Aan dit artikel is vele uren gewerkt. Opzoeken, vertalen, op de website plaatsen enz. Als u ons wilt ondersteunen dan kan dat via een al of niet anonieme donatie. Elk bedrag is welkom hoe klein ook. Klik hier als u ons wilt helpen kanker-actueel online te houden Wij zijn een ANBI organisatie en dus is uw donatie in principe aftrekbaar voor de belasting.

6 augustus 2015: dit bericht toch maar eens naar voren gehaald. Is echt interessant.

Lees dit volledige studierapport maar eens: Chemopreventive and Therapeutic Activity of Dietary Blueberry against Estrogen-Mediated Breast Cancer Gratis in te zien en met hele duidelijke grafieken waarin de blauwe bessen overal als beste uitkomen. Zowel preventief als therapeutisch. Zie ook referentielijst onderaan dit artikel

blauwe bessen

28 september 2011: bron: J Nutr. 2011 Oct;141(10):1805-12. Epub 2011 Aug 31

Een bosbessen extract in poedervorm toegediend bij muizen met agressieve vorm van borstkanker  (triple negatief) blijkt de tumoren te doen slinken en stopt de groei van de tumoren. Het verschil tussen de groep muizen die het bosbessenpoeder kregen en de controlegroep was significant veel beter voor de bosbessengroep. 70% minder muizen uit de bosbessengroep ontwikkelden leveruitzaaiingen en 25% minder uitzaaiingen naar de lymfklieren. Hier het abstract maar als u hier klikt kunt u het volledige studierapport lezen met tabellen en statistieken.

J Nutr. 2011 Oct;141(10):1805-12. Epub 2011 Aug 31.

Whole Blueberry Powder Modulates the Growth and Metastasis of MDA-MB-231 Triple Negative Breast Tumors in Nude Mice.

Source

Division of Tumor Cell Biology, Beckman Research Institute of the City of Hope, Duarte, CA.

Abstract

Previous studies in our laboratory demonstrated that blueberry (BB) extract exhibited antitumor activity against MDA-MB-231 triple negative breast cancer (TNBC) cells and decreased metastatic potential in vitro. The current study tested 2 doses of whole BB powder, 5 and 10% (wt:wt) in the diet, against MDA-MB-231 tumor growth in female nude mice. In this study, tumor volume was 75% lower in mice fed the 5% BB diet and 60% lower in mice fed the 10% BB diet than in control mice (P ≤ 0.05). Tumor cell proliferation (Ki-67) was lower in the 5 and 10% BB-fed mice and cell death (Caspase 3) was greater in the 10% BB-fed mice compared to control mice (P ≤ 0.05). Gene analysis of tumor tissues from the 5% BB-fed mice revealed significantly altered expression of genes important to inflammation, cancer, and metastasis, specifically, Wnt signaling, thrombospondin-2, IL-13, and IFNγ. To confirm effects on Wnt signaling, analysis of tumor tissues from 5% BB-fed mice revealed lower β-catenin expression and glycogen synthase kinase-3β phosphorylation with greater expression of the β-catenin inhibitory protein adenomatous polyposis coli compared to controls. A second study tested the ability of the 5% BB diet to inhibit MDA-MB-231-luc-D3H2LN metastasis in vivo. In this study, 5% BB-fed mice developed 70% fewer liver metastases (P = 0.04) and 25% fewer lymph node metastases (P = 0.09) compared to control mice. This study demonstrates the oral antitumor and metastasis activity of whole BB powder against TNBC in mice.

