Zie ook de literatuurlijst niet-toxische middelen en behandelingen specifiek bij darmkanker van arts-bioloog drs. Engelbert Valstar 

31 maart 2022: Bron: Journal of Clinical Oncology

Uit een subgroep van de 701 deelnemende patiënten uit de Maya studie bij zwaar voorbehandelde patiënten met uitgezaaide darmkanker en geselecteerd op microsatellietstabiel (MSS) en geen actieve O6-methylguanine-DNA methyltransferase (MGMT) blijkt dat als deze patiénten na twee kuren met temolozomide - temodal stabiele ziekte hebben en geen progressie van deze ziekte en vervolgens de immuuntherapie combinatie krijgen de mediane ziekteprogressietijd en mediane overall overleving verbeterde. De mediane ziekteprogressie vrije tijd en de totale overleving waren respectievelijk 7,0 en 18,4 maanden en het totale responspercentage was 45%.

Probleem is wel dat van de patiënten die door de eerste selectie kwamen er maar weinig toekwamen aan de immuuntherapie. De onderzoekers schrijven ook nadrukkelijk dat vervolgstudies verder onderzoek waard is maar wel vooraf via biomoleculair onderzoek patiënten met uitgezaaide darmkanker beter selecteren op temozolomide-/dacarbazine-gevoelige tumoren.

Hier hoe de patiënten in de Maya studie zijn geselecteerd op verschillende momenten:

Figure

Vertaald uit het abstract:

Van de 716 vooraf gescreende patiënten kwamen 204 patiënten (29%) moleculair in aanmerking en 135 patiënten begonnen aan het eerste behandelingsgedeelte. Hiervan werd bij 102 patiënten (76%) de behandeling stopgezet vanwege overlijden of ziekteprogressie na eerste kuren met temozolomide, terwijl 33 patiënten (24%) die ziektecontrole bereikten, begonnen met het tweede behandelingsgedeelte en de laatste onderzoekspopulatie vertegenwoordigden.

Na een mediane follow-up van 23,1 maanden (interkwartielbereik 14,9-24,6 maanden), was het PFS-percentage van 8 maanden 36%. De mediane PFS en de totale overleving waren respectievelijk 7,0 en 18,4 maanden en het totale responspercentage was 45%. Graad 3-4 immuungerelateerde bijwerkingen waren huiduitslag (6%), colitis (3%) en hypofysitis (3%). Er werden geen onverwachte bijwerkingen of aan de behandeling gerelateerde sterfgevallen gemeld.

Het volledige studierapport is gratis in te zien of te downloaden. Klik daarvoor op de titel van het abstract:

This is a multicenter, single-arm phase II trial evaluating the efficacy and safety of an immune-sensitizing strategy with temozolomide priming followed by a combination of low-dose ipilimumab and nivolumab in patients with microsatellite-stable (MSS) and O6-methylguanine–DNA methyltransferase (MGMT)–silenced metastatic colorectal cancer (mCRC).

Patients with pretreated mCRC were centrally prescreened for MSS status and MGMT silencing (ie, lack of MGMT expression by immunohistochemistry plus MGMT methylation by pyrosequencing). Eligible patients received two priming cycles of oral temozolomide 150 mg/sqm once daily, days 1-5, once every 4 weeks (first treatment part) followed, in absence of progression, by its combination with ipilimumab 1 mg/kg once every 8 weeks and nivolumab 480 mg once every 4 weeks (second treatment part). The primary end point was the 8-month progression-free survival (PFS) rate calculated from enrollment in patients who started the second treatment part, with ≥ 4 out of 27 subjects progression-free by the 8-month time point as decision rule.

Among 716 prescreened patients, 204 (29%) were molecularly eligible and 135 started the first treatment part. Among these, 102 (76%) were discontinued because of death or disease progression on temozolomide priming, whereas 33 patients (24%) who achieved disease control started the second treatment part and represented the final study population. After a median follow-up of 23.1 months (interquartile range, 14.9-24.6 months), 8-month PFS rate was 36%. Median PFS and overall survival were 7.0 and 18.4 months, respectively, and overall response rate was 45%. Grade 3-4 immune-related adverse events were skin rash (6%), colitis (3%), and hypophysitis (3%). No unexpected adverse events or treatment-related deaths were reported.

The MAYA study provided proof-of-concept that a sequence of temozolomide priming followed by a combination of low-dose ipilimumab and nivolumab may induce durable clinical benefit in MSS and MGMT-silenced mCRC.

© 2022 by American Society of Clinical Oncology
CONTEXT

  • Key Objective

  • The MAYA trial was designed to prospectively provide clinical proof-of-concept of the role of temozolomide as an immune-sensitizing agent because of induction of hypermutation in proficient mismatch repair/microsatellite-stable, O6-methylguanine–DNA methyltransferase–silenced metastatic colorectal cancer.

