28 maart 2025: bron: Science Translational Medicine

Nitisinon - Orfadin, een geneesmiddel dat effectief blijkt voor de behandeling van een zeldzame stofwisselingsziekte, wordt dodelijk voor muggen die de tropische ziekte malaria verspreiden wanneer het gemengd wordt met menselijk bloed. De studie werd uitgevoerd op de Anopheles gambiae mug, een mug die vooral in Afrika verantwoordelijk is voor de verspreiding van malaria in Afrikaanse landen. Het middel bleek ook effectief tegen muggen die resistent zijn tegen insecticiden. 

Deze resultaten kwamen uit een internationale studie die woensdag is gepubliceerd in het vaktijdschrift Science Translational Medicine. Omdat Nitisinon - Orfadin heel erg duur is lijkt dit nog geen optie om dit grootschalig in te zetten. Al zeggen de onderzoekers wel dat de hoge prijs voor Nitisinon - Orfadin ook wordt bepaald door de hoge productiekosten voor relatief weinig behandlingen bij patiënten met de zeldzame stofwisselingsziekte. De onderzoekers gaan nu verdere studies opzetten om de effectiefste dosering te bepalen. 

Ik vraag me wel ook af wat er zal gebeuren met vogels en insecten die de stervende of reeds dode malariamuggen eten. Want als dit medicijn in bloed giftig is voor muggen voor welke andere dieren zal Nitisinon - Orfadin dan ook giftig zijn? Al zullen de onderzokers daar ook wel rekning mee houden en onderzoeken hoop ik. 

Het abstract van deze studie is gepubliceerd in Science Translational Medicine:

Editor’s summary

Nitisinone, an FDA-approved drug used to treat rare metabolic disorders, was investigated by Haines and colleagues for its ability to kill the malaria mosquito vector Anopheles gambiae. The authors show that nitisinone targeted a crucial enzyme that mosquitoes need to digest their blood meal. When female Anopheles mosquitoes in the laboratory consumed blood containing nitisinone, the drug was lethal to young, old, and insecticide-resistant populations and outperformed the mosquitocidal drug ivermectin. Even at low therapeutic doses, nitisinone remained deadly to mosquitoes. These findings warrant further investigation of nitisinone for vector control and the prevention of malaria transmission. —Orla Smith

Abstract

One approach to interrupting the transmission of insect-borne diseases that is successfully used in veterinary medicine is exploiting the ability of antiparasitic drugs to make vertebrate blood toxic for blood-feeding insects. Recent studies have identified 4-hydroxyphenylpyruvate dioxygenase (HPPD), an enzyme of the tyrosine detoxification pathway, as essential for hematophagous arthropods to digest their blood meals. Such blood-feeding insects include anopheline mosquitoes, which transmit malaria-causing Plasmodium parasites. A US Food and Drug Administration–approved HPPD enzyme inhibitor called nitisinone is a drug used to treat rare human-inherited disorders of the tyrosine pathway. Here, we demonstrate that feeding human blood containing nitisinone to insectary-reared female Anopheles gambiae mosquitoes was mosquitocidal to both young and old mosquitoes as well as insecticide-resistant Anopheles strains. Pharmacokinetic-pharmacodynamic (PK/PD) modeling of nitisinone’s dose-response relationship (when administered at the highest recommended doses for adults and children) demonstrated improved efficacy against mosquitoes compared with the gold standard endectocidal drug, ivermectin. Furthermore, blood samples from individuals with alkaptonuria (a rare genetic metabolic disorder in the tyrosine degradation pathway), who were taking a daily low dose of 2 milligrams of nitisinone, were shown to be lethal to mosquitoes. Thus, inhibiting the Anopheles HPPD enzyme with nitisinone warrants further investigation as a complementary intervention for vector control and the prevention of malaria transmission.

