26 september 2018: Bron: Pubmed

Ik heb eens in pubmed gezocht op het eiwit WNT16B naar aanleiding van het artikel hieronder en kom op interessante studies.

Met als kernboodschap dat het eiwit WNT16B een rol speelt in het resistent worden tegen chemotherapie en waarschijnlijk ook hormoontherapie. Lees daarvoor ook het originele artikel uit 2012 verderop in dit artikel.

Klik op de titels van de publicaties om de studierapporten te lezen.

In willekeurige volgorde, abstracten staan onderaan artikel.

Dit studierapport: 

Treatment-induced secretion of WNT16B promotes tumor growth and acquired resistance to chemotherapy  

is gratis te lezen. Het abstract staat onderaan dit artikel.

Citaat uit het abstract:

In een recent artikel in Nature Medicine, Sun et al. toont aan dat verhoogde expressie van een eiwit uit de Wnt familie (WNT16B)' als reactie op cytotoxische schade tumorgroei en resistentie tegen chemo kan bevorderen. Zulke bevindingen schetsen een mechanisme waarmee cytotoxische therapieën die in cyclische doses worden gegeven, de ressitentie van de behandeling in feite kunnen vergroten en mogelijk de deur openen naar nieuwe onderzoeksgebieden en naar de ontwikkeling van nieuwe therapeutische doelen die het DNA-schade-responsprogramma blokkeren. 

Ook deze studie ziet het effect dat het eiwit WNT16B heeft bij optredende resistentie tegen chemo, al zien de odnerzoekers ook hoe een ander stofje dit zou kunnen opheffen 

SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment.

(We found WNT16B plays a central role in promoting advanced malignancies particularly acquired resistance by counteracting cell death, an effect that can be minimized by a neutralizing antibody co-administered with classical chemotherapy. Furthermore, DNA damage-triggered expression of WNT16B is systemic, imaged by significant induction among diverse solid organs and circulation in peripheral blood, thereby holding promise as not only a TME-derived anticancer target but also a novel biomarker for clinical evaluation of treatment efficacy. )

Vertaling met google translate: 

We vonden dat WNT16B een centrale rol speelt bij het bevorderen van gevorderde maligniteiten, met name verworven resistentie door het tegengaan van celdood, een effect dat kan worden geminimaliseerd door een neutraliserend antilichaam dat gelijktijdig wordt toegediend met klassieke chemotherapie. Bovendien is de door DNA-schade teweeggebrachte expressie van WNT16B systemisch, afgebeeld door significante inductie tussen diverse vaste organen en circulatie in perifeer bloed, waardoor het veelbelovend is als niet alleen een van TME afgeleid antikankerdoel, maar ook een nieuwe biomarker voor klinische evaluatie van de werkzaamheid van de behandeling.

Hier 1 grafiek uit verschillende grafieken die in bovenstaande studie zijn vermeld.

Zie het grote verschil in kolom G tussen behandelde en niet behandelde patienten in de expressie van het eiwit WNT16B in onderstaande afbeelding. 

Figure 2

An external file that holds a picture, illustration, etc.
Object name is onc2015494f2.jpg

SFRP2 is differentially expressed between stromal and epithelial cells in response to DNA damage. (a) Measurement of SFRP2 transcription in prostate fibroblasts and epithelial cells after genotoxic treatments (MIT, SAT and RAD), data normalized to untreated controls per line. (b) Protein-level examination with samples collected from cell lines used in a. IC and CM samples of each line were collected ~10 days after γ-irradiation treatment, GAPDH as a loading control. (c) Expression profiling of SFRP2 in distinct cell subpopulations separately isolated by laser capture microdissection from OCT-embedded tissue specimens of human CRC patients who either received direct surgery or underwent neoadjuvant chemotherapy before surgery. Data normalized to the lowest ΔCT in the pre-treatment group. Pre-, Pre-chemotherapy; Post-, Post-chemotherapy. Each data point represents an individual patient; n=10. (d) Representative HE and IHC staining images of sequential sections from human CRC patient specimens analyzed in c. Left column, HE staining; central and right columns, IHC staining. Anti-SFRP2 and anti-WNT16B were applied to tissues to probe the expression of designated antigens, respectively. Scale bar, 150 μm. Black arrows, stroma. (e) Pathological assessment of SFRP2 stromal expression in CRC patient tissues. For either pre- or post-treatment group, n=40. Patients were assigned to four categories per IHC staining intensity. 0, no expression; 1, faint expression; 2, moderate expression; 3, strong expression. P<0.01 by ANOVA. (f) IHC evaluation of WNT16B stromal expression in the same CRC patient cohort. (g) Co-expression of SFRP2 and WNT16B in stroma, corresponding R2 represents a best fit linear regression with Pearson correlation analysis.