  • Knowledge Generated

  • The MAYA strategy allowed to achieve durable disease control to low-dose ipilimumab and nivolumab combination in heavily pretreated patients, along with a manageable safety profile.

  • Relevance

  • The MAYA strategy is worth further investigation in properly selected patients with metastatic colorectal cancer and may be agnostically translated to other temozolomide-/dacarbazine-sensitive cancers.

PRIOR PRESENTATION

Presented at the Colorectal Cancer Proffered Paper Session at the European Society for Medical Oncology 2021 Congress, Paris, France, September 18, 2021.

SUPPORT

Partial financial support and ipilimumab/nivolumab supply by Bristol Myers Squibb; temozolomide supply by Sun Pharma Italia.

CLINICAL TRIAL INFORMATION

NCT03832621

Conception and design: Federica Morano, Filippo Pagani, Filippo de Braud, Filippo Pietrantonio

Financial support: Filippo Pietrantonio

Provision of study material or patients: Francesca Bergamo, Maria Alessandra Calegari, Elena Conca, Maria Di Bartolomeo

Collection and assembly of data: Federica Morano, Alessandra Raimondi, Filippo Pagani, Sara Lonardi, Lisa Salvatore, Chiara Cremolini, Sabina Murgioni, Federica Palermo, Lorenzo Antonuzzo, Nicoletta Pella, Patrizia Racca, Michele Prisciandaro, Monica Niger, Francesca Corti, Francesca Bergamo, Alberto Zaniboni, Margherita Ratti, Michele Palazzo, Celeste Cagnazzo, Maria Alessandra Calegari, Federica Marmorino, Silvia Brich, Elena Tamborini, Federica Perrone, Maria Di Bartolomeo, Filippo de Braud, Filippo Pietrantonio

Data analysis and interpretation: Federica Morano, Alessandra Raimondi, Giovanni Randon, Michele Prisciandaro, Francesca Corti, Iolanda Capone, Elena Conca, Adele Busico, Massimo Di Maio, Massimo Milione, Filippo Pietrantonio

Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/jco/authors/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).


Consulting or Advisory Role: Amgen, Servier, MSD Oncology, Merck

Research Funding: Bristol Myers Squibb (Inst), Astrazeneca (Inst)

No other potential conflicts of interest were reported.

ACKNOWLEDGMENT

The authors thank the patients and their families and caregivers for their participation.