 

Supplementary Materials

The PDF file includes:

Materials and Methods
Figs. S1 to S7
Tables S1 to S13

Other Supplementary Material for this manuscript includes the following:

MDAR Reproducibility Checklist

REFERENCES AND NOTES

1
World Health Organization, “World malaria report 2022” (WHO, 2022).
2
World Health Organization, “Global technical strategy for malaria 2016–2030” (WHO, 2017).
3
S. Bhatt, D. J. Weiss, E. Cameron, D. Bisanzio, B. Mappin, U. Dalrymple, K. E. Battle, C. L. Moyes, A. Henry, P. A. Eckhoff, E. A. Wenger, O. Briët, M. A. Penny, T. A. Smith, A. Bennett, J. Yukich, T. P. Eisele, J. T. Griffin, C. A. Fergus, M. Lynch, F. Lindgren, J. M. Cohen, C. L. J. Murray, D. L. Smith, S. I. Hay, R. E. Cibulskis, P. W. Gething, The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).
4
O. J. Brady, H. Charles, J. Godfray, A. J. Tatem, P. W. Gething, J. M. Cohen, F. E. McKenzie, T. A. Perkins, R. C. Reiner, L. S. Tusting, T. W. Scott, S. W. Lindsay, S. I. Hay, D. L. Smith, Adult vector control, mosquito ecology and malaria transmission. Int. Health 7, 121–129 (2015).
5
A. M. Dondorp, F. Nosten, P. Yi, D. Das, A. P. Phyo, J. Tarning, K. M. Lwin, F. Ariey, W. Hanpithakpong, S. J. Lee, P. Ringwald, K. Silamut, M. Imwong, K. Chotivanich, P. Lim, T. Herdman, S. S. An, S. Yeung, P. Singhasivanon, N. P. J. Day, N. Lindegardh, D. Socheat, N. J. White, Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).
6
R. W. Van Der Pluijm, M. Imwong, N. H. Chau, N. T. Hoa, N. T. Thuy-Nhien, N. V. Thanh, P. Jittamala, B. Hanboonkunupakarn, K. Chutasmit, C. Saelow, R. Runjarern, W. Kaewmok, R. Tripura, T. J. Peto, S. Yok, S. Suon, S. Sreng, S. Mao, S. Oun, S. Yen, C. Amaratunga, D. Lek, R. Huy, M. Dhorda, K. Chotivanich, E. A. Ashley, M. Mukaka, N. Waithira, P. Y. Cheah, R. J. Maude, R. Amato, R. D. Pearson, S. Gonçalves, C. G. Jacob, W. L. Hamilton, R. M. Fairhurst, J. Tarning, M. Winterberg, D. P. Kwiatkowski, S. Pukrittayakamee, T. T. Hien, N. P. Day, O. Miotto, N. J. White, A. M. Dondorp, Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: A prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952–961 (2019).
7
B. Balikagala, N. Fukuda, M. Ikeda, O. T. Katuro, S.-I. Tachibana, M. Yamauchi, W. Opio, S. Emoto, D. A. Anywar, E. Kimura, N. M. Q. Palacpac, E. I. Odongo-Aginya, M. Ogwang, T. Horii, T. Mita, Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 385, 1163–1171 (2021).
8
P. A. Hancock, A. Wiebe, K. A. Gleave, S. Bhatt, E. Cameron, A. Trett, D. Weetman, D. L. Smith, J. Hemingway, M. Coleman, P. W. Gething, C. L. Moyes, Associated patterns of insecticide resistance in field populations of malaria vectors across Africa. Proc. Natl. Acad. Sci. U.S.A. 115, 5938–5943 (2018).
9
H. Alout, B. Roche, R. K. Dabiré, A. Cohuet, Consequences of insecticide resistance on malaria transmission. PLOS Pathog. 13, e1006499 (2017).
10
E. K. Thomsen, G. Koimbu, J. Pulford, S. Jamea-Maiasa, Y. Ura, J. B. Keven, P. M. Siba, I. Mueller, M. W. Hetzel, L. J. Reimer, Mosquito behaviour change after distribution of bednets results in decreased protection against malaria exposure. J. Infect. Dis. 215, 790–797 (2016).
