Als u onze informatie op prijs stelt wordt dan donateur of ondersteun ons met een eenmalig bedrag op 
rekeningnummer NL79 RABO 0372 9311 38 t.n.v. Stichting Gezondheid Actueel in Terneuzen. En als donateur kunt u korting krijgen bij verschillende bedrijven.

24 april 2019: Bronnen: You Tube, prof. dr. Thomas Seyfried, Met dank aan /Arthur die mij hierop wees.

6-Diazo-5-oxo-L-norleucine (DON) blokkeert de glutamine opname van een kankercel en samen met de effecten van een dieet gebaseerd op het kytogene dieet sterven daarmee kwaadaardige tumorcellen door uithongering.   

Otto Warburg wordt altijd genoemd als grondlegger van de theorie dat veel kanker te voorkomen c.q. te genezen zou zijn met voeding en bepaalde voedingssupplementen. Eigenlijk zijn alle diëten op Warburg zijn theorie gebaseerd. Arthur wees me op een interview met prof. dr. Thomas Seyfried op You Tube. Seyfried bouwt verder op de theorie van Warburg, weerlegt ook bepaalde aannames, maar breidt dat ook uit met het metabolische proces op de kankerstamcellen / genafwijkingen en op de mutaties die ontstaan bij kanker en in de loop der jaren bekend zijn geworden.

Het interview op You Tube is ook naar aanleiding van prof. dr. Seyfried zijn boek:

Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer 1st Edition 

Cancer as a metabolic disease

en van recentere publicaties hoe bv. hersentumoren reageren op voedingstoffen en voedingssuppletie (zie referenties onderaan dit artikel).

Het boek behandelt controverses met betrekking tot de oorsprong van kanker en biedt oplossingen voor kankercontrole en kankerpreventie. Het boek behandelt de bekende theorie van Otto Warburg dat alle kanker een ziekte van energiemetabolisme is en gaat daarin nog een stap verder. Omdat Warburg zijn theorie niet koppelde aan de 'genetische kenmerken van kanker'. Dit boek is bedoeld om via casestudies aan te tonen dat kanker in de eerste plaats een stofwisselingsziekte is die metabole oplossingen vereist voor de controle / genezing en de preventie ervan.
Casuïstiek van hersentumoren wordt gepresenteerd als een bewijs van het principe voor metabole oplossingen voor ziektecontrole, maar overeenkomsten worden ook aangetroffen met andere vormen van kanker, waaronder borstkanker en darmkanker, vanwege dezelfde cellulaire mutaties die deze laten zien.

In dat interview op You tube gaat prof. dr. Seyfried vooral in op het uithongeren van kankercellen met een dieet gebaseerd op het ketogene dieet en een glutomine blokkade. Algemeen wordt verondersteld dat kankercellen veel glucose / energie gebruiken maar ook wordt vaak een tweede belangrijke brandstof glutomine genoemd. Door bij een kytogeen dieet een bepaalde stof 6-Diazo-5-oxo-L-norleucine (DON) erbij te nemen beweert prof. dr. Seyfried dat met name glutomine geblokkeerd waardoor de tumorcel als het ware uitgehongerd wordt.

Nadat Arthur me hierop heeft gewezen heb ik eerst advies gevraagd aan arts-bioloog drs. Enlgelbert Valstar maar die vond het een te commercieel praatje. Terwijl er op Wikipedia echt interessante informatie over 6-Diazo-5-oxo-L-norleucine (DON) te vinden is. En het product was eerder hier te koop bij Merck de leverancier / producent: https://www.sigmaaldrich.com/catalog/product/sial/33515?lang=en&region=NL maar is inmiddels uit productie genomen. 

Ik ben ook eens in pubmed gedoken en Arthur stuurde me ook een studierapport over het gebruik van 6-Diazo-5-oxo-L-norleucine bij longkankerpatienten en dat ziet er toch wel interessant uit vind ik. 

Het studierapport: Glutamine Addiction and Therapeutic Strategies in Lung Cancer is gratis in te zien.