Een andere studie is deze: 

WNT16B from ovarian fibroblasts induces differentiation of regulatory T cells through β-catenin signal in dendritic cells.

Het studierapport is volledig gratis te lezen. Hier het summiere abstract:

Treatment for cancer can induce a series of secreted factors into the tumor microenvironment, which can affect cancer progression. Wingless-type MMTV (mouse mammary tumor virus) integration site 16B (WNT16B) is a new member of the WNT family and has been reported to play growth-related roles in previous studies. In this study, we found WNT16B could be expressed and secreted into the microenvironment by human ovarian fibroblasts after DNA damage-associated treatment, including chemotherapy drugs and radiation. We also demonstrated that fibroblast-derived WNT16B could result in accumulation of β-catenin in dendritic cells and secretion of interleukin-10 (IL-10) and transforming growth factor beta (TGF-β), which contributed to the differentiation of regulatory T cells in a co-culture environment. These results shed light on the roles of WNT16B in immune regulation, especially in regard to cancer treatment.

Innate or acquired resistance to chemotherapy presents an important and predictable challenge in cancer therapy. Malignant tumors consist of both neoplastic and benign cells such as stromal fibroblasts, which can influence the tumor’s response to cytotoxic therapy. In a recent article in Nature Medicine, Sun et al. show that increased expression of Wnt family member wingless-type MMTV integration site family member 16B (WNT16B) by the tumor microenvironment in response to cytotoxic damage and signals through the canonical Wnt pathway to promote tumor growth and chemotherapy resistance. Such findings outline a mechanism by which cytotoxic therapies given in cyclical doses can actually augment later treatment resistance and may open the door to new areas of research and to the development of new therapeutic targets that block the DNA damage response program.

Although further studies are necessary to develop agents that block the DNA damage response program or chemotherapeutic agents that do not trigger it, the findings of Sun et al. provide considerable insight into the roots of chemotherapy resistance that may be used to guide future drug development.

. 2013 Feb 1; 14(2): 90–91.
PMCID: PMC3572004
PMID: 23114711

Treatment-induced secretion of WNT16B promotes tumor growth and acquired resistance to chemotherapy

Implications for potential use of inhibitors in cancer treatment

Abstract

Innate or acquired resistance to chemotherapy presents an important and predictable challenge in cancer therapy. Malignant tumors consist of both neoplastic and benign cells such as stromal fibroblasts, which can influence the tumor’s response to cytotoxic therapy. In a recent article in Nature Medicine, Sun et al. show that increased expression of Wnt family member wingless-type MMTV integration site family member 16B (WNT16B) by the tumor microenvironment in response to cytotoxic damage and signals through the canonical Wnt pathway to promote tumor growth and chemotherapy resistance. Such findings outline a mechanism by which cytotoxic therapies given in cyclical doses can actually augment later treatment resistance and may open the door to new areas of research and to the development of new therapeutic targets that block the DNA damage response program.

References

1. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92. doi: 10.1002/path.1706. [PubMed] [Cross Ref]
2. Kerbel RS, Kobayashi H, Graham CH. Intrinsic or acquired drug resistance and metastasis: are they linked phenotypes? J Cell Biochem. 1994;56:37–47. doi: 10.1002/jcb.240560108. [PubMed] [Cross Ref]
3. Davis AJ, Tannock JF. Repopulation of tumour cells between cycles of chemotherapy: a neglected factor. Lancet Oncol. 2000;1:86–93. doi: 10.1016/S1470-2045(00)00019-X. [PubMed] [Cross Ref]
4. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I, et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med. 2012 doi: 10.1038/nm2890. [PMC free article] [PubMed] [Cross Ref]
5. Binet R, Ythier D, Robles AI, Collado M, Larrieu D, Fonti C, et al. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway. Cancer Res. 2009;69:9183–91. doi: 10.1158/0008-5472.CAN-09-1016. [PubMed] [Cross Ref]
6. Fear MW, Kelsell DP, Spurr NK, Barnes MR. Wnt-16a, a novel Wnt-16 isoform, which shows differential expression in adult human tissues. Biochem Biophys Res Commun. 2000;278:814–20. doi: 10.1006/bbrc.2000.3852. [PubMed] [Cross Ref]