11
T. Chareonviriyaphap, M. J. Bangs, W. Suwonkerd, M. Kongmee, V. Corbel, R. Ngoen-Klan, Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit. Vectors 6, 280 (2013).
12
T. L. Russell, N. J. Govella, S. Azizi, C. J. Drakeley, S. P. Kachur, G. F. Killeen, Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar. J. 10, 80 (2011).
13
N. Moiroux, M. B. Gomez, C. Pennetier, E. Elanga, A. Djènontin, F. Chandre, I. Djègbé, H. Guis, V. Corbel, Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J. Infect. Dis. 206, 1622–1629 (2012).
14
G. F. Killeen, Characterizing, controlling and eliminating residual malaria transmission. Malar. J. 13, 330 (2014).
15
P. Carnevale, S. Manguin, Review of issues on residual malaria transmission. J. Infect. Dis. 223, S61–S80 (2021).
16
B. D. Foy, K. C. Kobylinski, I. M. D. Silva, J. L. Rasgon, M. Sylla, Endectocides for malaria control. Trends Parasitol. 27, 423–428 (2011).
17
E. A. Ottesen, P. J. Hooper, M. Bradley, G. Biswas, The global programme to eliminate lymphatic filariasis: Health impact after 8 Years. PLOS Negl. Trop. Dis. 2, e317 (2008).
18
U. Amazigo, The African programme for onchocerciasis control (APOC). Ann. Trop. Med. Parasitol. 102, 19–22 (2008).
19
Mectizan Donation Program, “2021 Annual highlights: Community-based health programs respond with resilience” (Mectizan, 2021); https://mectizan.org/news_resources/2021-mectizan-donation-program-annual-highlights/.
20
C. Chaccour, J. Lines, C. J. M. Whitty, Effect of ivermectin on Anopheles gambiae mosquitoes fed on humans: The potential of oral insecticides in malaria control. J. Infect. Dis. 202, 113–116 (2010).
21
M. Sylla, M. Gray, P. L. Chapman, M. D. Sarr, J. L. Rasgon, Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar. J. 9, 365 (2010).
22
M. R. Smit, E. O. Ochomo, G. Aljayyoussi, T. K. Kwambai, B. O. Abong’o, T. Chen, T. Bousema, H. C. Slater, D. Waterhouse, N. M. Bayoh, J. E. Gimnig, A. M. Samuels, M. R. Desai, P. A. Phillips-Howard, S. K. Kariuki, D. Wang, S. A. Ward, F. O. ter Kuile, Safety and mosquitocidal efficacy of high-dose ivermectin when co-administered with dihydroartemisinin-piperaquine in Kenyan adults with uncomplicated malaria (IVERMAL): A randomised, double-blind, placebo-controlled trial. Lancet Infect. Dis. 18, 615–626 (2018).
23
H. C. Slater, L. C. Okell, P. G. T. Walker, T. Bousema, A. C. Ghani, The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: A modelling study. J. Infect. Dis. 210, 1972–1980 (2014).
24
J. Burrows, H. Slater, F. Macintyre, S. Rees, A. Thomas, F. Okumu, R. Hooft Van Huijsduijnen, S. Duparc, T. N. C. Wells, A discovery and development roadmap for new endectocidal transmission-blocking agents in malaria. Malar. J. 17, 1–15 (2018).
25
H. R. Meredith, L. Furuya-Kanamori, L. Yakob, Optimising systemic insecticide use to improve malaria control. BMJ Glob. Health 4, e001776 (2019).
26
H. C. Slater, B. D. Foy, K. Kobylinski, C. Chaccour, O. J. Watson, J. Hellewell, G. Aljayyoussi, T. Bousema, J. Burrows, U. D’Alessandro, H. Alout, F. O. Ter Kuile, P. G. T. Walker, A. C. Ghani, M. R. Smit, Ivermectin as a novel complementary malaria control tool to reduce incidence and prevalence: A modelling study. Lancet Infect. Dis. 20, 498–508 (2020).