Het is wel een medisch technisch studierapport maar artsen en wetenschappers kunnen hier wel mee uit de voeten denk ik. Abstract staat onderaan dit artikel met refenrentielijst

Hier een grafiek uit dat studierapport van het metabolische proces waarin glutamine een cruciale rol speelt:

An external file that holds a picture, illustration, etc.
Object name is ijms-20-00252-g001.jpg

Figure 1

Glutamine metabolism in cancer cells. ALT, alanine aminotransferase; ASCT2, alanine-serine-cysteine-transporter-2; AST, aspartate aminotransferase; CTH, cystathionine gamma-lyase; EAA, essential amino acids; GLS, glutaminase; GLUD, glutamate dehydrogenase; GLUT, glucose transporter; GSH, reduced glutathione; GSHR, glutathione reductase; GSSG, oxidized glutathione; IDH, isocitrate dehydrogenase; α-KG, α-ketoglutarate; LAT1, ʟ-type amino acid transporter; LDH, lactate dehydrogenase; MCT, monocarboxylate transporter; MDH, malate dehydrogenase; ME, malic enzyme; MPC, mitochondrial pyruvate carrier; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NH4+, free ammonia; OAA, oxaloacetate; PC, pyruvate carboxylase; PDH, pyruvate dehydrogenase; PG, phosphoglycerate; SAM, S-adenosylmethionine; SLC7A11, solute carrier family member 7A11 (xCT). Glutaminolysis in pink.

Hieronder het abstract van laatst genoemde studie plus referentielijst.

Dit zijn de referenties die horen bij informatie van prof. dr. Seyfried:

Chinopoulos, Christos, and Thomas N. Seyfried. “Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis.” ASN Neuro, Jan. 2018, doi:10.1177/1759091418818261.

Elsakka, A.M.A., Bary, M.A., Abdelzaher, E., Elnaggar, M., Kalamian, M., Mukherjee, P., Seyfried, T.N., 2018. Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front Nutr 5, 20. https://doi.org/10.3389/fnut.2018.00020

Seyfried, T.N., Yu, G., Maroon, J.C., D’Agostino, D.P., 2017. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutrition & Metabolism 14, 19. https://doi.org/10.1186/s12986-017-0178-2

In this review, we explore the role of glutamine metabolism in lung cancer. Because lung cancer is the leading cause of cancer death with limited curative treatment options, we focus on the potential therapeutic approaches targeting the glutamine metabolism in cancer.

. 2019 Jan; 20(2): 252.
Published online 2019 Jan 10. doi: 10.3390/ijms20020252
PMCID: PMC6359540
PMID: 30634602

Glutamine Addiction and Therapeutic Strategies in Lung Cancer

Abstract

Lung cancer cells are well-documented to rewire their metabolism and energy production networks to support rapid survival and proliferation. This metabolic reorganization has been recognized as a hallmark of cancer. The increased uptake of glucose and the increased activity of the glycolytic pathway have been extensively described. However, over the past years, increasing evidence has shown that lung cancer cells also require glutamine to fulfill their metabolic needs. As a nitrogen source, glutamine contributes directly (or indirectly upon conversion to glutamate) to many anabolic processes in cancer, such as the biosynthesis of amino acids, nucleobases, and hexosamines. It plays also an important role in the redox homeostasis, and last but not least, upon conversion to α-ketoglutarate, glutamine is an energy and anaplerotic carbon source that replenishes tricarboxylic acid cycle intermediates. The latter is generally indicated as glutaminolysis. In this review, we explore the role of glutamine metabolism in lung cancer. Because lung cancer is the leading cause of cancer death with limited curative treatment options, we focus on the potential therapeutic approaches targeting the glutamine metabolism in cancer.

Acknowledgments

This study is part of the Limburg Clinical Research Program (LCRP) UHasselt-ZOL-Jessa, which is supported by the foundation Limburg Sterk Merk, Province of Limburg, Flemish government, Hasselt University, Ziekenhuis Oost-Limburg, and Jessa Hospital. We would like to thank Erwin Vanherck for the graphic design (info@hethuisvandemeester.be).