Articles from Cancer Biology & Therapy are provided here courtesy of Taylor & Francis

SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment

. 2016 Aug 18; 35(33): 4321–4334.
Published online 2016 Jan 11. doi:  10.1038/onc.2015.494
PMCID: PMC4994019
PMID: 26751775

SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment

Y Sun,1,2,3,* D Zhu,4 F Chen,1 M Qian,1 H Wei,5 W Chen,5 and J Xu4

Abstract

Most tumors initially respond to cytotoxic treatments, but acquired resistance often follows. The tumor microenvironment (TME) is a major barrier to clinical success by compromising therapeutic efficacy, and pathological relevance of multiple soluble factors released by a therapeutically remodeled TME remains largely unexplored. Here we show that the secreted frizzled-related protein 2 (SFRP2), a Wnt pathway modulator, is produced by human primary fibroblasts after genotoxic treatments. SFRP2 induction is remarkable in tumor stroma, with transcription mainly modulated by the nuclear factor-κB (NF-κB) complex, a property shared by several effectors of the DNA damage secretory program. Instead of directly altering canonical Wnt signaling, SFRP2 augments β-catenin activities initiated by WNT16B, another soluble factor from DNA-damaged stroma. WNT16B recognizes cancer cell surface receptors including frizzled (FZD) 3/4/6, a process enhanced by SFRP2, coordinated by the co-receptor LRP6 but subject to abrogation by DKK1. Importantly, we found WNT16B plays a central role in promoting advanced malignancies particularly acquired resistance by counteracting cell death, an effect that can be minimized by a neutralizing antibody co-administered with classical chemotherapy. Furthermore, DNA damage-triggered expression of WNT16B is systemic, imaged by significant induction among diverse solid organs and circulation in peripheral blood, thereby holding promise as not only a TME-derived anticancer target but also a novel biomarker for clinical evaluation of treatment efficacy. Overall, our study substantiates the biological complexity and pathological implication of a therapy-activated TME, and provides the proof of principle of co-targeting tumor and the TME to prevent acquired resistance, with the aim of improving intervention outcome in an era of precision medicine.