27
A. Marathe, R. Shi, A. Mendez-Lopez, Z. Hu, B. Lewis, R. Rabinovich, C. J. Chaccour, C. Rist, Potential impact of 5 years of ivermectin mass drug administration on malaria outcomes in high burden countries. BMJ Glob. Health 6, e006424 (2021).
28
E. D. Dabira, H. M. Soumare, B. Conteh, F. Ceesay, M. O. Ndiath, J. Bradley, N. Mohammed, B. Kandeh, M. R. Smit, H. Slater, K. Peeters Grietens, H. Broekhuizen, T. Bousema, C. Drakeley, S. W. Lindsay, J. Achan, U. D’Alessandro, Mass drug administration of ivermectin and dihydroartemisinin–piperaquine against malaria in settings with high coverage of standard control interventions: A cluster-randomised controlled trial in the Gambia. Lancet Infect. Dis. 22, 519–528 (2022).
29
C. Chaccour, A. Casellas, F. Hammann, P. Ruiz-Castillo, P. Nicolas, J. Montaña, M. Mael, P. Selvaraj, U. Duthaler, S. Mrema, M. Kakolwa, I. Lyimo, F. Okumu, A. Marathe, R. Schürch, E. Elobolobo, C. Sacoor, F. Saute, K. Xia, C. Jones, C. Rist, M. Maia, N. R. Rabinovich, BOHEMIA: Broad one health endectocide-based malaria intervention in Africa—A phase III cluster-randomized, open-label, clinical trial to study the safety and efficacy of ivermectin mass drug administration to reduce malaria transmission in two African set. Trials 24, 128 (2023).
30
S. Lindstedt, Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340, 813–817 (1992).
31
L. R. Ranganath, A. M. Milan, A. T. Hughes, J. J. Dutton, R. Fitzgerald, M. C. Briggs, H. Bygott, E. E. Psarelli, T. F. Cox, J. A. Gallagher, J. C. Jarvis, C. Van Kan, A. K. Hall, D. Laan, B. Olsson, J. Szamosi, M. Rudebeck, T. Kullenberg, A. Cronlund, L. Svensson, C. Junestrand, H. Ayoob, O. G. Timmis, N. Sireau, K.-H. Le Quan Sang, F. Genovese, D. Braconi, A. Santucci, M. Nemethova, A. Zatkova, J. McCaffrey, P. Christensen, G. Ross, R. Imrich, J. Rovensky, Suitability of nitisinone in alkaptonuria 1 (SONIA 1): An international, multicentre, randomised, open-label, no-treatment controlled, parallel-group, dose-response study to investigate the effect of once daily nitisinone on 24-h urinary homogentisic acid. Ann. Rheum. Dis. 75, 362–367 (2016).
32
L. R. Ranganath, E. E. Psarelli, J. B. Arnoux, D. Braconi, M. C. Briggs, A. Broijersen, N. Loftus, H. Bygott, T. F. Cox, A. S. Davison, J. P. Dillon, M. Fisher, R. Fitzgerald, F. Genovese, Efficacy and safety of once-daily nitisinone for patients with alkaptonuria (SONIA 2): An international, multicentre, open-label, randomised controlled trial. Lancet Diabetes Endocrinol. 8, 762–772 (2020).
33
G. A. Mitchell, M. Grompe, M. Lambert, R. M. Tanguay, “Hypertyrosinemia” in Metabolic and Molecular Bases of Inherited Disease, D. L. Valle, S. Antonarakis, A. Ballabio,A. L. Beaudet, G. A. Mitchell, Eds. (McGraw Hill Education, 2019).
34
M. Sterkel, H. D. Perdomo, M. G. Guizzo, A. B. F. Barletta, R. D. Nunes, F. A. Dias, M. H. F. Sorgine, P. L. Oliveira, Tyrosine detoxification is an essential trait in the life history of blood-feeding arthropods. Curr. Biol. 26, 2188–2193 (2016).