Author Contributions

K.V. has contributed in writing the manuscript. G.-J.G., L.M., M.T., E.D., J.P.N., W.G. and P.A. have all contributed in the supervision (grammatical and content) of the manuscript. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. [PubMed] [CrossRef] []
2. Anastasiou D. Tumour microenvironment factors shaping the cancer metabolism landscape. Br. J. Cancer. 2017;116:277–286. doi: 10.1038/bjc.2016.412. [PMC free article] [PubMed] [CrossRef] []
3. Kaushik A.K., DeBerardinis R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer. 2018;1870:2–14. doi: 10.1016/j.bbcan.2018.04.009. [PMC free article] [PubMed] [CrossRef] []
4. Chen W., Zu Y., Huang Q., Chen F., Wang G., Lan W., Bai C., Lu S., Yue Y., Deng F. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1h nmr spectroscopy and multivariate data analysis. Magn. Reson. Med. 2011;66:1531–1540. doi: 10.1002/mrm.22957. [PubMed] [CrossRef] []
5. Rocha C.M., Carrola J., Barros A.S., Gil A.M., Goodfellow B.J., Carreira I.M., Bernardo J., Gomes A., Sousa V., Carvalho L., et al. Metabolic signatures of lung cancer in biofluids: Nmr-based metabonomics of blood plasma. J. Proteome Res. 2011;10:4314–4324. doi: 10.1021/pr200550p. [PubMed] [CrossRef] []
6. Rocha C.M., Barros A.S., Gil A.M., Goodfellow B.J., Humpfer E., Spraul M., Carreira I.M., Melo J.B., Bernardo J., Gomes A., et al. Metabolic profiling of human lung cancer tissue by 1h high resolution magic angle spinning (hrmas) nmr spectroscopy. J. Proteome Res. 2010;9:319–332. doi: 10.1021/pr9006574. [PubMed] [CrossRef] []
7. Puchades-Carrasco L., Jantus-Lewintre E., Perez-Rambla C., Garcia-Garcia F., Lucas R., Calabuig S., Blasco A., Dopazo J., Camps C., Pineda-Lucena A. Serum metabolomic profiling facilitates the non-invasive identification of metabolic biomarkers associated with the onset and progression of non-small cell lung cancer. Oncotarget. 2016;7:12904–12916. doi: 10.18632/oncotarget.7354. [PMC free article] [PubMed] [CrossRef] []
8. Louis E., Adriaensens P., Guedens W., Bigirumurame T., Baeten K., Vanhove K., Vandeurzen K., Darquennes K., Vansteenkiste J., Dooms C., et al. Detection of lung cancer through metabolic changes measured in blood plasma. J. Thorac. Oncol. 2016;11:516–523. doi: 10.1016/j.jtho.2016.01.011. [PubMed] [CrossRef] []
9. Louis E., Adriaensens P., Guedens W., Vanhove K., Vandeurzen K., Darquennes K., Vansteenkiste J., Dooms C., de Jonge E., Thomeer M., et al. Metabolic phenotyping of human blood plasma: A powerful tool to discriminate between cancer types? Ann. Oncol. 2016;27:178–184. doi: 10.1093/annonc/mdv499. [PubMed] [CrossRef] []
10. Warburg O. On the origin of cancer cells. Science. 1956;123:309–314. doi: 10.1126/science.123.3191.309. [PubMed] [CrossRef] []
11. Patra K.C., Hay N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014;39:347–354. doi: 10.1016/j.tibs.2014.06.005. [PMC free article] [PubMed] [CrossRef] []
12. Newman A.C., Maddocks O.D.K. One-carbon metabolism in cancer. Br. J. Cancer. 2017;116:1499–1504. doi: 10.1038/bjc.2017.118. [PMC free article] [PubMed] [CrossRef] []
13. Yang M., Vousden K.H. Serine and one-carbon metabolism in cancer. Nat. Rev. Cancer. 2016;16:650–662. doi: 10.1038/nrc.2016.81. [PubMed] [CrossRef] []
14. Ahn C.S., Metallo C.M. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3:1–10. doi: 10.1186/s40170-015-0128-2. [PMC free article] [PubMed] [CrossRef] []
15. Eagle H. The minimum vitamin requirements of the l and hela cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J. Exp. Med. 1955;102:595–600. doi: 10.1084/jem.102.5.595. [PMC free article] [PubMed] [CrossRef] []
16. Mohamed A., Deng X., Khuri F.R., Owonikoko T.K. Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin. lung cancer. 2014;15:7–15. doi: 10.1016/j.cllc.2013.09.001. [PMC free article] [PubMed] [CrossRef] []