PMID:
21880954
[PubMed - in process]
PMCID: PMC3174855
[Available on 2012/10/1]

references

  • Howlader N.; Noone A. M. Krapcho M.; Garshell J.; Neyman N.; Altekruse S. F.; Kosary C. L.; Yu M.; Ruhl J.; Tatalovich Z.; Cho H.; Mariotto A.; Lewis D. R.; Chen H. S.; Feuer E. J.; Cronin K. A.SEER Cancer Statistics Review, 1975–2010; National Cancer Institute: Bethesda, MD, 2013.
  • Yager J. D.; Davidson N. E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [PubMed]
  • Lakhani N. J.; Venitz J.; Figg W. D.; Sparreboom A. Pharmacogenetics of estrogen metabolism and transport in relation to cancer. Curr. Drug Metab. 2003, 4, 505–513. [PubMed]
  • Bhavnani B. R.; Tam S. P.; Lu X. Structure activity relationships and differential interactions and functional activity of various equine estrogens mediated via estrogen receptors (ERs) ERalpha and ERbeta. Endocrinology 2008, 149, 4857–4870. [PubMed]
  • Iorio M. V.; Ferracin M.; Liu C. G.; Veronese A.; Spizzo R.; Sabbioni S.; Magri E.; Pedriali M.; Fabbri M.; Campiglio M.; Menard S.; Palazzo J. P.; Rosenberg A.; Musiani P.; Volinia S.; Nenci I.; Calin G. A.; Querzoli P.; Negrini M.; Croce C. M. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005, 65, 7065–7070. [PubMed]
  • Romero-Cordoba S.; Rodriguez-Cuevas S.; Rebollar-Vega R.; Quintanar-Jurado V.; Maffuz-Aziz A.; Jimenez-Sanchez G.; Bautista-Pina V.; Arellano-Llamas R.; Hidalgo-Miranda A. Identification and pathway analysis of microRNAs with no previous involvement in breast cancer. PLoS One 2012, 7, e31904. [PubMed]
  • Klinge C. M. miRNAs and estrogen action. Trends Endocrinol. Metab. 2012, 23, 223–233. [PubMed]
  • Cooke D.; Steward W. P.; Gescher A. J.; Marczylo T. Anthocyans from fruits and vegetables – does bright colour signal cancer chemopreventive activity?. Eur. J. Cancer 2005, 41, 1931–1940. [PubMed]
  • Devasagayam T. P.; Tilak J. C.; Boloor K. K.; Sane K. S.; Ghaskadbi S. S.; Lele R. D. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physicians India 2004, 52, 794–804. [PubMed]
  • Mazza G.; Cacace J. E.; Kay C. D. Methods of analysis for anthocyanins in plants and biological fluids. J. AOAC Int. 2004, 87, 129–145. [PubMed]
  • He J.; Giusti M. M. Anthocyanins: natural colorants with health-promoting properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [PubMed]
  • Aqil F.; Vadhanam M. V.; Jeyabalan J.; Cai J.; Singh I. P.; Gupta R. C.Detection of anthocyanins/anthocyanidins in animal tissues. J. Agric. Food Chem. 2013, DOI: .10.1021/jf500467b [PubMed] [Cross Ref]
  • Wang L. S.; Stoner G. D. Anthocyanins and their role in cancer prevention. Cancer Lett. 2008, 269, 281–290. [PubMed]
  • Kausar H.; Jeyabalan J.; Aqil F.; Chabba D.; Sidana J.; Singh I. P.; Gupta R. C. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett. 2012, 325, 54–62. [PubMed]
  • Ravoori S.; Vadhanam M. V.; Aqil F.; Gupta R. C. Inhibition of estrogen-mediated mammary tumorigenesis by blueberry and black raspberry. J. Agric. Food Chem. 2012, 60, 5547–5555. [PubMed]
  • Ravoori S.; Vadhanam M. V.; Sahoo S.; Srinivasan C.; Gupta R. C. Mammary tumor induction in ACI rats exposed to low levels of 17beta-estradiol. Int. J. Oncol. 2007, 31, 113–120. [PubMed]
  • Bansal S. S.; Vadhanam M. V.; Gupta R. C. Development and in vitro-in vivo evaluation of polymeric implants for continuous systemic delivery of curcumin. Pharm. Res. 2011, 28, 1121–1130. [PubMed]