References

  • Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 2015; 25: 198–213. [PMC free article] [PubMed]
  • Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev 2015; 35: 408–436. [PMC free article] [PubMed]
  • Ostman A. The tumor microenvironment controls drug sensitivity. Nat Med 2012; 18: 1332–1334. [PubMed]
  • Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 2012; 18: 1359–1368. [PMC free article] [PubMed]
  • Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 2009; 11: 973–979. [PMC free article] [PubMed]
  • Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 2013; 13: 11–26. [PubMed]
  • Huber RM, Lucas JM, Gomez-Sarosi LA, Coleman I, Zhao S, Coleman R et al. DNA damage induces GDNF secretion in the tumor microenvironment with paracrine effects promoting prostate cancer treatment resistance. Oncotarget 2014; 6: 2134–2147. [PMC free article] [PubMed]
  • Siamakpour-Reihani S, Caster J, Bandhu Nepal D, Courtwright A, Hilliard E, Usary J et al. The role of calcineurin/NFAT in SFRP2 induced angiogenesis—a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus. PloS One 2011; 6: e20412. [PMC free article] [PubMed]
  • Zhang S, Zhao W. Tumor microenvironment in pathogenesis and drug resistance of non-Hodgkin's lymphoma. Zhonghua Xue Ye Xue Za Zhi 2014; 35: 466–469. [PubMed]
  • Borriello L, DeClerck YA. Tumor microenvironment and therapeutic resistance process. Med Sci 2014; 30: 445–451. [PubMed]
  • Kinugasa Y, Matsui T, Takakura N. CD44 expressed on cancer-associated fibroblasts is a functional molecule supporting the stemness and drug resistance of malignant cancer cells in the tumor microenvironment. Stem Cells 2014; 32: 145–156. [PubMed]
  • Seruga B, Ocana A, Tannock IF. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 2011; 8: 12–23. [PubMed]
  • Basch E, Loblaw DA, Oliver TK, Carducci M, Chen RC, Frame JN et al. systemic therapy in men with metastatic castration-resistant prostate cancer: American Society of Clinical Oncology and Cancer Care Ontario Clinical Practice Guideline. J Clin Oncol 2014; 32: U3436–U3133. [PMC free article] [PubMed]
  • Halabi S, Lin CY, Small EJ, Armstrong AJ, Kaplan EB, Petrylak D et al. Prognostic model predicting metastatic castration-resistant prostate cancer survival in men treated with second-line chemotherapy. J Natl Cancer Inst 2013; 105: 1729–1737. [PMC free article] [PubMed]
  • Courtwright A, Siamakpour-Reihani S, Arbiser JL, Banet N, Hilliard E, Fried L et al. Secreted frizzle-related protein 2 stimulates angiogenesis via a calcineurin/NFAT signaling pathway. Cancer Res 2009; 69: 4621–4628. [PMC free article] [PubMed]
  • Sun Y, Nelson PS. Molecular pathways: involving microenvironment damage responses in cancer therapy resistance. Clin Cancer Res 2012; 18: 4019–4025. [PMC free article] [PubMed]
  • Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868. [PMC free article] [PubMed]
  • Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 2012; 11: 569–578. [PMC free article] [PubMed]
  • Kongkham PN, Northcott PA, Croul SE, Smith CA, Taylor MD, Rutka JT. The SFRP family of WNT inhibitors function as novel tumor suppressor genes epigenetically silenced in medulloblastoma. Oncogene 2010; 29: 3017–3024. [PubMed]
  • Saini S, Majid S, Dahiya R. The complex roles of Wnt antagonists in RCC. Nat Rev Urol 2011; 8: 690–699. [PubMed]
  • Roth W, Wild-Bode C, Platten M, Grimmel C, Melkonyan HS, Dichgans J et al. Secreted Frizzled-related proteins inhibit motility and promote growth of human malignant glioma cells. Oncogene 2000; 19: 4210–4220. [PubMed]
  • Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989; 8: 98–101. [PubMed]
  • Ren SY, Johnson BG, Kida Y, Ip C, Davidson KC, Lin SL et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc Natl Acad Sci USA 2013; 110: 1440–1445. [PMC free article] [PubMed]
  • Cheng ZH, Biechele T, Wei ZY, Morrone S, Moon RT, Wang LG et al. Crystal structures of the extracellular domain of LRP6 and its complex with DKK1. Nat Struct Mol Biol 2011; 18: 1204–U1244. [PMC free article] [PubMed]
  • Bao J, Zheng JJ, Wu DQ. The Structural Basis of DKK-Mediated Inhibition of Wnt/LRP Signaling. Sci Signal 2012; 5: pe22. [PMC free article] [PubMed]
