pinto A., Martherus R., Santiago de Jesus J.P., Polet F., Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24:311–323. doi: 10.1016/j.cmet.2016.07.003. [PubMed] [CrossRef] [Google Scholar]
53.
Champe P.C., Harvey R.A. Nucleotide metabolism. Biochemistry. 2011:291–305. [Google Scholar]
54.
Abdel-Haleem A.M., Lewis N.E., Jamshidi N., Mineta K., Gao X., Gojobori T. The emerging facets of non-cancerous warburg effect. Front. Endocrinol. 2017 doi: 10.3389/fendo.2017.00279. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
55.
Wells L., Vosseller K., Hart G.W. A role for n-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell. Mol. Life Sci. 2003;60:222–228. doi: 10.1007/s000180300017. [PubMed] [CrossRef] [Google Scholar]
56.
Mi W., Gu Y., Han C., Liu H., Fan Q., Zhang X., Cong Q., Yu W. O-glcnacylation is a novel regulator of lung and colon cancer malignancy. Biomed. Biochim. Acta. 2011;1812:514–519. doi: 10.1016/j.bbadis.2011.01.009. [PubMed] [CrossRef] [Google Scholar]
59.
Krepela E., Prochazka J., Karova B., Cermak J., Roubkova H., Cathepsin B. thiols and cysteine protease inhibitors in squamous-cell lung cancer. Neoplasma. 1997;44:219–239. [PubMed] [Google Scholar]
60.
Fahrmann J.F., Grapov D.D., Wanichthanarak K., DeFelice B.C., Salemi M.R., Rom W.N., Gandara D.R., Phinney B.S., Fiehn O., Pass H., et al. Integrated metabolomics and proteomics highlight altered nicotinamide- and polyamine pathways in lung adenocarcinoma. Carcinogenesis. 2017 doi: 10.1093/carcin/bgw205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62.
Nicklin P., Bergman P., Zhang B., Triantafellow E., Wang H., Nyfeler B., Yang H., Hild M., Kung C., Wilson C., et al. Bidirectional transport of amino acids regulates mtor and autophagy. Cell. 2009;136:521–534. doi: 10.1016/j.cell.2008.11.044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
63.
Fuchs B.C., Finger R.E., Onan M.C., Bode B.P. Asct2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am. J. Physiol. Cell Physiol. 2007;293:C55–C63. doi: 10.1152/ajpcell.00330.2006. [PubMed] [CrossRef] [Google Scholar]
64.
Duran R.V., Oppliger W., Robitaille A.M., Heiserich L., Skendaj R., Gottlieb E., Hall M.N. Glutaminolysis activates rag-mtorc1 signaling. Mol. Cell. 2012;47:349–358. doi: 10.1016/j.molcel.2012.05.043. [PubMed] [CrossRef] [Google Scholar]
65.
Massarelli E., Papadimitrakopoulou V.A. Phosphatidykinosital 3-kinase and mammalian target of rapamycin pathway in non-small-cell lung cancer. J. Thorac. Oncol. 2012;7(Suppl. 5):S379–S382. doi: 10.1097/JTO.0b013e31826df0f0. [PubMed] [CrossRef] [Google Scholar]
67.
Rodenhuis S., Slebos R.J. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res. 1992;52(Suppl. 9):2665s–2669s. [PubMed] [Google Scholar]
68.
Traves P.G., de Atauri P., Marin S., Pimentel-Santillana M., Rodriguez-Prados J.C., Marin de Mas I., Selivanov V.A., Martin-Sanz P., Bosca L., Cascante M. Relevance of the mek/erk signaling pathway in the metabolism of activated macrophages: A metabolomic approach. J. Immunol. 2012;188:1402–1410. doi: 10.4049/jimmunol.1101781. [PubMed] [CrossRef] [Google Scholar]
69.
Kim D.S., Jue S.S., Lee S.Y., Kim Y.S., Shin S.Y., Kim E.C. Effects of glutamine on proliferation, migration, and differentiation of human dental pulp cells. J. Endod. 2014;40:1087–1094. doi: 10.1016/j.joen.2013.11.023. [PubMed] [CrossRef] [Google Scholar]
70.
Yuan L., Sheng X., Willson A.K., Roque D.R., Stine J.E., Guo H., Jones H.M., Zhou C., Bae-Jump V.L. Glutamine promotes ovarian cancer cell proliferation through the mtor/s6 pathway. Endocr. Relat. Cancer. 2015;22:577–591. doi: 10.1530/ERC-15-0192. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
72.
Lee S.Y., Jeon H.M., Ju M.K., Jeong E.K., Kim C.H., Park H.G., Han S.I., Kang H.S. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget. 2016;7:7925–7939. doi: 10.18632/oncotarget.6879. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
73.