  • Castellano L.; Giamas G.; Jacob J.; Coombes R. C.; Lucchesi W.; Thiruchelvam P.; Barton G.; Jiao L. R.; Wait R.; Waxman J.; Hannon G. J.; Stebbing J. The estrogen receptor-alpha-induced microRNA signature regulates itself and its transcriptional response. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 15732–15737. [PubMed]
  • Sun S. Y.; Hail N. Jr.; Lotan R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 2004, 96, 662–672. [PubMed]
  • Blagosklonny M. V. Carcinogenesis, cancer therapy and chemoprevention. Cell Death Differ. 2005, 12, 592–602. [PubMed]
  • Wattenberg L. W. What are the critical attributes for cancer chemopreventive agents?. Ann. N.Y. Acad. Sci. 1995, 768, 73–81. [PubMed]
  • Aiyer H. S.; Srinivasan C.; Gupta R. C. Dietary berries and ellagic acid diminish estrogen-mediated mammary tumorigenesis in ACI rats. Nutr. Cancer 2008, 60, 227–234. [PubMed]
  • Aiyer H. S.; Gupta R. C. Berries and ellagic acid prevent estrogen-induced mammary tumorigenesis by modulating enzymes of estrogen metabolism. Cancer Prev. Res. 2010, 3, 727–737. [PMC free article] [PubMed]
  • Hafeez B. B.; Siddiqui I. A.; Asim M.; Malik A.; Afaq F.; Adhami V. M.; Saleem M.; Din M.; Mukhtar H. A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res. 2008, 68, 8564–8572. [PubMed]
  • Matsumoto H.; Inaba H.; Kishi M.; Tominaga S.; Hirayama M.; Tsuda T. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J. Agric. Food Chem. 2001, 49, 1546–1551. [PubMed]
  • Miyazawa T.; Nakagawa K.; Kudo M.; Muraishi K.; Someya K. Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3,5-diglucoside, into rats and humans. J. Agric. Food Chem. 1999, 47, 1083–1091. [PubMed]
  • Matuschek M. C.; Hendriks W. H.; McGhie T. K.; Reynolds G. W. The jejunum is the main site of absorption for anthocyanins in mice. J. Nutr. Biochem. 2006, 17, 31–36. [PubMed]
  • Talavera S.; Felgines C.; Texier O.; Besson C.; Lamaison J. L.; Remesy C. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. J. Nutr. 2003, 133, 4178–4182. [PubMed]
  • Talavera S.; Felgines C.; Texier O.; Besson C.; Mazur A.; Lamaison J. L.; Remesy C. Bioavailability of a bilberry anthocyanin extract and its impact on plasma antioxidant capacity in rats. J. Sci. Food Agric. 2006, 86, 90–97.
  • Brouillard R.; Chemical structure of anthocyanins. In Anthocyanins as Food Colours; Markakis P., editor. , Ed.; Academic Press: New York, 1982; pp 1–40.
  • Ozkan M. Degradation of anthocyanins in sour cherry and pomegranate juices by hydrogen peroxide in the presence of added ascorbic acid. Food Chem. 2002, 78, 499–504.
  • Rossetto M.; Vanzani P.; Mattivi F.; Lunelli M.; Scarpa M.; Rigo A. Synergistic antioxidant effect of catechin and malvidin 3-glucoside on free radical-initiated peroxidation of linoleic acid in micelles. Arch. Biochem. Biophys. 2002, 408, 239–245. [PubMed]
  • Ichiyanagi T.; Shida Y.; Rahman M. M.; Hatano Y.; Konishi T. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. J. Agric. Food Chem. 2006, 54, 6578–6587. [PubMed]
  • Gonzalez-Barrio R.; Borges G.; Mullen W.; Crozier A. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. J. Agric. Food Chem. 2010, 58, 3933–3939. [PubMed]