17. Choi Y.K., Park K.G. Targeting glutamine metabolism for cancer treatment. Biomol. Ther. 2018;26:19–28. doi: 10.4062/biomolther.2017.178. [PMC free article] [PubMed] [CrossRef] []
18. Nagarajan A., Malvi P., Wajapeyee N. Oncogene-directed alterations in cancer cell metabolism. Trends Cancer. 2016;2:365–377. doi: 10.1016/j.trecan.2016.06.002. [PMC free article] [PubMed] [CrossRef] []
19. Santarius T., Shipley J., Brewer D., Stratton M.R., Cooper C.S. A census of amplified and overexpressed human cancer genes. Nat. Rev. Cancer. 2010;10:59–64. doi: 10.1038/nrc2771. [PubMed] [CrossRef] []
20. Miller D.M., Thomas S.D., Islam A., Muench D., Sedoris K. C-myc and cancer metabolism. Clin. Cancer Res. 2012;18:5546–5553. doi: 10.1158/1078-0432.CCR-12-0977. [PMC free article] [PubMed] [CrossRef] []
21. Altman B.J., Stine Z.E., Dang C.V. From krebs to clinic: Glutamine metabolism to cancer therapy. Nat. Rev. Cancer. 2016;16:619–634. doi: 10.1038/nrc.2016.71. [PMC free article] [PubMed] [CrossRef] []
22. DeBerardinis R.J., Cheng T. Q’s next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 2010;29:313–324. doi: 10.1038/onc.2009.358. [PMC free article] [PubMed] [CrossRef] []
23. Yang L., Venneti S., Nagrath D. Glutaminolysis: A hallmark of cancer metabolism. Ann. Rev. Biomed. Eng. 2017;19:163–194. doi: 10.1146/annurev-bioeng-071516-044546. [PubMed] [CrossRef] []
24. Wise D.R., Thompson C.B. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci. 2010;35:427–433. doi: 10.1016/j.tibs.2010.05.003. [PMC free article] [PubMed] [CrossRef] []
25. Hassanein M., Hoeksema M.D., Shiota M., Qian J., Harris B.K., Chen H., Clark J.E., Alborn W.E., Eisenberg R., Massion P.P. Slc1a5 mediates glutamine transport required for lung cancer cell growth and survival. Clin. Cancer Res. 2013;19:560–570. doi: 10.1158/1078-0432.CCR-12-2334. [PMC free article] [PubMed] [CrossRef] []
26. Kaira K., Oriuchi N., Takahashi T., Nakagawa K., Ohde Y., Okumura T., Murakami H., Shukuya T., Kenmotsu H., Naito T., et al. Lat1 expression is closely associated with hypoxic markers and mtor in resected non-small cell lung cancer. Am. J. Trans. Res. 2011;3:468–478. [PMC free article] [PubMed] []
27. Takeuchi K., Ogata S., Nakanishi K., Ozeki Y., Hiroi S., Tominaga S., Aida S., Matsuo H., Sakata T., Kawai T. Lat1 expression in non-small-cell lung carcinomas: Analyses by semiquantitative reverse transcription-pcr (237 cases) and immunohistochemistry (295 cases) Lung Cancer. 2010;68:58–65. doi: 10.1016/j.lungcan.2009.05.020. [PubMed] [CrossRef] []
28. Imai H., Kaira K., Oriuchi N., Shimizu K., Tominaga H., Yanagitani N., Sunaga N., Ishizuka T., Nagamori S., Promchan K., et al. Inhibition of l-type amino acid transporter 1 has antitumor activity in non-small cell lung cancer. Anticancer Res. 2010;30:4819–4828. [PubMed] []
29. Ji X., Qian J., Rahman S.M.J., Siska P.J., Zou Y., Harris B.K., Hoeksema M.D., Trenary I.A., Heidi C., Eisenberg R., et al. Xct (slc7a11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene. 2018;37:5007–5019. doi: 10.1038/s41388-018-0307-z. [PMC free article] [PubMed] [CrossRef] []
30. Baek S., Choi C.M., Ahn S.H., Lee J.W., Gong G., Ryu J.S., Oh S.J., Bacher-Stier C., Fels L., Koglin N., et al. Exploratory clinical trial of (4s)-4-(3-fluoropropyl)-l-glutamate for imaging xc-transporter using positron emission tomography in patients with non-small cell lung or breast cancer. Clin. Cancer Res. 2012;18:5427–5437. doi: 10.1158/1078-0432.CCR-12-0214. [PubMed] [CrossRef] []
31. Katt W.P., Cerione R.A. Glutaminase regulation in cancer cells: A druggable chain of events. Drug Discov. Today. 2014;19:450–457. doi: 10.1016/j.drudis.2013.10.008. [PMC free article] [PubMed] [CrossRef] []