Reid M.A., Wang W.I., Rosales K.R., Welliver M.X., Pan M., Kong M. The b55alpha subunit of pp2a drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol. Cell. 2013;50:200–211. doi: 10.1016/j.molcel.2013.02.008. [PubMed] [CrossRef] [Google Scholar]
74.
Kim N.H., Kim H.S., Li X.Y., Lee I., Choi H.S., Kang S.E., Cha S.Y., Ryu J.K., Yoon D., Fearon E.R., et al. A p53/mirna-34 axis regulates snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 2011;195:417–433. doi: 10.1083/jcb.201103097. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
75.
Abulaiti A., Shintani Y., Funaki S., Nakagiri T., Inoue M., Sawabata N., Minami M., Okumura M. Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of tgf-beta signaling by il-6. Lung Cancer. 2013;82:204–213. doi: 10.1016/j.lungcan.2013.08.008. [PubMed] [CrossRef] [Google Scholar]
76.
Shi J., Feng J., Xie J., Mei Z., Shi T., Wang S., Du Y., Yang G., Wu Y., Cheng X., et al. Targeted blockade of tgf-beta and il-6/jak2/stat3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts. Sci. Rep. 2017 doi: 10.1038/s41598-017-09020-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77.
Bernard K., Logsdon N.J., Benavides G.A., Sanders Y., Zhang J., Darley-Usmar V.M., Thannickal V.J. Glutaminolysis is required for transforming growth factor-beta1-induced myofibroblast differentiation and activation. J. Biol. Chem. 2018;293:1218–1228. doi: 10.1074/jbc.RA117.000444. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
78.
Zhang S., Che D., Yang F., Chi C., Meng H., Shen J., Qi L., Liu F., Lv L., Li Y., et al. Tumor-associated macrophages promote tumor metastasis via the tgf-beta/sox9 axis in non-small cell lung cancer. Oncotarget. 2017;8:99801–99815. [PMC free article] [PubMed] [Google Scholar]
79.
Mates J.M., Segura J.A., Martin-Rufian M., Campos-Sandoval J.A., Alonso F.J., Marquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 2013;13:514–534. doi: 10.2174/1566524011313040005. [PubMed] [CrossRef] [Google Scholar]
81.
Avramis V.I., Panosyan E.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: The past, the present and recommendations for the future. Clin. Pharmacokinet. 2005;44:367–393. doi: 10.2165/00003088-200544040-00003. [PubMed] [CrossRef] [Google Scholar]
82.
Hassanein M., Qian J., Hoeksema M.D., Wang J., Jacobovitz M., Ji X., Harris F.T., Harris B.K., Boyd K.L., Chen H., et al. Targeting slc1a5-mediated glutamine dependence in non-small cell lung cancer. Int. J. Cancer. 2015;137:1587–1597. doi: 10.1002/ijc.29535. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
83.
Schulte M.L., Fu A., Zhao P., Li J., Geng L., Smith S.T., Kondo J., Coffey R.J., Johnson M.O., Rathmell J.C., et al. Pharmacological blockade of asct2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 2018;24:194–202. doi: 10.1038/nm.4464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
84.
Ahluwalia G.S., Grem J.L., Hao Z., Cooney D.A. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther. 1990;46:243–271. doi: 10.1016/0163-7258(90)90094-I. [PubMed] [CrossRef] [Google Scholar]
85.
Mueller C., Al-Batran S., Jaeger E., Schmidt B., Bausch M., Unger C., Sethuraman N. A phase iia study of pegylated glutaminase (peg-pga) plus 6-diazo-5-oxo-l-norleucine (don) in patients with advanced refractory solid tumors. J. Clin. Oncol. 2008 doi: 10.1200/jco.2008.26.15_suppl.2533. [CrossRef] [Google Scholar]
87.
Vacanti N.M., Divakaruni A.S., Green C.R., Parker S.J., Henry R.R., Ciaraldi T.P., Murphy A.N., Metallo C.M. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell. 2014;56:425–435. doi: 10.1016/j.molcel.2014.09.024. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88.
Newsholme P., Curi R., Pithon Curi T.C., Murphy C.J., Garcia C., Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease. J. Nutr. Biochem. 1999;10:316–324. doi: 10.1016/S0955-2863(99)00022-4. [PubMed] [CrossRef] [Google Scholar]
89.
Lieberman B.P., Ploessl K., Wang L., Qu W., Zha Z., Wise D.R., Chodosh L.A., Belka G., Thompson C.B., Kung H.F. Pet imaging of glutaminolysis in tumors by 18f-(2s,4r)4-fluoroglutamine. J. Nucl. Med. 2011;52:1947–1955. doi: 10.2967/jnumed.111.093815. [PubMed] [CrossRef] [Google Scholar]
90.
Estrela J.M., Ortega A., Obrador E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006;43:143–181. doi: 10.1080/10408360500523878. [PubMed] [CrossRef] [Google Scholar]
91.