  • McGhie T. K.; Walton M. C. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol. Nutr. Food Res. 2007, 51, 702–713. [PubMed]
  • Stone J. P.; Holtzman S.; Shellabarger C. J. Neoplastic responses and correlated plasma prolactin levels in diethylstilbestrol-treated ACI and Sprague-Dawley rats. Cancer Res. 1979, 39, 773–778. [PubMed]
  • Wiklund J.; Rutledge J.; Gorski J. A genetic model for the inheritance of pituitary tumor susceptibility in F344 rats. Endocrinology 1981, 109, 1708–1714. [PubMed]
  • Wiklund J.; Wertz N.; Gorski J. A comparison of estrogen effects on uterine and pituitary growth and prolactin synthesis in F344 and Holtzman rats. Endocrinology 1981, 109, 1700–1707. [PubMed]
  • Blankenstein M. A.; Broerse J. J.; van Zwieten M. J.; van der Molen H. J. Prolactin concentration in plasma and susceptibility to mammary tumors in female rats from different strains treated chronically with estradiol-17 beta. Breast Cancer Res. Treat. 1984, 4, 137–141. [PubMed]
  • Liehr J. G. Is estradiol a genotoxic mutagenic carcinogen?. Endocr. Rev. 2000, 21, 40–54. [PubMed]
  • Zwijsen R. M.; Wientjens E.; Klompmaker R.; van der Sman J.; Bernards R.; Michalides R. J. CDK-independent activation of estrogen receptor by cyclin D1. Cell 1997, 88, 405–415. [PubMed]
  • Yu Q.; Geng Y.; Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001, 411, 1017–1021. [PubMed]
  • Castro-Rivera E.; Samudio I.; Safe S. Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J. Biol. Chem. 2001, 276, 30853–30861. [PubMed]
  • Schultz-Norton J. R.; Gabisi V. A.; Ziegler Y. S.; McLeod I. X.; Yates J. R.; Nardulli A. M. Interaction of estrogen receptor alpha with proliferating cell nuclear antigen. Nucleic Acids Res. 2007, 35, 5028–5038. [PubMed]
  • Klinge C. M. Estrogen regulation of microRNA expression. Curr. Genomics 2009, 10, 169–183. [PubMed]
  • Sassen S.; Miska E. A.; Caldas C. MicroRNA: implications for cancer. Virchows Arch. 2008, 452, 1–10. [PubMed]
  • Zhou Q.; Eades G. MicroRNA regulatory networks provide feedback mechanisms for steroid receptor signaling. J. Steroids Hormon. Sci. 2012, 3, e103. [PMC free article] [PubMed]
  • Munagala R.; Aqil F.; Vadhanam M. V.; Gupta R. C. MicroRNA ‘signature’ during estrogen-mediated mammary carcinogenesis and its reversal by ellagic acid intervention. Cancer Lett. 2013, 339, 175–184. [PubMed]

Plaats een reactie ...

2 Reacties op "Bosbessen extract doet agressieve borstkankertumoren slinken en stopt groei, blijkt uit dierstudies"

  • j. timmers :
    Waar en onder welke naam is deze bosbessenpoeder te verkrijgen
    • kees :
      Google op bosbessen extract en je krijgt tientallen hits van leveranciers. Het extract van Life extension schijnt wel goed te zijn heb ik wel eens gehoord. Maar ik heb er zelf geen ervaring mee. Maar overleg anders met je begeleidende complementair werkende arts? Die zullen wel weten waar de beste kwaliteit te koop is lijkt mij?

      Kees

Gerelateerde artikelen
 

Gerelateerde artikelen

Wat beïnvloedt de opname >> Referentiegids effecten van >> Algemeen: effecten van voedingswijzen, >> Aminozuren - BCAA verbeteren >> Anti kanker effectiviteit >> Anti-oxidanten via voedingssupplementen >> Antioxidanten hebben geen >> Arts-bioloog drs. E. Valstar >> Arts-bioloog drs. E. Valstar: >> ATRA - all-trans-retinoic-acid >>