35
M. Sterkel, L. R. Haines, A. Casas-Sánchez, V. O. Adung’a, R. J. Vionette-Amaral, S. Quek, C. Rose, M. S. Dos Santos, N. G. Escude, H. M. Ismail, M. I. Paine, S. M. Barribeau, S. Wagstaff, J. I. Macrae, D. Masiga, L. Yakob, P. L. Oliveira, Á. Acosta-Serrano, Repurposing the orphan drug nitisinone to control the transmission of African trypanosomiasis. PLOS Biol. 19, e3000796 (2021).
36
M. A. Vergaray Ramirez, M. Sterkel, A. J. Martins, J. Bp Lima, P. L. Oliveira, On the use of inhibitors of 4-hydroxyphenylpyruvate dioxygenase as a vector-selective insecticide in the control of mosquitoes. Pest Manag. Sci. 78, 692–702 (2022).
37
Merck & Co., “Stromectol. FDA approved package insert” (2009); www.accessdata.fda.gov/drugsatfda_docs/label/2009/050742s026lbl.pdf.
38
M. R. Smit, E. O. Ochomo, D. Waterhouse, T. K. Kwambai, B. O. Abong’O, T. Bousema, N. M. Bayoh, J. E. Gimnig, A. M. Samuels, M. R. Desai, P. A. Phillips-Howard, S. K. Kariuki, D. Wang, F. O. Ter Kuile, S. A. Ward, G. Aljayyoussi, Pharmacokinetics-pharmacodynamics of high-dose ivermectin with dihydroartemisinin-piperaquine on mosquitocidal activity and QT-prolongation (IVERMAL). Clin. Pharmacol. Ther. 105, 388–401 (2019).
39
Centers for Disease Control and Prevention, “CDC Malaria - About malaria - Biology” (2020); www.cdc.gov/malaria/index.html.
40
S. V. Oliver, C. L. Lyons, B. D. Brooke, The effect of blood feeding on insecticide resistance intensity and adult longevity in the major malaria vector Anopheles funestus (Diptera: Culicidae). Sci. Rep. 12, 3877 (2022).
41
S. Rajatileka, J. Burhani, H. Ranson, Mosquito age and susceptibility to insecticides. Trans. R. Soc. Trop. Med. Hyg. 105, 247–253 (2011).
42
M. G. Machani, E. Ochomo, D. Sang, M. Bonizzoni, G. Zhou, A. K. Githeko, G. Yan, Y. A. Afrane, Influence of blood meal and age of mosquitoes on susceptibility to pyrethroids in Anopheles gambiae from western Kenya. Malar. J. 18, 112 (2019).
43
C. V. A. Edi, B. G. Koudou, C. M. Jones, D. Weetman, H. Ranson, Multiple insecticide resistance in Anopheles gambiae mosquitoes, southern Côte d’Ivoire. Emerg. Infect. Dis. 18, 1508–1511 (2012).
44
J. Williams, L. Flood, G. Praulins, V. A. Ingham, J. Morgan, R. S. Lees, H. Ranson, Characterisation of Anopheles strains used for laboratory screening of new vector control products. Parasit. Vectors 12, 522 (2019).
45
B. Olsson, T. F. Cox, E. E. Psarelli, J. Szamosi, A. T. Hughes, A. M. Milan, A. K. Hall, J. Rovensky, L. R. Ranganath, Relationship between serum concentrations of nitisinone and its effect on homogentisic acid and tyrosine in patients with alkaptonuria. JIMD Rep. 24, 21–27 (2015).
46
F. Bendadi, T. J. De Koning, G. Visser, H. C. M. T. Prinsen, M. G. M. De Sain, N. Verhoeven-Duif, G. Sinnema, F. J. Van Spronsen, P. M. Van Hasselt, Impaired cognitive functioning in patients with tyrosinemia type I receiving nitisinone. J. Pediatr. 164, 398–401 (2014).
47
