Acknowledgements
This work used the computational facilities of the Advanced Computing Research Centre, University of Bristol (http://www.bristol.ac.uk/acrc/). We want to acknowledge the participants and investigators of the FinnGen study. The breast cancer genome-wide association analyses were supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the “Ministère de l’Économie, de la Science et de l’Innovation du Québec” through Genome Québec and grant PSR-SIIRI-701, the National Institutes of Health (U19 CA148065, X01HG007492), Cancer Research UK (C1287/A10118, C1287/A16563, C1287/A10710), and the European Union (HEALTH-F2-2009-223175 and H2020 633784 and 634935). All studies and funders are listed in Michailidou et al. (Nature, 2017). Data on glycemic traits were contributed by MAGIC investigators and downloaded from www.magicinvestigators.org. The authors would like to thank the participants of the many studies from which data were used in this analysis, including GECCO, CCFR, CORECT, BCAC, ECAC, OCAC, UK Biobank, FinnGen, Twin Study, MAGIC, DECODE, and BEACON.
Author Contributions
Emma Hazelwood (Conceptualization, Data curation, Formal analysis, Methodology, Software, Visualization, Writing—original draft, Writing—review & editing), Lucy J. Goudswaard (Methodology, Writing—review & editing), Matthew A. Lee (Methodology, Software, Writing—original draft, Writing—review & editing), Marina Vabistsevits (Methodology, Writing—review & editing), Dimitri Pournaras (Writing—review & editing), Hermann Brenner (Data curation, Writing—review & editing), Daniel D. Buchanan (Data curation, Writing—review & editing), Stephen B. Gruber (Data curation, Writing—review & editing), Andrea Gsur (Data curation, Writing—review & editing), Li Li (Data curation, Writing—review & editing), Ludmila Vodickova (Data curation, Writing—review & editing), Robert C. Grant (Data curation, Writing—review & editing), N. Jewel Samadder (Data curation, Writing—review & editing), Nicholas J. Timpson (Methodology, Writing—review & editing), Marc J. Gunter (Methodology, Writing—review & editing), Benjamin Schuster-Boeckler (Writing—review & editing), James Yarmolinsky (Methodology, Writing—review & editing), Tom G. Richardson (Writing—review & editing), Heinz Freisling (Methodology, Writing—review & editing), Neil Murphy (Conceptualization, Methodology, Supervision, Writing—original draft, Writing—review & editing), and Emma E. Vincent (Conceptualization, Methodology, Project administration, Supervision, Writing—original draft, Writing—review & editing)
Supplementary Material
Supplementary material is available at Journal of the National Cancer Institute online.
Funding
E.H. is supported by a Cancer Research UK Population Research Committee Studentship (C18281/A30905), the CRUK Integrative Cancer Epidemiology Programme (C18281/A29019), and is part of the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, which is supported by the Medical Research Council (MC_UU_00032/03) and the University of Bristol. L.V. acknowledges support from Czech Health Research Council by project NU21-03-00145. L.J.G. is supported by a Cancer Research UK 25 (C18281/A29019) program grant (the Integrative Cancer Epidemiology Programme). N.T. is supported by Cancer Research UK (PRCPJT-May22\100028) and is also part of the Medical Research Council Integrative Epidemiology Unit at the University of Bristol, which is supported by the Medical Research Council. E.E.V. is supported by the World Cancer Research Fund (WCRF UK), as part of the World Cancer Research Fund International grant program (IIG_FULL_2024_029). H.F. acknowledges support from the French National Cancer Institute (INCa_19794). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Conflict of Interest
Tom G. Richardson is employed full-time by GlaxoSmithKline outside of the research presented in this article. Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article, and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization. This article is the result of the scientific work of Neil Murphy while he was affiliated at IARC. Robert C. Grant received a graduate scholarship from Pfizer and provided consulting or advisory roles for AstraZeneca, Tempus, Eisai, Incyte, Knight Therapeutics, Guardant Health, and Ipsen. Dimitri J. Pournaras has been funded by the Royal College of Surgeons of England. He receives consulting fees from Johnson & Johnson, Novo Nordisk, GSK, Sandoz, and Pfizer and payments for lectures, presentations, and educational events from Johnson & Johnson, Medtronic, and Novo Nordisk.
Disclaimer
Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article, and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization.
Data Availability
The sources for all GWAS data used in this study are listed in Table S1. The data underlying this article are available in the article and in its online supplementary material. All GWAS data generated are available in the GWAS catalog (https://www.ebi.ac.uk/gwas/), under study IDs GCST90570370-GCST90570374.
References
1
The GBD 2015 Obesity Collaborators
. 
Health effects of overweight and obesity in 195 countries over 25 years
. 
N Engl J Med
. 
2017
;
377
:
13
-
27
. 
 