32. Cooper A.J., Shurubor Y.I., Dorai T., Pinto J.T., Isakova E.P., Deryabina Y.I., Denton T.T., Krasnikov B.F. Omega-amidase: An underappreciated, but important enzyme in l-glutamine and l-asparagine metabolism; relevance to sulfur and nitrogen metabolism, tumor biology and hyperammonemic diseases. Amino Acids. 2016;48:1–20. doi: 10.1007/s00726-015-2061-7. [PubMed] [CrossRef] []
33. van den Heuvel A.P., Jing J., Wooster R.F., Bachman K.E. Analysis of glutamine dependency in non-small cell lung cancer: Gls1 splice variant gac is essential for cancer cell growth. Cancer Biol. Ther. 2012;13:1185–1194. doi: 10.4161/cbt.21348. [PMC free article] [PubMed] [CrossRef] []
34. Hu W., Zhang C., Wu R., Sun Y., Levine A., Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. USA. 2010;107:7455–7460. doi: 10.1073/pnas.1001006107. [PMC free article] [PubMed] [CrossRef] []
35. Jiang Z.F., Wang M., Xu J.L., Ning Y.J. Hypoxia promotes mitochondrial glutamine metabolism through hif1alpha-gdh pathway in human lung cancer cells. Biochem. Biophys. Res. Commun. 2017;483:32–38. doi: 10.1016/j.bbrc.2017.01.015. [PubMed] [CrossRef] []
36. Mizushima N., Levine B., Cuervo A.M., Klionsky D.J. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–1075. doi: 10.1038/nature06639. [PMC free article] [PubMed] [CrossRef] []
37. Eng C.H., Yu K., Lucas J., White E., Abraham R.T. Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 2010;3:ra31. doi: 10.1126/scisignal.2000911. [PubMed] [CrossRef] []
38. Ghesquiere B., Wong B.W., Kuchnio A., Carmeliet P. Metabolism of stromal and immune cells in health and disease. Nature. 2014;511:167–176. doi: 10.1038/nature13312. [PubMed] [CrossRef] []
39. Davidson S.M., Papagiannakopoulos T., Olenchock B.A., Heyman J.E., Keibler M.A., Luengo A., Bauer M.R., Jha A.K., O’Brien J.P., Pierce K.A., et al. Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 2016;23:517–528. doi: 10.1016/j.cmet.2016.01.007. [PMC free article] [PubMed] [CrossRef] []
40. Yang L., Achreja A., Yeung T.L., Mangala L.S., Jiang D., Han C., Baddour J., Marini J.C., Ni J., Nakahara R., et al. Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironment-regulated cancer cell growth. Cell Metab. 2016;24:685–700. doi: 10.1016/j.cmet.2016.10.011. [PubMed] [CrossRef] []
41. Kim J., Hu Z., Cai L., Li K., Choi E., Faubert B., Bezwada D., Rodriguez-Canales J., Villalobos P., Lin Y.F., et al. Cps1 maintains pyrimidine pools and DNA synthesis in kras/lkb1-mutant lung cancer cells. Nature. 2017;546:168–172. doi: 10.1038/nature22359. [PMC free article] [PubMed] [CrossRef] []
42. Lee J.S., Kang J.H., Lee S.H., Hong D., Son J., Hong K.M., Song J., Kim S.Y. Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in nsclc. Cell Death Dis. 2016;7:e2511. doi: 10.1038/cddis.2016.404. [PMC free article] [PubMed] [CrossRef] []
43. Sellers K., Fox M.P., Bousamra M., 2nd, Slone S.P., Higashi R.M., Miller D.M., Wang Y., Yan J., Yuneva M.O., Deshpande R., et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Investig. 2015;125:687–698. doi: 10.1172/JCI72873. [PMC free article] [PubMed] [CrossRef] []
44. Schulze A., Harris A.L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012;491:364–373. doi: 10.1038/nature11706. [PubMed] [CrossRef] []
45. Wise D.R., Ward P.S., Shay J.E., Cross J.R., Gruber J.J., Sachdeva U.M., Platt J.M., DeMatteo R.G., Simon M.C., Thompson C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA. 2011;108:19611–19616. doi: 10.1073/pnas.1117773108. [PMC free article] [PubMed] [CrossRef] []
46. Solaini G., Sgarbi G., Baracca A. Oxidative phosphorylation in cancer cells. Biomed. Biochim. Acta. 2011;1807:534–542. doi: 10.1016/j.bbabio.2010.09.003. [PubMed] [CrossRef] []
47. Santos C.R., Schulze A. Lipid metabolism in cancer. FEBS J. 2012;279:2610–2623. doi: 10.1111/j.1742-4658.2012.08644.x. [PubMed] [CrossRef] []