  • Asangani IA, Dommeti VL, Wang XJ, Malik R, Cieslik M, Yang RD et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 2014; 510: 278–282. [PMC free article] [PubMed]
  • Chen F, Qi X, Qian M, Dai Y, Sun Y. Tackling the tumor microenvironment: what challenge does it pose to anticancer therapies? Protein Cell 2014; 5: 816–826. [PMC free article] [PubMed]
  • Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du JY et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012; 487: 500–504. [PMC free article] [PubMed]
  • Wilson TR, Fridlyand J, Yan YB, Penuel E, Burton L, Chan E et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487: 505–509. [PMC free article] [PubMed]
  • Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13: 714–726. [PubMed]
  • Yang Y, Shi J, Gu Z, Salama ME, Das S, Wendlandt E et al. Bruton tyrosine kinase is a therapeutic target in stem-like cells from multiple myeloma. Cancer Res 2015; 75: 594–604. [PMC free article] [PubMed]
  • Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2014; 33: 4451–4463. [PubMed]
  • Corso S, Giordano S. Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov 2013; 3: 978–992. [PubMed]
  • Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 2015; 13: 278. [PMC free article] [PubMed]
  • Binet R. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway. Cancer Res 2009; 69: 9183–9191. [PubMed]
  • von Marschall Z, Fisher LW. Secreted Frizzled-related protein-2 (sFRP2) augments canonical Wnt3a-induced signaling. Biochem Biophys Res Commun 2010; 400: 299–304. [PMC free article] [PubMed]
  • Mii Y, Taira M. Secreted Frizzled-related proteins enhance the diffusion of Wnt ligands and expand their signalling range. Development 2009; 136: 4083–4088. [PubMed]
  • Bao J, Zheng JJ, Wu D. The structural basis of DKK-mediated inhibition of Wnt/LRP signaling. Sci Signal 2012; 5: pe22. [PMC free article] [PubMed]
  • Pazolli E, Alspach E, Milczarek A, Prior J, Piwnica-Worms D, Stewart SA. Chromatin remodeling underlies the senescence-associated secretory phenotype of tumor stromal fibroblasts that supports cancer progression. Cancer Res 2012; 72: 2251–2261. [PMC free article] [PubMed]
  • Chien Y, Scuoppo C, Wang X, Fang X, Balgley B, Bolden JE et al. Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 2011; 25: 2125–2136. [PMC free article] [PubMed]
  • Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 2009; 106: 17031–17036. [PMC free article] [PubMed]
  • Alspach E, Flanagan KC, Luo X, Ruhland MK, Huang H, Pazolli E et al. p38MAPK plays a crucial role in stromal-mediated tumorigenesis. Cancer Discov 2014; 4: 716–729. [PMC free article] [PubMed]
  • Tsuchimochi K, Otero M, Dragomir CL, Plumb DA, Zerbini LF, Libermann TA et al. GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes. J Biol Chem 2010; 285: 8395–8407. [PMC free article] [PubMed]
  • Laberge L, Sun Y, Orjalo AV, Patil CK, Freund A, Liu S et al. mTOR regulates the tumor-promoting senescence-associated secretory phenotype. Nat Cell Biol 2015; 17: 1049–1061. [PMC free article] [PubMed]
  • Perry AS, O'Hurley G, Raheem OA, Brennan K, Wong S, O'Grady A et al. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer. Int J Cancer 2013; 132: 1771–1780. [PubMed]
  • O'Hurley G, Perry AS, O'Grady A, Loftus B, Smyth P, O'Leary JJ et al. The role of secreted frizzled-related protein 2 expression in prostate cancer. Histopathology 2011; 59: 1240–1248. [PubMed]
  • Yang X, Zhang X, Fu ML, Weichselbaum RR, Gajewski TF, Guo Y et al. Targeting the tumor microenvironment with interferon-beta bridges innate and adaptive immune responses. Cancer Cell 2014; 25: 37–48. [PMC free article] [PubMed]
  • Ries CH, Cannarile MA, Hoves S, Benz J, Wartha K, Runza V et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 2014; 25: 846–859. [PubMed]
  • Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett 2015; e-pub ahead of print 10 August 2015 doi:10.1016/j.canlet.2015.07.044.
  • Xu J, Zhong Y, Weixin N, Xinyu Q, Yanhan L, Li R et al. Preoperative hepatic and regional arterial chemotherapy in the prevention of liver metastasis after colorectal cancer surgery. Ann Surg 2007; 245: 583–590. [PMC free article] [PubMed]