1. Overman MJLonardi SWong KYM, et al: Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 36:773-7792018 LinkGoogle Scholar
2. Overman MJMcDermott RLeach JL, et al: Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol 18:1182-11912017 CrossrefMedlineGoogle Scholar
3. Le DTKim TWVan Cutsem E, et al: Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 38:11-192020 LinkGoogle Scholar
4. André TShiu KKKim TW, et al: Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 383:2207-22182020 CrossrefMedlineGoogle Scholar
5. Lenz HJVan Cutsem ELuisa Limon M, et al: First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: The phase II CheckMate 142 study. J Clin Oncol 40:161-1702022 LinkGoogle Scholar
6. Gupta DHeinen CDThe mismatch repair-dependent DNA damage response: Mechanisms and implications. DNA Repair (Amst) 78:60-692019 CrossrefMedlineGoogle Scholar
7. Llosa NJCruise MTam A, et al: The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43-512015 CrossrefMedlineGoogle Scholar
8. Hegi MEDiserens ACGorlia T, et al: MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997-10032005 CrossrefMedlineGoogle Scholar
9. Amatu ASartore-Bianchi AMoutinho C, et al: Promoter CpG island hypermethylation of the DNA repair enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer. Clin Cancer Res 19:2265-22722013 CrossrefMedlineGoogle Scholar
10. Hochhauser DGlynne-Jones RPotter V, et al: A phase II study of temozolomide in patients with advanced aerodigestive tract and colorectal cancers and methylation of the O6-methylguanine-DNA methyltransferase promoter. Mol Cancer Ther 12:809-8182013 CrossrefMedlineGoogle Scholar
11. Pietrantonio FPerrone Fde Braud F, et al: Activity of temozolomide in patients with advanced chemorefractory colorectal cancer and MGMT promoter methylation. Ann Oncol 25:404-4082014 CrossrefMedlineGoogle Scholar
12. Pietrantonio Fde Braud FMilione M, et al: Dose-dense temozolomide in patients with MGMT-silenced chemorefractory colorectal cancer. Target Oncol 11:337-3432016 CrossrefMedlineGoogle Scholar
13. Amatu ABarault LMoutinho C, et al: Tumor MGMT promoter hypermethylation changes over time limit temozolomide efficacy in a phase II trial for metastatic colorectal cancer. Ann Oncol 27:1062-10672016 CrossrefMedlineGoogle Scholar
14. Calegari MAInno AMonterisi S, et al: A phase 2 study of temozolomide in pretreated metastatic colorectal cancer with MGMT promoter methylation. Br J Cancer 116:1279-12862017 CrossrefMedlineGoogle Scholar
15. Sartore-Bianchi APietrantonio FAmatu A, et al: Digital PCR assessment of MGMT promoter methylation coupled with reduced protein expression optimises prediction of response to alkylating agents in metastatic colorectal cancer patients. Eur J Cancer 71:43-502017 CrossrefMedlineGoogle Scholar
16. Schwartz SSzeto CTian Y, et al: Refining the selection of patients with metastatic colorectal cancer for treatment with temozolomide using proteomic analysis of O6-methylguanine-DNA-methyltransferase. Eur J Cancer 107:164-1742019 CrossrefMedlineGoogle Scholar
17. Pietrantonio FLobefaro RAntista M, et al: Capecitabine and temozolomide versus FOLFIRI in RAS-mutated, MGMT-methylated metastatic colorectal cancer. Clin Cancer Res 26:1017-10242020 CrossrefMedlineGoogle Scholar
18. Morano FCorallo SNiger M, et al: Temozolomide and irinotecan (TEMIRI regimen) as salvage treatment of irinotecan-sensitive advanced colorectal cancer patients bearing MGMT methylation. Ann Oncol 29:1800-18062018 CrossrefMedlineGoogle Scholar
19. Pietrantonio FRandon GRomagnoli D, et al: Biomarker-guided implementation of the old drug temozolomide as a novel treatment option for patients with metastatic colorectal cancer. Cancer Treat Rev 82:1019352020 CrossrefMedlineGoogle Scholar
20. Alexandrov LBNik-Zainal SWedge DC, et al: Signatures of mutational processes in human cancer. Nature 500:415-4212013 CrossrefMedlineGoogle Scholar
21. Alexandrov LBKim JHaradhvala NJ, et al: The repertoire of mutational signatures in human cancer. Nature 578:94-1012020 CrossrefMedlineGoogle Scholar
22. Cahill DPLevine KKBetensky RA, et al: Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 13:2038-20452007 CrossrefMedlineGoogle Scholar
23. Indraccolo SLombardi GFassan M, et al: Genetic, epigenetic, and immunologic profiling of MMR-deficient relapsed glioblastoma. Clin Cancer Res 25:1828-18372019 CrossrefMedlineGoogle Scholar
24. Yip SMiao JCahill DP, et al: MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clin Cancer Res 15:4622-46292009 CrossrefMedlineGoogle Scholar
25. Johnson BEMazor THong C, et al: Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189-1932014 CrossrefMedlineGoogle Scholar
26. Hunter CSmith RCahill DP, et al: A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66:3987-39912006 CrossrefMedlineGoogle Scholar
27. Campbell BBLight NFabrizio D, et al: Comprehensive analysis of hypermutation in human cancer. Cell 171:1042-1056.e102017 CrossrefMedlineGoogle Scholar
28. Germano GLamba SRospo G, et al: Inactivation of DNA repair triggers neoantigen generation and impairs tumour growth. Nature 552:116-1202017 CrossrefMedlineGoogle Scholar
29. Johannessen LEBrandal PMyklebust T, et al: Gene promoter methylation status—Assessment of two pyrosequencing kits and three methylation-specific PCR methods for their predictive capacity in glioblastomas. Cancer Genomics Proteomics 15:437-4462018 CrossrefMedlineGoogle Scholar
30. Suraweera NDuval AReperant M, et al: Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 123:1804-18112002 CrossrefMedlineGoogle Scholar
31. Seymour LBogaerts JPerrone A, et al: iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18:e143-e522017 CrossrefMedlineGoogle Scholar
32. Klempner SJHendifar AWaters KM, et al: Exploiting temozolomide-induced hypermutation with pembrolizumab in a refractory high-grade neuroendocrine neoplasm: A proof-of-concept case. JCO Precis Oncol 4:614-6192020 LinkGoogle Scholar
33. Grothey AVan Cutsem ESobrero A, et al: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 381:303-3122013 CrossrefMedlineGoogle Scholar
34. Mayer RJVan Cutsem EFalcone A, et al: Randomized trial of TAS-102 for refractory metastatic colorectal cancer. N Engl J Med 372:1909-19192015 CrossrefMedlineGoogle Scholar
35. Jacques FHNicholas GLorimer IAJ, et al: Avelumab in newly diagnosed glioblastoma. Neurooncol Adv 3:vdab1182021 MedlineGoogle Scholar
36. Khan KHCunningham DWerner B, et al: Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov 8:1270-12852018 CrossrefMedlineGoogle Scholar
37. A'Hern RPSample size tables for exact single-stage phase II designs. Stat Med 20:859-8662001 CrossrefMedlineGoogle Scholar



Plaats een reactie ...

Reageer op "Temozolomide - temodal gevolgd door immunotherapie met combinatie van lage dosis ipilimumab plus nivolumab geeft hoopgevende resultaten bij patiënten met microsatellietstabiel en MGMT-gedempte uitgezaaide darmkanker"


Gerelateerde artikelen