J. H. Hughes, P. J. M. Wilson, H. Sutherland, S. Judd, A. T. Hughes, A. M. Milan, J. C. Jarvis, G. Bou-Gharios, L. R. Ranganath, J. A. Gallagher, Dietary restriction of tyrosine and phenylalanine lowers tyrosinemia associated with nitisinone therapy of alkaptonuria. J. Inherit. Metab. Dis. 43, 259–268 (2020).
48
A. S. Davison, B. P. Norman, Alkaptonuria – Past, present and future. Adv. Clin. Chem. 114, 47–81 (2023).
49
W. R. Shaw, I. E. Holmdahl, M. A. Itoe, K. Werling, M. Marquette, D. G. Paton, N. Singh, C. O. Buckee, L. M. Childs, F. Catteruccia, Multiple blood feeding in mosquitoes shortens the Plasmodium falciparum incubation period and increases malaria transmission potential. PLOS Pathog. 16, e1009131 (2020).
50
S. H. Pooda, K. Mouline, T. De Meeûs, Z. Bengaly, P. Solano, Decrease in survival and fecundity of Glossina palpalis gambiensis vanderplank 1949 (DipteraGlossinidae) fed on cattle treated with single doses of ivermectin. Parasit. Vectors 6, 165 (2013).
51
M. G. Hall, M. F. Wilks, W. M. Provan, S. Eksborg, B. Lumholtz, Pharmacokinetics and pharmacodynamics of NTBC (2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione) and mesotrione, inhibitors of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) following a single dose to healthy male volunteers. Br. J. Clin. Pharmacol. 52, 169–177 (2001).
52
A. L. Ouedraogo, G. J. H. Bastiaens, A. B. Tiono, W. M. Guelbeogo, K. C. Kobylinski, A. Ouedraogo, A. Barry, E. C. Bougouma, I. Nebie, M. S. Ouattara, K. H. W. Lanke, L. Fleckenstein, R. W. Sauerwein, H. C. Slater, T. S. Churcher, S. B. Sirima, C. Drakeley, T. Bousema, Efficacy and safety of the mosquitocidal drug ivermectin to prevent malaria transmission after treatment: A double-blind, randomized, clinical trial. Clin. Infect. Dis. 60, 357–365 (2015).
53
P. Billingsley, F. Binka, C. Chaccour, B. D. Foy, S. Gold, M. Gonzalez-Silva, J. Jacobson, G. Jagoe, C. Jones, P. Kachur, K. Kobylinski, A. Last, J. V. Lavery, D. Mabey, L. Mboera, C. Mbogo, A. Mendez-Lopez, N. R. Rabinovich, S. Rees, F. Richards, C. Rist, J. Rockwood, P. Ruiz-Castillo, J. Sattabongkot, F. Saute, H. Slater, A. Steer, K. Xia, R. Zulliger, A roadmap for the development of ivermectin as a complementary malaria vector control tool. Am. J. Trop. Med. Hyg. 102, 3–24 (2020).
54
C. Chaccour, F. Hammann, N. R. Rabinovich, Ivermectin to reduce malaria transmission I. Phamacokinetic and pharmacodynamic cosiderations regarding efficacy and safety. Malar. J. 16, 161 (2017).
55
P. Nicolas, M. F. Maia, Q. Bassat, K. C. Kobylinski, W. Monteiro, N. R. Rabinovich, C. Menéndez, A. Bardají, C. Chaccour, Safety of oral ivermectin during pregnancy: A systematic review and meta-analysis. Lancet Glob. Health 8, e92–e100 (2020).
56
F. O. Richards Jr., Mass administration of ivermectin in areas where Loa loa is endemic. N. Engl. J. Med. 377, 2088–2090 (2017).
57
Drugs.com, “Orfadin suspension: Package insert/prescribing info” (2002); www.drugs.com/pro/orfadin-suspension.html.
58
P. J. McKiernan, Nitisinone in the treatment of hereditary tyrosinaemia type 1. Drugs 66, 743–750 (2006).
59
T. Zöggeler, G. Ramoser, A. Höller, M. Jörg-Streller, N. Janzen, A. Ramoni, S. Scholl-Bürgi, D. Karall, Nitisinone treatment during two pregnancies and breastfeeding in a woman with tyrosinemia type 1 – A case report. J. Pediatr. Endocrinol. Metab. 35, 259–265 (2022).