48. Tan F., Jiang Y., Sun N., Chen Z., Lv Y., Shao K., Li N., Qiu B., Gao Y., Li B., et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol. Cell. Proteom. 2012;11:M111-008821. doi: 10.1074/mcp.M111.008821. [PMC free article] [PubMed] [CrossRef] []
49. Rydstrom J. Mitochondrial nadph, transhydrogenase and disease. Biomed. Biochim. Acta. 2006;1757:721–726. doi: 10.1016/j.bbabio.2006.03.010. [PubMed] [CrossRef] []
50. Metallo C.M., Gameiro P.A., Bell E.L., Mattaini K.R., Yang J., Hiller K., Jewell C.M., Johnson Z.R., Irvine D.J., Guarente L., et al. Reductive glutamine metabolism by idh1 mediates lipogenesis under hypoxia. Nature. 2011;481:380–384. doi: 10.1038/nature10602. [PMC free article] [PubMed] [CrossRef] []
51. Corbet C., Draoui N., Polet F., Pinto A., Drozak X., Riant O., Feron O. The sirt1/hif2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res. 2014;74:5507–5519. doi: 10.1158/0008-5472.CAN-14-0705. [PubMed] [CrossRef] []
52. Corbet C., Pinto A., Martherus R., Santiago de Jesus J.P., Polet F., Feron O. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 2016;24:311–323. doi: 10.1016/j.cmet.2016.07.003. [PubMed] [CrossRef] []
53. Champe P.C., Harvey R.A. Nucleotide metabolism. Biochemistry. 2011:291–305. []
54. Abdel-Haleem A.M., Lewis N.E., Jamshidi N., Mineta K., Gao X., Gojobori T. The emerging facets of non-cancerous warburg effect. Front. Endocrinol. 2017 doi: 10.3389/fendo.2017.00279. [PMC free article] [PubMed] [CrossRef] []
55. Wells L., Vosseller K., Hart G.W. A role for n-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell. Mol. Life Sci. 2003;60:222–228. doi: 10.1007/s000180300017. [PubMed] [CrossRef] []
56. Mi W., Gu Y., Han C., Liu H., Fan Q., Zhang X., Cong Q., Yu W. O-glcnacylation is a novel regulator of lung and colon cancer malignancy. Biomed. Biochim. Acta. 2011;1812:514–519. doi: 10.1016/j.bbadis.2011.01.009. [PubMed] [CrossRef] []
57. Stine Z.E., Walton Z.E., Altman B.J., Hsieh A.L., Dang C.V. Myc, metabolism, and cancer. Cancer Discov. 2015;5:1024–1039. doi: 10.1158/2159-8290.CD-15-0507. [PMC free article] [PubMed] [CrossRef] []
58. Jozwiak P., Forma E., Brys M., Krzeslak A. O-glcnacylation and metabolic reprograming in cancer. Front. Endocrinol. 2014 doi: 10.3389/fendo.2014.00145. [PMC free article] [PubMed] [CrossRef] []
59. Krepela E., Prochazka J., Karova B., Cermak J., Roubkova H., Cathepsin B. thiols and cysteine protease inhibitors in squamous-cell lung cancer. Neoplasma. 1997;44:219–239. [PubMed] []
60. Fahrmann J.F., Grapov D.D., Wanichthanarak K., DeFelice B.C., Salemi M.R., Rom W.N., Gandara D.R., Phinney B.S., Fiehn O., Pass H., et al. Integrated metabolomics and proteomics highlight altered nicotinamide- and polyamine pathways in lung adenocarcinoma. Carcinogenesis. 2017 doi: 10.1093/carcin/bgw205. [PMC free article] [PubMed] [CrossRef] []
61. Gamcsik M.P., Kasibhatla M.S., Teeter S.D., Colvin O.M. Glutathione levels in human tumors. Biomarkers. 2012;17:671–691. doi: 10.3109/1354750X.2012.715672. [PMC free article] [PubMed] [CrossRef] []
62. Nicklin P., Bergman P., Zhang B., Triantafellow E., Wang H., Nyfeler B., Yang H., Hild M., Kung C., Wilson C., et al. Bidirectional transport of amino acids regulates mtor and autophagy. Cell. 2009;136:521–534. doi: 10.1016/j.cell.2008.11.044. [PMC free article] [PubMed] [CrossRef] []
63. Fuchs B.C., Finger R.E., Onan M.C., Bode B.P. Asct2 silencing regulates mammalian target-of-rapamycin growth and survival signaling in human hepatoma cells. Am. J. Physiol. Cell Physiol. 2007;293:C55–C63. doi: 10.1152/ajpcell.00330.2006. [PubMed] [CrossRef] []
64. Duran R.V., Oppliger W., Robitaille A.M., Heiserich L., Skendaj R., Gottlieb E., Hall M.N. Glutaminolysis activates rag-mtorc1 signaling. Mol. Cell. 2012;47:349–358. doi: 10.1016/j.molcel.2012.05.043. [PubMed] [CrossRef] []