 
 
 
3
GBD 2013 Mortality and Causes of Death Collaborators
. 
Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013
. 
Lancet
. 
2015
;
385
:
117
-
171
. 
 
 
 
 
4
Lauby-Secretan
 
B
, 
Scoccianti
 
C
, 
Loomis
 
D
, 
Grosse
 
Y
, 
Bianchini
 
F
, 
Straif
 
K.
  
Body fatness and cancer—viewpoint of the IARC working group
. 
N Engl J Med
. 
2016
;
375
:
794
-
798
. 
 
 
 
 
5
Luo
 
J
, 
Hendryx
 
M
, 
Manson
 
JE
, et al.  
Intentional weight loss and obesity-related cancer risk
. 
JNCI Cancer Spectr
. 
2019
;
3
:
pkz054
. 
 
 
 
 
6
Birks
 
S
, 
Peeters
 
A
, 
Backholer
 
K
, 
O’Brien
 
P
, 
Brown
 
W.
  
A systematic review of the impact of weight loss on cancer incidence and mortality
. 
Obes Rev
. 
2012
;
13
:
868
-
891
. 
 
 
 
 
7
Schauer
 
DP
, 
Feigelson
 
HS
, 
Koebnick
 
C
, et al.  
Association between weight loss and the risk of cancer after bariatric surgery
. 
Obesity
. 
2017
;
25
:
S52
-
S57
. 
 
 
 
 
8
Nicholson
 
BD
, 
Hamilton
 
W
, 
O’Sullivan
 
J
, 
Aveyard
 
P
, 
Hobbs
 
FR.
  
Weight loss as a predictor of cancer in primary care: a systematic review and meta-analysis
. 
Br J Gen Pract
. 
2018
;
68
:
e311
-
e322
. 
 
 
 
 
9
Sjöström
 
L
, 
Gummesson
 
A
, 
Sjöström
 
CD
, et al.  
Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial
. 
Lancet Oncol
. 
2009
;
10
:
653
-
662
. 
 
 
 
 
10
Teras
 
LR
, 
Patel
 
AV
, 
Wang
 
M
, et al.  
Sustained weight loss and risk of breast cancer in women 50 years and older: a pooled analysis of prospective data
. 
JNCI J Natl Cancer Inst
. 
2020
;
112
:
929
-
937
. 
 
 
 
 
11
Hardefeldt
 
PJ
, 
Penninkilampi
 
R
, 
Edirimanne
 
S
, 
Eslick
 
GD.
  
Physical activity and weight loss reduce the risk of breast cancer: a meta-analysis of 139 prospective and retrospective studies
. 
Clin Breast Cancer
. 
2018
;
18
:
e601
-
e612
. 
 
 
 
 
12
Upala
 
S
, 
Sanguankeo
 
A.
  
Bariatric surgery and risk of postoperative endometrial cancer: a systematic review and meta-analysis
. 
Surg Obes Relat Dis
. 
2015
;
11
:
949
-
955
. 
 
 
 
 
13
Brocco
 
D
, 
Florio
 
R
, 
De Lellis
 
L
, et al.  
The role of dysfunctional adipose tissue in pancreatic cancer: a molecular perspective
. 
Cancers
. 
2020
;
12
:
1849
. 
 
 
 
 
14
Morigny
 
P
, 
Boucher
 
J
, 
Arner
 
P
, 
Langin
 
D.
  
Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics
. 
Nat Rev Endocrinol
. 
2021
;
17
:
276
-
295
. 
 
 
 
 
15
Scheja
 
L
, 
Heeren
 
J.
  
The endocrine function of adipose tissues in health and cardiometabolic disease
. 
Nat Rev Endocrinol
. 
2019
;
15
:
507
-
524
. 
 
 
 
 
16
Lee
 
M-J
, 
Wu
 
Y
, 
Fried
 
SK.
  
Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications
. 
Mol Aspects Med
. 
2013
;
34
:
1
-
11
. 
 
 
 
 
17
Arkan
 
MC.
  
Fat and the fate of pancreatic tumours
. 
Nature
. 
2016
;
536
:
157
-
157
. 
 
 
 
 
18
Himbert
 
C
, 
Delphan
 
M
, 
Scherer
 
D
, 
Bowers
 
LW
, 
Hursting
 
S
, 
Ulrich
 
CM.
  
Signals from the adipose microenvironment and the obesity-cancer link: a systematic review
. 
Cancer Prev Res (Phila)
. 
2017
;
10
:
494
-
506
. 
 
 
 
 
19
Loh
 
NY
, 
Wang
 
W
, 
Noordam
 
R
, 
Christodoulides
 
C.
  
Obesity, fat distribution and risk of cancer in women and men: a Mendelian randomisation study
. 
Nutrients
. 
2022
;
14
:
5259
. 
 