60
A. Vanclooster, R. Devlieger, W. Meersseman, A. Spraul, K. V. Kerckhove, P. Vermeersch, A. Meulemans, K. Allegaert, D. Cassiman, Pregnancy during nitisinone treatment for tyrosinaemia type I: First human experience. JIMD Rep. 5, 27–33 (2012).
61
R. Kassel, L. Sprietsma, D. A. Rudnick, Pregnancy in an NTBC-treated patient with hereditary tyrosinemia type I. J. Pediatr. Gastroenterol. Nutr. 60, e5–e7 (2015).
62
M. Khedr, M. S. Cooper, A. T. Hughes, A. M. Milan, A. S. Davison, B. P. Norman, H. Sutherland, J. C. Jarvis, R. Fitzgerald, L. Markinson, E. E. Psarelli, P. Ghane, N. E. P. Deutz, J. A. Gallagher, L. R. Ranganath, Nitisinone causes acquired tyrosinosis in alkaptonuria. J. Inherit. Metab. Dis. 43, 1014–1023 (2020).
63
A. M. Milan, A. T. Hughes, A. S. Davison, M. Khedr, J. Rovensky, E. E. Psarelli, T. F. Cox, N. P. Rhodes, J. A. Gallagher, L. R. Ranganath, Quantification of the flux of tyrosine pathway metabolites during nitisinone treatment of alkaptonuria. Sci. Rep. 9, 10024 (2019).
64
W. J. Introne, M. B. Perry, J. Troendle, E. Tsilou, M. A. Kayser, P. Suwannarat, K. E. O’Brien, J. Bryant, V. Sachdev, J. C. Reynolds, E. Moylan, I. Bernardini, W. A. Gahl, A 3-year randomized therapeutic trial of nitisinone in alkaptonuria. Mol. Genet. Metab. 103, 307–314 (2011).
65
M. I. García, A. De La Parra, C. Arias, M. Arredondo, J. F. Cabello, Long-term cognitive functioning in individuals with tyrosinemia type 1 treated with nitisinone and protein-restricted diet. Mol. Genet. Metab. Rep. 11, 12–16 (2017).
66
A. S. Davison, G. Hughes, J. A. Harrold, P. Clarke, R. Griffin, L. R. Ranganath, Long-term low dose nitisinone therapy in adults with alkaptonuria shows no cognitive decline or increased severity of depression. JIMD Rep. 63, 221–230 (2022).
67
C. O. Harding, S. R. Winn, K. M. Gibson, E. Arning, T. Bottiglieri, M. Grompe, Pharmacologic inhibition of L-tyrosine degradation ameliorates cerebral dopamine deficiency in murine phenylketonuria (PKU). J. Inherit. Metab. Dis. 37, 735–743 (2014).
68
D. R. Adams, S. Menezes, R. Jauregui, Z. M. Valivullah, B. Power, M. Abraham, B. G. Jeffrey, A. Garced, R. P. Alur, D. Cunningham, E. Wiggs, M. A. Merideth, P.-W. Chiang, S. Bernstein, S. Ito, K. Wakamatsu, R. M. Jack, W. J. Introne, W. A. Gahl, B. P. Brooks, One-year pilot study on the effects of nitisinone on melanin in patients with OCA-1B. JCI Insight 4, e124387 (2019).
69
W. G. Van Ginkel, I. L. Rodenburg, C. O. Harding, C. E. M. Hollak, M. R. Heiner-Fokkema, F. J. Van Spronsen, Long-term outcomes and practical considerations in the pharmacological management of tyrosinemia type 1. Pediatr. Drugs 21, 413–426 (2019).
70
J. M. Brownlee, B. Heinz, J. Bates, G. R. Moran, Product analysis and inhibition studies of a causative Asn to Ser variant of 4-hydroxyphenylpyruvate dioxygenase suggest a simple route to the treatment of hawkinsinuria. Biochemistry 49, 7218–7226 (2010).
71
N. L. Kobrinsky, D. E. Sjolander, Response of metastatic recurrent neuroblastoma to nitisinone: A modulator of tyrosine metabolism. Pediatr. Blood Cancer 46, 517–520 (2006).