65. Massarelli E., Papadimitrakopoulou V.A. Phosphatidykinosital 3-kinase and mammalian target of rapamycin pathway in non-small-cell lung cancer. J. Thorac. Oncol. 2012;7(Suppl. 5):S379–S382. doi: 10.1097/JTO.0b013e31826df0f0. [PubMed] [CrossRef] []
66. Menon S., Manning B.D. Common corruption of the mtor signaling network in human tumors. Oncogene. 2008;27(Suppl. 2):S43–S51. doi: 10.1038/onc.2009.352. [PMC free article] [PubMed] [CrossRef] []
67. Rodenhuis S., Slebos R.J. Clinical significance of ras oncogene activation in human lung cancer. Cancer Res. 1992;52(Suppl. 9):2665s–2669s. [PubMed] []
68. Traves P.G., de Atauri P., Marin S., Pimentel-Santillana M., Rodriguez-Prados J.C., Marin de Mas I., Selivanov V.A., Martin-Sanz P., Bosca L., Cascante M. Relevance of the mek/erk signaling pathway in the metabolism of activated macrophages: A metabolomic approach. J. Immunol. 2012;188:1402–1410. doi: 10.4049/jimmunol.1101781. [PubMed] [CrossRef] []
69. Kim D.S., Jue S.S., Lee S.Y., Kim Y.S., Shin S.Y., Kim E.C. Effects of glutamine on proliferation, migration, and differentiation of human dental pulp cells. J. Endod. 2014;40:1087–1094. doi: 10.1016/j.joen.2013.11.023. [PubMed] [CrossRef] []
70. Yuan L., Sheng X., Willson A.K., Roque D.R., Stine J.E., Guo H., Jones H.M., Zhou C., Bae-Jump V.L. Glutamine promotes ovarian cancer cell proliferation through the mtor/s6 pathway. Endocr. Relat. Cancer. 2015;22:577–591. doi: 10.1530/ERC-15-0192. [PMC free article] [PubMed] [CrossRef] []
71. Metallo C.M., Vander Heiden M.G. Metabolism strikes back: Metabolic flux regulates cell signaling. Genes Dev. 2010;24:2717–2722. doi: 10.1101/gad.2010510. [PMC free article] [PubMed] [CrossRef] []
72. Lee S.Y., Jeon H.M., Ju M.K., Jeong E.K., Kim C.H., Park H.G., Han S.I., Kang H.S. Dlx-2 and glutaminase upregulate epithelial-mesenchymal transition and glycolytic switch. Oncotarget. 2016;7:7925–7939. doi: 10.18632/oncotarget.6879. [PMC free article] [PubMed] [CrossRef] []
73. Reid M.A., Wang W.I., Rosales K.R., Welliver M.X., Pan M., Kong M. The b55alpha subunit of pp2a drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol. Cell. 2013;50:200–211. doi: 10.1016/j.molcel.2013.02.008. [PubMed] [CrossRef] []
74. Kim N.H., Kim H.S., Li X.Y., Lee I., Choi H.S., Kang S.E., Cha S.Y., Ryu J.K., Yoon D., Fearon E.R., et al. A p53/mirna-34 axis regulates snail1-dependent cancer cell epithelial-mesenchymal transition. J. Cell Biol. 2011;195:417–433. doi: 10.1083/jcb.201103097. [PMC free article] [PubMed] [CrossRef] []
75. Abulaiti A., Shintani Y., Funaki S., Nakagiri T., Inoue M., Sawabata N., Minami M., Okumura M. Interaction between non-small-cell lung cancer cells and fibroblasts via enhancement of tgf-beta signaling by il-6. Lung Cancer. 2013;82:204–213. doi: 10.1016/j.lungcan.2013.08.008. [PubMed] [CrossRef] []
76. Shi J., Feng J., Xie J., Mei Z., Shi T., Wang S., Du Y., Yang G., Wu Y., Cheng X., et al. Targeted blockade of tgf-beta and il-6/jak2/stat3 pathways inhibits lung cancer growth promoted by bone marrow-derived myofibroblasts. Sci. Rep. 2017 doi: 10.1038/s41598-017-09020-8. [PMC free article] [PubMed] [CrossRef] []
77. Bernard K., Logsdon N.J., Benavides G.A., Sanders Y., Zhang J., Darley-Usmar V.M., Thannickal V.J. Glutaminolysis is required for transforming growth factor-beta1-induced myofibroblast differentiation and activation. J. Biol. Chem. 2018;293:1218–1228. doi: 10.1074/jbc.RA117.000444. [PMC free article] [PubMed] [CrossRef] []
78. Zhang S., Che D., Yang F., Chi C., Meng H., Shen J., Qi L., Liu F., Lv L., Li Y., et al. Tumor-associated macrophages promote tumor metastasis via the tgf-beta/sox9 axis in non-small cell lung cancer. Oncotarget. 2017;8:99801–99815. [PMC free article] [PubMed] []