Noncancerous fibroblasts when exposed to chemotherapy sustain DNA damage that drives the production of an array of factors that stimulate solid tumor cancer growth

Cancer chemotherapy resistance: Hutchinson Center team discovers new mechanism

Noncancerous fibroblasts when exposed to chemotherapy sustain DNA damage that drives the production of an array of factors that stimulate solid tumor cancer growth

Aug 6, 2012
Dr. Peter Nelson

Dr. Peter Nelson of the Human Biology Division

Photo by Dean Forbes

Developing resistance to chemotherapy is a nearly universal, ultimately lethal consequence for cancer patients with solid tumors – such as those of the breast, prostate, lung and colon – that have metastasized throughout the body. A team of scientists led by the Hutchinson Center has discovered a key factor that drives this drug resistance – information that ultimately may be used to improve the effectiveness of therapy and buy precious time for patients with advanced cancer.

"Cancer cells inside the body live in a very complex environment or neighborhood. Where the tumor cell resides and who its neighbors are influence its response and resistance to therapy," said senior author Dr. Peter Nelson, of the Hutchinson Center’s Human Biology Division. The findings were published online Aug. 5 in advance of print publication in Nature Medicine.

Collaborators at the Center

Co-authors included first author Dr. Yu Sun, staff scientist in the Nelson Lab; Drs. Peggy Porter of Human Biology; Ilsa Coleman of the Nelson Lab; and Dr. Tia Higano of the Clinical Research Division and University of Washington. Porter, Dr. Nicole Urban of the Public Health Sciences Division, and Dr. Beverly Torok-Storb of Clinical Research provided tissue samples for the study.

Nelson and colleagues found that a type of normal, noncancerous cell that lives in cancer’s neighborhood – the fibroblast – when exposed to chemotherapy sustains DNA damage that drives the production of a broad spectrum of growth factors that stimulate cancer growth. Under normal circumstances, fibroblasts help maintain the structural integrity of connective tissue, and they play a critical role in wound healing and collagen production.

Specifically, the researchers found that DNA-damaging cancer treatment coaxes fibroblasts to crank out a protein called WNT16B within the tumor neighborhood, or microenvironment, and that high levels of this protein enable cancer cells to grow, invade surrounding tissue and resist chemotherapy.

'Completely unexpected' increased WNT production

The researchers observed up to 30-fold increases in WNT production – a finding that was "completely unexpected," Nelson said. The WNT family of genes and proteins plays an important role in normal development and also in the development of some cancers but, until now, was not known to play a significant role in treatment resistance.

This discovery suggests that finding a way to block this treatment response in the tumor microenvironment may improve the effectiveness of therapy.

"Cancer therapies are increasingly evolving to be very specific, targeting key molecular engines that drive the cancer rather than more generic vulnerabilities, such as damaging DNA. Our findings indicate that the tumor microenvironment also can influence the success or failure of these more precise therapies." In other words, the same cancer cell, when exposed to different "neighborhoods," may have very different responses to treatment.

The major clinical reason that chemotherapy ultimately fails in the face of advanced cancer, Nelson said, is because the doses necessary to thoroughly wipe out the cancer would also be lethal to the patient.

"In the laboratory we can 'cure' most any cancer simply by giving very high doses of toxic therapies to cancer cells in a petri dish. However, in people, these high doses would not only kill the cancer cells but also normal cells and the host," he said.

Therefore, treatments for common solid tumors are given in smaller doses and in cycles, or intervals, to allow the normal cells to recover. This approach may not eradicate all of the tumor cells, and those that survive can evolve to become resistant to subsequent rounds of anti-cancer therapy.

For the study the team of researchers – which also involved investigators at the University of Washington, Oregon Health and Science University, the Buck Institute for Research on Aging, the Lawrence Berkeley National Laboratory – examined cancer cells from prostate, breast and ovarian cancer patients who had been treated with chemotherapy.

Research investment paying off

"This study is an example of collaborative, translational research that capitalizes on years of federally funded investments into the development of tissue banks and clinical trials in which we were able to track long-term patient outcomes. Investing in this type of infrastructure is critical but may take many years to see payoff," said Nelson, who serves as principal investigator of the Pacific Northwest Prostate Cancer SPORE, a federally funded, multi-institution research consortium led by the Hutchinson Center.

The National Institutes of Health, the National Cancer Institute, the Department of Defense and the Prostate Cancer Foundation funded the research.


Plaats een reactie ...

3 Reacties op "Chemo stimuleert juist kankergroei en uitzaaiïngen door verhoogde productie van het eiwit WNT16B dat ook grote rol speelt bij wondheeling"

  • t(heo).a.muller :
    Wat velen al wisten staat hier zwart op wit en is gelukkig afkomstig uit reguliere hoek.
    Tot nu toe was alles wat regulier is het daar volstrekt miet mee eens, helaas en met ontelbare extra doden en gigantisch lijden tot gevolg.
    Hoe lang zou het duren voordat die zinloze maar vaak uiterst kostbare behandeling vervangen wordt door wel degelijk werkzame niet-reguliere behandelingen?
    Dat duurt eeuwig naar ik vrees zolang niet werkelijk democratische regeringen maar Big Pharma, Big Food en alles waar Big voor staat via lobbyisten in dient van genoemde bedrijfstakken in werkelijkheid de dienst uitmaken.
    Misschien wel het ergste is dat de onwetende burger door het kopen van de producten van die bedrijfstakken uit eigen beurs meebetalen aan hun eigen ondergang door, in dit geval een bijna verplicht gestelde behandeling met chemo toe te staan of draaf ik al teveel door?
    Zelf gezegend met een uitgezaaid melanoom ga ik dan toch maar liever gewoon dood na alle mogelijke, veelal natuurlijke mogelijkheden uitgeprobeerd te hebben en met succes tot voor kort.