72
T. Yang, H. Ma, H. Lai, Y. Lu, K. Ni, X. Hu, Y. Zhou, Z. Zhou, W. Li, J. Fang, Y. Zhang, Z. Chen, D. He, Nitisinone attenuates cartilage degeneration and subchondral osteoclastogenesis in osteoarthritis and concomitantly inhibits the cGAS/STING/NF-κB pathway. Eur. J. Pharmacol. 965, 176326 (2024).
73
Z. Pan, C. Zhou, X. Bai, F. Wang, J. Hong, J. Y. Fang, Y. Huang, C. Sheng, Discovery of new Fusobacterium nucleatum inhibitors to attenuate migratory capability of colon cancer cells by the drug repositioning strategy. J. Med. Chem. 66, 15699–15714 (2023).
74
S. Sohrabi, D. E. Mor, R. Kaletsky, W. Keyes, C. T. Murphy, High-throughput behavioral screen in C. elegans reveals Parkinson’s disease drug candidates. Commun. Biol. 4, 203 (2021).
76
M. Simoncelli, J. Samson, J.-F. Bussières, J. R. Lacroix, M. Dorais, R. N. Battista, S. Perreault, Cost-consequence analysis of nitisinone for treatment of tyrosinemia type I. Can. J. Hosp. Pharm. 68, 210–217 (2015).
77
J. H. Adams, Y. Wu, A. Fairfield, Malaria research and reference reagent resource center. Parasitol. Today 16, 89 (2000).
78
R Core Team, “R: A language and environment for statistical computing” (R Foundation for Statistical Computing, 2022); www.R-project.org.
79
H. Schmidt, A. Kuemmel, D. Kaschek, IQRtools: Modeling and simulation across systems pharmacology and pharmacometrics. R package version 1.2 (2018).
80
B. Ma, B. Roitberg, The role of resource availability and state-dependence in the foraging strategy of blood-feeding mosquitoes. Evol. Ecol. Res. 10, 1111–1130 (2008).
81
A. W. Pountain, M. P. Barrett, Untargeted metabolomics to understand the basis of phenotypic differences in amphotericin B-resistant Leishmania parasites. Wellcome Open Res. 4, 176 (2019).
82
R. Mwenechanya, J. Kovářová, N. J. Dickens, M. Mudaliar, P. Herzyk, I. M. Vincent, S. K. Weidt, K. E. Burgess, R. J. S. Burchmore, A. W. Pountain, T. K. Smith, D. J. Creek, D.-H. Kim, G. I. Lepesheva, M. P. Barrett, Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicanaPLOS Negl. Trop. Dis. 11, e0005649 (2017).
83
D. J. Creek, A. Jankevics, K. E. V. Burgess, R. Breitling, M. P. Barrett, IDEOM: An Excel interface for analysis of LC–MS-based metabolomics data. Bioinformatics 28, 1048–1049 (2012).
84
Y. Gloaguen, F. Morton, R. Daly, R. Gurden, S. Rogers, J. Wandy, D. Wilson, M. Barrett, K. Burgess, PiMP my metabolome: An integrated, web-based tool for LC-MS metabolomics data. Bioinformatics 33, 4007–4009 (2017).




Plaats een reactie ...

Reageer op "Nitisinon - Orfadin een geneesmiddel tegen een stofwisselingsziekte blijkt in bloed dodelijk voor muggen die malaria verspreiden"


Gerelateerde artikelen
 

Gerelateerde artikelen

Alcohol tast de darmbiotica >> Algemeen: Aangepast voedingspatroon >> Algemeen: Wat is er met ons >> Bloedverdunners die vitamine >> Boter vervangen door plantaardige >> Caffeine: mensen met een dieet >> Darmflora: Alzheimerpatiënten >> Darmflora beinvloed door voeding >> Deze 6 wetenschappelijke onderzoeken >> Diagnostische fouten komen >>