 
 
 
20
Zwick
 
RK
, 
Guerrero-Juarez
 
CF
, 
Horsley
 
V
, 
Plikus
 
MV.
  
Anatomical, physiological and functional diversity of adipose tissue
. 
Cell Metab
. 
2018
;
27
:
68
-
83
. 
 
 
 
 
21
Agrawal
 
S
, 
Wang
 
M
, 
Klarqvist
 
MDR
, et al.  
Inherited basis of visceral, abdominal subcutaneous and gluteofemoral fat depots
. 
Nat Commun
. 
2022
;
13
:
3771
. 
 
 
 
 
22
Stefan
 
N.
  
Causes, consequences, and treatment of metabolically unhealthy fat distribution
. 
Lancet Diabetes Endocrinol
. 
2020
;
8
:
616
-
627
. 
 
 
 
 
23
Bell
 
JA
, 
Carslake
 
D
, 
O’Keeffe
 
LM
, et al.  
Associations of body mass and fat indexes with cardiometabolic traits
. 
J Am Coll Cardiol
. 
2018
;
72
:
3142
-
3154
. 
 
 
 
 
24
Liu
 
Y
, 
Basty
 
N
, 
Whitcher
 
B
, et al.  
Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning
. Janus ED, Barton M, Parisinos C, eds. 
eLife
. 
2021
;
10
:
e65554
. 
 
 
 
 
25
Gagnon
 
E
, 
Paulin
 
A
, 
Mitchell
 
PL
, 
Arsenault
 
BJ.
  
Disentangling the impact of gluteofemoral versus visceral fat accumulation on cardiometabolic health using sex-stratified Mendelian randomization
. 
Atherosclerosis
. 
2023
;
386
:
117371
. 
 
 
 
 
26
Busetto
 
L
, 
Dicker
 
D
, 
Frühbeck
 
G
, et al.  
A new framework for the diagnosis, staging and management of obesity in adults
. 
Nat Med
. 
2024
;
30
:
2395
-
2399
. 
 
 
 
 
27
Davey Smith
 
G
, 
Ebrahim
 
S.
  
“Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease?
  
Int J Epidemiol
. 
2003
;
32
:
1
-
22
. 
 
 
 
 
28
Pierce
 
BL
, 
Burgess
 
S.
  
Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators
. 
Am J Epidemiol
. 
2013
;
178
:
1177
-
1184
. 
 
 
 
 
29
Relton
 
CL
, 
Davey Smith
 
G.
  
Two-step epigenetic Mendelian randomization: a strategy for establishing the causal role of epigenetic processes in pathways to disease
. 
Int J Epidemiol
. 
2012
;
41
:
161
-
176
. 
 
 
 
 
30
Varbo
 
A
, 
Benn
 
M
, 
Smith
 
GD
, 
Timpson
 
NJ
, 
Tybjærg-Hansen
 
A
, 
Nordestgaard
 
BG.
  
Remnant cholesterol, low-density lipoprotein cholesterol, and blood pressure as mediators from obesity to ischemic heart disease
. 
Circ Res
. 
2015
;
116
:
665
-
673
. 
 
 
 
 
31
Burgess
 
S
, 
Davies
 
NM
, 
Thompson
 
SG.
  
Bias due to participant overlap in two-sample Mendelian randomization
. 
Genet Epidemiol
. 
2016
;
40
:
597
-
608
. 
 
 
 
 
32
Sadreev
 
II
, 
Elsworth
 
BL
, 
Mitchell
 
RE
, et al. Navigating sample overlap, winner’s curse and weak instrument bias in Mendelian randomization studies using the UK Biobank. medRxiv. 
2021
:2021.06.28.21259622. 
 
 
 
 
33
Aschard
 
H
, 
Vilhjálmsson
 
BJ
, 
Joshi
 
AD
, 
Price
 
AL
, 
Kraft
 
P.
  
Adjusting for heritable covariates can bias effect estimates in genome-wide association studies
. 
Am J Hum Genet
. 
2015
;
96
:
329
-
339
. 
 
 
 
 
34
Gilbody
 
J
, 
Borges
 
MC
, 
Smith
 
GD
, 
Sanderson
 
E.
 Multivariable MR can mitigate bias in two-sample MR using covariable-adjusted summary associations. medRxiv. 2022:2022.07.19.22277803. 
 
 
 
 
35
Sudlow
 
C
, 
Gallacher
 
J
, 
Allen
 
N
, et al.  
UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
. 
PLoS Med
. 
2015
;
12
:
e1001779
. 
 
 
 
 
37
Fry
 
A
, 
Littlejohns
 
TJ
, 
Sudlow
 
C
, et al.  
Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population
. 
Am J Epidemiol
. 
2017
;
186
:
1026
-
1034
. 
 