Bender T., Martinou J.C. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim. Biophys. Acta. 2016;1863:2436–2442. doi: 10.1016/j.bbamcr.2016.01.017. [PubMed] [CrossRef] [Google Scholar]
92.
Jin L., Li D., Alesi G.N., Fan J., Kang H.B., Lu Z., Boggon T.J., Jin P., Yi H., Wright E.R., et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 2015;27:257–270. doi: 10.1016/j.ccell.2014.12.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)
6-Diazo-5-oxo-L-norleucine (DON), prof. dr. Thomas Seyfried, kanker is een metabolische - stofwisselingsziekte, voeding
Gerelateerde artikelen
- Pruimensap verbetert de ontlasting van hard naar normaal en vermindert klachten van constipatie zonder buikpijn en kan daarom worden beschouwd als een effectieve en veilige natuurlijke voedingsbehandeling voor chronische constipatie.
- Individueel aangepast dieet voor kankerpatienten opgenomen in het ziekenhuis geeft veel minder sterfgevallen (36 vs 50) binnen half jaar in vergelijking met standaard ziekenhuiseten
- Resten van afwasmiddel hebben nadelig effect op darmmicrobioom
- Kanker is een stofwisselingsziekte - metabolische ziekte die met specifieke voeding - dieet en voedingssuppletie o.a. 6-Diazo-5-oxo-L-norleucine (DON) vaak op te lossen zou zijn aldus prof. dr. Thomas Seyfried.
- Mediterraan dieet met veel fruit en bepaalde vitamines en antioxidanten voorkomt voor ca. 35% beter glaucoom in vergelijking met standaard voeding
- Lezing van Dean Ornish over de combinatie van voeding, supplementen, liefde en intimiteit die leidt tot een betere gezondheid en wellicht preventief en genezend kan zijn bij kanker
- Voedingssupplementen zouden niets toevoegen aan effect op preventie van kanker. Studie analyse van 14 studies suggereert zelfs dat de levensverwachting erdoor wordt verkort. Maar er is bewust gemanipuleerd met deze studiegegevens
- Gerichte voeding plus bepaalde aminozuren bij patienten met ondervoeding zorgen voor significant minder complicaties en zelfs voor minder directe postoperatieve sterfte na operatie van spijsverteringskankersoorten waaronder maagkanker
- Voedingswijze en leefsftijl veroorzaakt 35% van alle kanker wereldwijd. Een verandering van voedingswijze en leefstijl zou wereldwijd dan ook 35 procent van alle kanker voorkomen
- Voeding bij bestraling - radiotherapie: artikelen en informatie over de beschermende en ondersteunende werking van voeding, voedingsstoffen en voedingssuppletie bij radiotherapie - bestraling bij kanker.
- Knoflook extract gegeven na operatie vermindert aantal poliepen en omvang van darmpoliepen
- Voeding en bepaalde voedingstoffen kunnen ernstige vermoeidheid tegengaan van mensen die kanker hebben overleefd
- LEF-magazin publiceert wetenschappelijk artikel over synergistische werking van voedingsstoffen, o.a. groene thee, resveratrol, 13C/DIM en genisteïne onder de titel: nieuwe beloftes voor preventie en behandeling van kanker
- RNA en Omega-3 vetzuren o.a. - gegeven voorafgaande aan operatie van een kankerpatiënt gedurende slechts vijf dagen bespaart 15% op ligduur, complicaties enz. van het beoogde patiëntenbudget in vergelijking met patiënten die geen e
- antioxidanten kunnen kankergroei stimuleren in plaats van verminderen, aldus Nobelprijswinnaar prof. dr. Jim Watson in een lezing
- Extra calorieën enz. - via sonde of infuus na operatieve ingreep bij kankerpatiënten geeft geen enkel positief effect in vergelijking met normaal voedingspatroon.
- Ondervoeding lijkt een belangrijke voorspeller te zijn van overlevingstijd bij terminale kankerpatiënten. Omega-3 polyunsaturated vetzuren hadden een significant immuunstimulerend effect en lijken levensverlengend te werken
- Specifieke extra voeding in combinatie met EPO en COX-2 remmers verlengen significant het leven, betere energiebalans, vet toename en minder bloedingen van terminale sterk vermagerde kankerpatiënten
- Algemeen: effecten van voedingswijzen, fruit en groenten, antioxidanten enz. op voorkomen van kanker en als aanvulling bij behandelngen van kanker: een overzicht
Plaats een reactie ...
Reageer op "Kanker is een stofwisselingsziekte - metabolische ziekte die met specifieke voeding - dieet en voedingssuppletie o.a. 6-Diazo-5-oxo-L-norleucine (DON) vaak op te lossen zou zijn aldus prof. dr. Thomas Seyfried."