79. Mates J.M., Segura J.A., Martin-Rufian M., Campos-Sandoval J.A., Alonso F.J., Marquez J. Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 2013;13:514–534. doi: 10.2174/1566524011313040005. [PubMed] [CrossRef] []
80. Baskerville A., Hambleton P., Benbough J.E. Pathological features of glutaminase toxicity. Br. J. Exp. Pathol. 1980;61:132–138. [PMC free article] [PubMed] []
81. Avramis V.I., Panosyan E.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: The past, the present and recommendations for the future. Clin. Pharmacokinet. 2005;44:367–393. doi: 10.2165/00003088-200544040-00003. [PubMed] [CrossRef] []
82. Hassanein M., Qian J., Hoeksema M.D., Wang J., Jacobovitz M., Ji X., Harris F.T., Harris B.K., Boyd K.L., Chen H., et al. Targeting slc1a5-mediated glutamine dependence in non-small cell lung cancer. Int. J. Cancer. 2015;137:1587–1597. doi: 10.1002/ijc.29535. [PMC free article] [PubMed] [CrossRef] []
83. Schulte M.L., Fu A., Zhao P., Li J., Geng L., Smith S.T., Kondo J., Coffey R.J., Johnson M.O., Rathmell J.C., et al. Pharmacological blockade of asct2-dependent glutamine transport leads to antitumor efficacy in preclinical models. Nat. Med. 2018;24:194–202. doi: 10.1038/nm.4464. [PMC free article] [PubMed] [CrossRef] []
84. Ahluwalia G.S., Grem J.L., Hao Z., Cooney D.A. Metabolism and action of amino acid analog anti-cancer agents. Pharmacol. Ther. 1990;46:243–271. doi: 10.1016/0163-7258(90)90094-I. [PubMed] [CrossRef] []
85. Mueller C., Al-Batran S., Jaeger E., Schmidt B., Bausch M., Unger C., Sethuraman N. A phase iia study of pegylated glutaminase (peg-pga) plus 6-diazo-5-oxo-l-norleucine (don) in patients with advanced refractory solid tumors. J. Clin. Oncol. 2008 doi: 10.1200/jco.2008.26.15_suppl.2533. [CrossRef] []
86. Khan N., Mukhtar H. Dietary agents for prevention and treatment of lung cancer. Cancer Lett. 2015;359:155–164. doi: 10.1016/j.canlet.2015.01.038. [PMC free article] [PubMed] [CrossRef] []
87. Vacanti N.M., Divakaruni A.S., Green C.R., Parker S.J., Henry R.R., Ciaraldi T.P., Murphy A.N., Metallo C.M. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol. Cell. 2014;56:425–435. doi: 10.1016/j.molcel.2014.09.024. [PMC free article] [PubMed] [CrossRef] []
88. Newsholme P., Curi R., Pithon Curi T.C., Murphy C.J., Garcia C., Pires de Melo M. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease. J. Nutr. Biochem. 1999;10:316–324. doi: 10.1016/S0955-2863(99)00022-4. [PubMed] [CrossRef] []
89. Lieberman B.P., Ploessl K., Wang L., Qu W., Zha Z., Wise D.R., Chodosh L.A., Belka G., Thompson C.B., Kung H.F. Pet imaging of glutaminolysis in tumors by 18f-(2s,4r)4-fluoroglutamine. J. Nucl. Med. 2011;52:1947–1955. doi: 10.2967/jnumed.111.093815. [PubMed] [CrossRef] []
90. Estrela J.M., Ortega A., Obrador E. Glutathione in cancer biology and therapy. Crit. Rev. Clin. Lab. Sci. 2006;43:143–181. doi: 10.1080/10408360500523878. [PubMed] [CrossRef] []
91. Bender T., Martinou J.C. The mitochondrial pyruvate carrier in health and disease: To carry or not to carry? Biochim. Biophys. Acta. 2016;1863:2436–2442. doi: 10.1016/j.bbamcr.2016.01.017. [PubMed] [CrossRef] []
92. Jin L., Li D., Alesi G.N., Fan J., Kang H.B., Lu Z., Boggon T.J., Jin P., Yi H., Wright E.R., et al. Glutamate dehydrogenase 1 signals through antioxidant glutathione peroxidase 1 to regulate redox homeostasis and tumor growth. Cancer Cell. 2015;27:257–270. doi: 10.1016/j.ccell.2014.12.006. [PMC free article] [PubMed] [CrossRef] []

Articles from International Journal of Molecular Sciences are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)


Plaats een reactie ...

Reageer op "Kanker is een stofwisselingsziekte - metabolische ziekte die met specifieke voeding - dieet en voedingssuppletie o.a. 6-Diazo-5-oxo-L-norleucine (DON) vaak op te lossen zou zijn aldus prof. dr. Thomas Seyfried."


Gerelateerde artikelen