 
 
 
38
Littlejohns
 
TJ
, 
Holliday
 
J
, 
Gibson
 
LM
, et al.  
The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions
. 
Nat Commun
. 
2020
;
11
:
2624
. 
 
 
 
 
39
Bulik-Sullivan
 
BK
, 
Loh
 
P-R
, 
Finucane
 
HK
, et al. ; 
Schizophrenia Working Group of the Psychiatric Genomics Consortium
. 
LD score regression distinguishes confounding from polygenicity in genome-wide association studies
. 
Nat Genet
. 
2015
;
47
:
291
-
295
. 
 
 
 
 
40
Bulik-Sullivan
 
B
, 
Finucane
 
HK
, 
Anttila
 
V
, et al. ; 
ReproGen Consortium
. 
An atlas of genetic correlations across human diseases and traits
. 
Nat Genet
. 
2015
;
47
:
1236
-
1241
. 
 
 
 
 
41
Willer
 
CJ
, 
Li
 
Y
, 
Abecasis
 
GR.
  
METAL: fast and efficient meta-analysis of genomewide association scans
. 
Bioinformatics
. 
2010
;
26
:
2190
-
2191
. 
 
 
 
 
43
Davies
 
NM
, 
Holmes
 
MV
, 
Smith
 
GD.
  
Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians
. 
BMJ
. 
2018
;
362
:
k601
. 
 
 
 
 
44
Lawlor
 
DA.
  
Commentary: two-sample Mendelian randomization: opportunities and challenges
. 
Int J Epidemiol
. 
2016
;
45
:
908
-
915
. 
 
 
 
 
45
Skrivankova
 
VW
, 
Richmond
 
RC
, 
Woolf
 
BAR
, et al.  
Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): explanation and elaboration
. 
BMJ
. 
2021
;
375
:
n2233
. 
 
 
 
 
46
Skrivankova
 
VW
, 
Richmond
 
RC
, 
Woolf
 
BAR
, et al.  
Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR statement
. 
JAMA
. 
2021
;
326
:
1614
-
1621
. 
 
 
 
 
47
Hazelwood
 
E
, 
Sanderson
 
E
, 
Tan
 
VY
, et al.  
Identifying molecular mediators of the relationship between body mass index and endometrial cancer risk: a Mendelian randomization analysis
. 
BMC Med
. 
2022
;
20
:
125
. 
 
 
 
 
48
Hamilton
 
FW
, 
Thomas
 
M
, 
Arnold
 
D
, et al.  
Therapeutic potential of IL6R blockade for the treatment of sepsis and sepsis-related death: a Mendelian randomisation study
. 
PLoS Med
. 
2023
;
20
:
e1004174
. 
 
 
 
 
49
Hemani
 
G
, 
Bowden
 
J
, 
Davey Smith
 
G.
  
Evaluating the potential role of pleiotropy in Mendelian randomization studies
. 
Human Mol Genet
. 
2018
;
27
:
R195
-
R208
. 
 
 
 
 
50
Bowden
 
J
, 
Davey Smith
 
G
, 
Haycock
 
PC
, 
Burgess
 
S.
  
Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator
. 
Genet Epidemiol
. 
2016
;
40
:
304
-
314
. 
 
 
 
 
51
Hartwig
 
FP
, 
Davey Smith
 
G
, 
Bowden
 
J.
  
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
. 
Int J Epidemiol
. 
2017
;
46
:
1985
-
1998
. 
 
 
 
 
52
Zheng
 
J
, 
Baird
 
D
, 
Borges
 
M-C
, et al.  
Recent developments in Mendelian randomization studies
. 
Curr Epidemiol Rep
. 
2017
;
4
:
330
-
345
. 
 
 
 
 
53
Burgess
 
S
, 
Foley
 
CN
, 
Allara
 
E
, 
Staley
 
JR
, 
Howson
 
JMM.
  
A robust and efficient method for Mendelian randomization with hundreds of genetic variants
. 
Nat Commun
. 
2020
;
11
:
1
-
11
. 
 
 
 
 
54
Cochran
 
WG.
  
The combination of estimates from different experiments
. 
Biometrics
. 
1954
;
10
:
101
-
129
. 
 
 
 
 
55
Burgess
 
S
, 
Thompson
 
SG
, 
CRP CHD Genetics Collaboration
. 
Avoiding bias from weak instruments in Mendelian randomization studies
. 
Int J Epidemiol
. 
2011
;
40
:
755
-
764
. 
 
 
 
 
56
Hemani
 
G
, 
Tilling
 
K
, 
Smith
 
GD.
  
Orienting the causal relationship between imprecisely measured traits using GWAS summary data
. 
PLoS Genet
. 
2017
;
13
:
e1007081
. 
 
 
 
 
57
Burgess
 
S
, 
Thompson
 
SG.
  
Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects
. 
Am J Epidemiol
. 
2015
;
181
:
251
-
260
. 
 
 
 
 
58
Sanderson
 
E
, 
Davey Smith
 
G
, 
Windmeijer
 
F
, 
Bowden
 
J.
  
An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings
. 
Int J Epidemiol
. 
2019
;
48
:
713
-
727
. 
 
 
 
 
59
Sanderson
 
E.
  
Multivariable Mendelian randomization and mediation
. 
Cold Spring Harb Perspect Med
. 
2021
;
11
:
a038984
. 
 
 
 
 
60
Carter
 
AR
, 
Sanderson
 
E
, 
Hammerton
 
G
, et al.  
Mendelian randomisation for mediation analysis: current methods and challenges for implementation
. 
Eur J Epidemiol
. 
2021
;
36
:
465
-
478
. 
 
 
 
 
61
Sobel
 
ME.
  
Asymptotic confidence intervals for indirect effects in structural equation models
. 
Sociol Methodol
. 
1982
;
13
:
290
-
312
. 
 
 
 
 
62
Cheung
 
MWL.
  
Comparison of methods for constructing confidence intervals of standardized indirect effects
. 
Behav Res Methods
. 
2009
;
41
:
425
-
438
. 
 
 
 
 
63
Sanderson
 
E
, 
Windmeijer
 
F.
  
A weak instrument F-test in linear IV models with multiple endogenous variables
. 
J Econom
. 
2016
;
190
:
212
-
221
. 
 
 
 
 
64
R Core Team
. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 
2021
. 
https://www.R-project.org/.
 
 
 
 
65
Hemani
 
G
, 
Zheng
 
J
, 
Elsworth
 
B
, et al.  
The MR-Base platform supports systematic causal inference across the human phenome. Loos R, ed
. 
eLife
. 
2018
;
7
:
e34408
. 
 
 
 
 
66
Sanderson
 
E
, 
Spiller
 
W
, 
Bowden
 
J.
  
Testing and correcting for weak and pleiotropic instruments in two-sample multivariable Mendelian randomization
. 
Stat Med
. 
2021
;
40
:
5434
-
5452
. 
 
 
 
 
67
Myers
 
TA
, 
Chanock
 
SJ
, 
Machiela
 
MJ.
  
LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations
. 
Front Genet
. 
2020
;
11
:
157
. 
 
 
 
 
71
Obenchain
 
V
, 
Lawrence
 
M
, 
Carey
 
V
, 
Gogarten
 
S
, 
Shannon
 
P
, 
Morgan
 
M.
  
VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants
. 
Bioinformatics
. 
2014
;
30
:
2076
-
2078
. 
 
 
 
 
75
Elsworth
 
B
, 
Lyon
 
M
, 
Alexander
 
T
, et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv; 
2020
. p. 2020.08.10.244293. 
 
 
 
 
76
Florio
 
AA
, 
Campbell
 
PT
, 
Zhang
 
X
, et al.  
Abdominal and gluteofemoral size and risk of liver cancer: the liver cancer pooling project
. 
Int J Cancer
. 
2020
;
147
:
675
-
685
. 
 
 
 
 
77
Ahmed
 
A
, 
Cule
 
M
, 
Bell
 
JD
, 
Sattar
 
N
, 
Yaghootkar
 
H.
  
Differing genetic variants associated with liver fat and their contrasting relationships with cardiovascular diseases and cancer
. 
J Hepatol
. 
2024
;
81
:
921
-
929
. [cited 7 Aug 2024]. 
 
 
 
 
78
Rockhill
 
B
, 
Newman
 
B
, 
Weinberg
 
C.
  
Use and misuse of population attributable fractions
. 
Am J Public Health
. 
1998
;
88
:
15
-
19
. 
 
 
 
 
79
Thrift
 
AP
, 
Gong
 
J
, 
Peters
 
U
, et al.  
Mendelian randomization study of body mass index and colorectal cancer risk
. 
Cancer Epidemiol Biomarkers Prev
. 
2015
;
24
:
1024
-
1031
. 
 
 
 
 
80
Bull
 
CJ
, 
Bell
 
JA
, 
Murphy
 
N
, et al.  
Adiposity, metabolites, and colorectal cancer risk: Mendelian randomization study
. 
BMC Med
. 
2020
;
18
:
396
. 
 
 
 
 
81
Nguyen
 
TMD.
  
Adiponectin: role in physiology and pathophysiology
. 
Int J Prev Med
. 
2020
;
11
:
136
. 
 
 
 
 
82
Chandran
 
M
, 
Phillips
 
SA
, 
Ciaraldi
 
T
, 
Henry
 
RR.
  
Adiponectin: more than just another fat cell hormone?
  
Diabetes Care
. 
2003
;
26
:
2442
-
2450
. 
 
 
 
 
83
Li
 
S
, 
Shin
 
HJ
, 
Ding
 
EL
, 
van Dam
 
RM.
  
Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis
. 
JAMA
. 
2009
;
302
:
179
-
188
. 
 
 
 
 
84
Díez
 
JJ
, 
Iglesias
 
P.
  
The role of the novel adipocyte-derived hormone adiponectin in human disease
. 
Eur J Endocrinol
. 
2003
;
148
:
293
-
300
. 
 
 
 
 
85
Moghadasi
 
M
, 
Mohebbi
 
H
, 
Rahmani-Nia
 
F
, 
Hassan-Nia
 
S
, 
Noroozi
 
H
, 
Nematollahzadeh
 
M.
  
Differences in adiponectin gene expression: adiponectin gene expression is higher in gluteal than in abdominal adipose tissue
. 
Asian J Med Sci
. 
2013
;
5
:
34
-
38
. 
 
 
 
 
86
Lihn
 
AS
, 
Bruun
 
JM
, 
He
 
G
, 
Pedersen
 
SB
, 
Jensen
 
PF
, 
Richelsen
 
B.
  
Lower expression of adiponectin mRNA in visceral adipose tissue in lean and obese subjects
. 
Mol Cell Endocrinol
. 
2004
;
219
:
9
-
15
. 
 
 
 
 
87
Cnop
 
M
, 
Havel
 
PJ
, 
Utzschneider
 
KM
, et al.  
Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex
. 
Diabetologia
. 
2003
;
46
:
459
-
469
. 
 
 
 
 
88
Kern
 
PA
, 
Di Gregorio
 
GB
, 
Lu
 
T
, 
Rassouli
 
N
, 
Ranganathan
 
G.
  
Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-α expression
. 
Diabetes
. 
2003
;
52
:
1779
-
1785
. 
 
 
 
 
89
Mantzoros
 
CS
, 
Li
 
T
, 
Manson
 
JE
, 
Meigs
 
JB
, 
Hu
 
FB.
  
Circulating adiponectin levels are associated with better glycemic control, more favorable lipid profile, and reduced inflammation in women with type 2 diabetes
. 
J Clin Endocrinol Metab
. 
2005
;
90
:
4542
-
4548
. 
 
 
 
 
90
Snijder
 
MB
, 
Flyvbjerg
 
A
, 
Stehouwer
 
CDA
, et al.  
Relationship of adiposity with arterial stiffness as mediated by adiponectin in older men and women: the Hoorn Study
. 
Eur J Endocrinol
. 
2009
;
160
:
387
-
395
. 
 
 
 
 
91
Buemann
 
B
, 
Astrup
 
A
, 
Pedersen
 
O
, et al.  
Possible role of adiponectin and insulin sensitivity in mediating the favorable effects of lower body fat mass on blood lipids
. 
J Clin Endocrinol Metab
. 
2006
;
91
:
1698
-
1704
. 
 
 
 
 
92
Gavrila
 
A
, 
Chan
 
JL
, 
Yiannakouris
 
N
, et al.  
Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: cross-sectional and interventional studies
. 
J Clin Endocrinol Metab
. 
2003
;
88
:
4823
-
4831
. 
 
 
 
 
93
Hanley
 
AJG
, 
Bowden
 
D
, 
Wagenknecht
 
LE
, et al.  
Associations of adiponectin with body fat distribution and insulin sensitivity in nondiabetic Hispanics and African-Americans
. 
J Clin Endocrinol Metab
. 
2007
;
92
:
2665
-
2671
. 
 
 
 
 
94
Vilarrasa
 
N
, 
Vendrell
 
J
, 
Maravall
 
J
, et al.  
Distribution and determinants of adiponectin, resistin and ghrelin in a randomly selected healthy population
. 
Clin Endocrinol
. 
2005
;
63
:
329
-
335
. 
 
 
 
 
95
Park
 
K-G
, 
Park
 
KS
, 
Kim
 
M-J
, et al.  
Relationship between serum adiponectin and leptin concentrations and body fat distribution
. 
Diabetes Res Clin Pract
. 
2004
;
63
:
135
-
142
. 
 
 
 
 
96
Turer
 
AT
, 
Khera
 
A
, 
Ayers
 
CR
, et al.  
Adipose tissue mass and location affect circulating adiponectin levels
. 
Diabetologia
. 
2011
;
54
:
2515
-
2524
. 
 
 
 
 
97
Hassler
 
EM
, 
Deutschmann
 
H
, 
Almer
 
G
, et al.  
Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI—a putative indicator of serum adiponectin level and individual factors of cardio-metabolic risk
. 
PLoS One
. 
2021
;
16
:
e0259952
. 
 
 
 
 
98
Oh
 
DK
, 
Ciaraldi
 
T
, 
Henry
 
RR.
  
Adiponectin in health and disease
. 
Diabetes Obes Metab
. 
2007
;
9
:
282
-
289
. 
 
 
 
 
99
Hui
 
X
, 
Lam
 
KS
, 
Vanhoutte
 
PM
, 
Xu
 
A.
  
Adiponectin and cardiovascular health: an update
. 
Br J Pharmacol
. 
2012
;
165
:
574
-
590
. 
 
 
 
 
100
Dal Maso
 
L
, 
Augustin
 
LSA
, 
Karalis
 
A
, et al.  
Circulating adiponectin and endometrial cancer risk
. 
J Clin Endocrinol Metab
. 
2004
;
89
:
1160
-
1163
. 
 
 
 
 
101
Cust
 
AE
, 
Kaaks
 
R
, 
Friedenreich
 
C
, et al.  
Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women
. 
J Clin Endocrinol Metab
. 
2007
;
92
:
255
-
263
. 
 
 
 
 
102
Soliman
 
PT
, 
Wu
 
D
, 
Tortolero‐Luna
 
G
, et al.  
Association between adiponectin, insulin resistance, and endometrial cancer
. 
Cancer
. 
2006
;
106
:
2376
-
2381
. 
 
 
 
 
103
Zeng
 
F
, 
Shi
 
J
, 
Long
 
Y
, et al.  
Adiponectin and endometrial cancer: a systematic review and meta-analysis
. 
Cell Physiol Biochem
. 
2015
;
36
:
1670
-
1678
. 
 
 
 
 
104
Painter
 
JN
, 
O'Mara
 
TA
, 
Marquart
 
L
, et al.  
Genetic risk score Mendelian randomization shows that obesity measured as body mass index, but not waist:hip ratio, is causal for endometrial cancer
. 
Cancer Epidemiol Biomarkers Prev
. 
2016
;
25
:
1503
-
1510
. 
 
 
 
 
105
McCullough
 
ML
, 
Patel
 
AV
, 
Patel
 
R
, et al.  
Body mass and endometrial cancer risk by hormone replacement therapy and cancer subtype
. 
Cancer Epidemiol Biomarkers Prev
. 
2008
;
17
:
73
-
79
. 
 
 
 
 
106
Bjørge
 
T
, 
Engeland
 
A
, 
Tretli
 
S
, 
Weiderpass
 
E.
  
Body size in relation to cancer of the uterine corpus in 1 million Norwegian women
. 
Int J Cancer
. 
2007
;
120
:
378
-
383
. 
 
 
 
 
107
Renehan
 
A
, 
MacKintosh
 
M
, 
Crosbie
 
E.
  
Obesity and endometrial cancer: unanswered epidemiological questions
. 
BJOG
. 
2015
;
123
:
175
-
178
. 
 
 
 
 
108
Chaves
 
GV
, 
de Almeida Simao
 
T
, 
Pinto
 
LFR
, 
Moreira
 
MAM
, 
Bergmann
 
A
, 
Chaves
 
CBP.
  
Overweight and obesity do not determine worst prognosis in endometrioid endometrial carcinoma
. 
Arch Gynecol Obstet
. 
2019
;
300
:
1671
-
1677
. 
 
 
 
 
109
Van Arsdale
 
A
, 
Miller
 
DT
, 
Kuo
 
DY
, 
Isani
 
S
, 
Sanchez
 
L
, 
Nevadunsky
 
NS.
  
Association of obesity with survival in patients with endometrial cancer
. 
Gynecol Oncol
. 
2019
;
154
:
156
-
162
. 
 
 
 
 
110
La Vecchia
 
C
, 
Negri
 
E
, 
Lagiou
 
P
, 
Trichopoulos
 
D.
  
Oesophageal adenocarcinoma: a paradigm of mechanical carcinogenesis?
  
Int J Cancer
. 
2002
;
102
:
269
-
270
. 
 
 
 
 
111
El-Serag
 
HB
, 
Thrift
 
AP.
 Obesity and gastroesophageal reflux disease. In: 
The Esophagus. John Wiley & Sons, Ltd; 
2021
 (pp. 
624
-
632
). 
.
 
 
 
 
112
Nam
 
SY
, 
Lee
 
EJ
, 
Kim
 
KR
, et al.  
Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone
. 
Int J Obes
. 
1997
;
21
:
355
-
359
. 
 
 
 
 
113
Crowe
 
FL
, 
Key
 
TJ
, 
Allen
 
NE
, et al.  
A cross-sectional analysis of the associations between adult height, BMI and serum concentrations of IGF-I and IGFBP-1 -2 and -3 in the European Prospective Investigation into Cancer and Nutrition (EPIC)
. 
Ann Human Biol
. 
2011
;
38
:
194
-
202
. 
 
 
 
 
114
Watts
 
EL
, 
Perez‐Cornago
 
A
, 
Appleby
 
PN
, et al.  
The associations of anthropometric, behavioural and sociodemographic factors with circulating concentrations of IGF-I, IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 in a pooled analysis of 16,024 men from 22 studies
. 
Int J Cancer
. 
2019
;
145
:
3244
-
3256
. 
 
 
 
 
115
Huang
 
XP
, 
Zhou
 
WH
, 
Zhang
 
YF.
  
Genetic variations in the IGF-IGFR-IGFBP axis confer susceptibility to lung and esophageal cancer
. 
Genet Mol Res
. 
2014
;
13
:
2107
-
2119
. 
 
 
 
 
116
Xu
 
Y-W
, 
Chen
 
H
, 
Hong
 
C-Q
, et al.  
Serum IGFBP-1 as a potential biomarker for diagnosis of early-stage upper gastrointestinal tumour
. 
EBioMedicine
. 
2020
;
51
:
102566
. 
 
 
 
 
117
Greer
 
KB
, 
Thompson
 
CL
, 
Brenner
 
L
, et al.  
Association of insulin and insulin-like growth factors with Barrett’s oesophagus
. 
Gut
. 
2012
;
61
:
665
-
672
. 
 
 
 
 
118
Lin
 
Y-W
, 
Weng
 
X-F
, 
Huang
 
B-L
, 
Guo
 
H-P
, 
Xu
 
Y-W
, 
Peng
 
Y-H.
  
IGFBP-1 in cancer: expression, molecular mechanisms, and potential clinical implications
. 
Am J Transl Res
. 
2021
;
13
:
813
-
832
.
 
 
 
 
119
Fürstenberger
 
G
, 
Senn
 
H-J.
  
Insulin-like growth factors and cancer
. 
Lancet Oncol
. 
2002
;
3
:
298
-
302
. 
 
 
 
 
120
Mohan
 
S
, 
Baylink
 
DJ.
  
IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms
. 
J Endocrinol
. 
2002
;
175
:
19
-
31
. 
 
 
 
 
121
Hou
 
J
, 
Yan
 
D
, 
Liu
 
Y
, 
Huang
 
P
, 
Cui
 
H.
  
The roles of integrin α5β1 in human cancer
. 
OTT
. 
2020
;
13
:
13329
-
13344
. 
 
 
 
 
122
Jones
 
JI
, 
Gockerman
 
A
, 
Busby
 
WH
, 
Wright
 
G
, 
Clemmons
 
DR.
  
Insulin-like growth factor binding protein 1 stimulates cell migration and binds to the alpha 5 beta 1 integrin by means of its Arg-Gly-Asp sequence
. 
Proc Natl Acad Sci
. 
1993
;
90
:
10553
-
10557
. 
 
 
 
 
123
Rajaram
 
S
, 
Baylink
 
DJ
, 
Mohan
 
S.
  
Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions
. 
Endocr Rev
. 
1997
;
18
:
801
-
831
. 
 
 
 
 
124
Firth
 
SM
, 
Baxter
 
RC.
  
Cellular actions of the insulin-like growth factor binding proteins
. 
Endocr Rev
. 
2002
;
23
:
824
-
854
. 
 
 
 
 
125
Perks
 
CM
, 
Newcomb
 
PV
, 
Norman
 
MR
, 
Holly
 
JM.
  
Effect of insulin-like growth factor binding protein-1 on integrin signalling and the induction of apoptosis in human breast cancer cells
. 
J Mol Endocrinol
. 
1999
;
22
:
141
-
150
. 
 
 
 
 
126
Kaaks
 
R
, 
Toniolo
 
P
, 
Akhmedkhanov
 
A
, et al.  
Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women
. 
J Natl Cancer Inst
. 
2000
;
92
:
1592
-
1600
. 
 
 
 
 
127
Kaulsay
 
KK
, 
Ng
 
EH
, 
Ji
 
CY
, 
Ho
 
GH
, 
Aw
 
TC
, 
Lee
 
KO.
  
Serum IGF-binding protein-6 and prostate specific antigen in breast cancer
. 
Eur J Endocrinol
. 
1999
;
140
:
164
-
168
. 
 
 
 
 
128
Miao
 
J
, 
Wu
 
Y
, 
Sun
 
Z
, et al. Valid inference for machine learning-assisted genome-wide association studies. 
Nat Gen. 2024;56:2361-2369. 
 
 
 
 
 
Author notes
© The Author(s) 2025. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
 
 
 
Plaats een reactie ...
Reageer op "Vetverdeling op het lichaam speelt grotere rol in risico op bepaalde vormen van kanker dan het BMI. Buikvet geeft grootste risico op baarmoederkanker, slokdarmkanker en leverkanker. Heupvet met groter risico op borstkanker."