    doordrammer@xs4all.nl
    • ronald :
      Theo je spreekt jezelf tegen.
      Theo> "Hoe lang zou het duren voordat die zinloze maar vaak uiterst kostbare behandeling vervangen wordt door wel degelijk werkzame niet-reguliere behandelingen?".
      Even later zeg je > "Zelf gezegend met een uitgezaaid melanoom ga ik dan toch maar liever gewoon dood na alle mogelijke, veelal natuurlijke mogelijkheden uitgeprobeerd te hebben en met succes tot voor kort.".

      Dus GEEN succes.

      Daarbij moet je de onderzoeks gegevens niet zo zwart wit zien.
      Zowel chemo als bestraling zijn behandelmethode die niet zomaar toegepast worden, bij een dosis hoog genoeg bestaat er een verhoogde kans op de ontwikkeling van tumor vorming.
      Dit weet de oncoloog ook , hij/zij zal dan ook een afweging maken.
      Een onbehandelde uitgezaaide kanker is meestal dodelijk, een chemokuur kan hier toch nog het verschil maken.
      De afweging is dan een onvermijdelijk einde, of een behandeling die toch nog perspectief bied maar dan wel met het risico om toch nog in een later stadium een terugkerende kanker te krijgen.
      Je kunt natuurlijk je heil zoeken in het alternatieve c.q Niet reguliere circuit.
      Niet regulier betekend per definitie Niet werkzaam!
      Anders zou die behandeling wel regulier gegeven worden.
      IK wens je veel sterkte toe, en de beste wensen voor 2013!
      • Kees :
        Ronald ik ken Theo al vele jaren. Hij heeft wel degelijk succes gehad met zijn niet-toxische aanpak (sommigen noemen dit ook alternatief). Zijn in de lymfklieren uitgezaaide melanoom is tot stilstand gekomen en hij is al 6 jaar stabiel zonder welke chemo of "reguliere" ingreep dan ook. Jij gebruikt de woorden regulier en "alternatief". Maar ook in de reguliere oncologie wordt veelvuldig gebruik gemaakt van nog niet door fase III studies bewezen middelen en behandelingen / apparaten. Want dat is de norm om opgenomen te worden in de richtlijnen. Bewijs uit liefst placebo gecontroleerde gerandomiseerde studies. Als je die criteria aanlegt voor de tot nu toe gebruikte chemo's dan voldoet bijna geen enkele chemo hieraan. En specifiek voor melanomen om maar bij Theo zijn vorm van kanker te blijven: lees dit eens: http://www.kanker-actueel.nl/NL/immuuntherapie-met-zelfgekweekte-en-daarna-ingebrachte-witte-bloedlichaampjes-zorgt-voor-spectaculaire-en-hoopvolle-genezingen-bij-melanoompatienten.html Inmiddels zijn 3 van de 5 patienten "genezen" van hun melanoom uit de fase I studie van dr. Haenen in het AvL.

        En lees dit maar: http://www.kanker-actueel.nl/NL/acute-promyelocitische-leukemie-apl-volledig-te-genezen-met-niet-toxische-aanpak-van-all-trans-retinoic-acid-atra-en-arseentrioxide-ato-en-zonder-chemo.html zonder welke chemo dan ook genezen leukemiepatienten voor 98,5 %. Opmnerkelijk aan deze studie is dat de aanpak de kannkercellen weer transformeert in gewone gezonde cellen.

        Ook jij een mooi nieuwjaar Ronald

Gerelateerde artikelen
 

Gerelateerde artikelen

Nieuwe kankermedicijnen worden >> Nieuwe toepassing van de gentherapie >> Wetenschappers van het Anthonie >> Nieuw NANO-Vaccin, 2 natuurlijke >> Whole genome sequencing: toekomst >> Darmbacterien beinvloeden >> Surviving terminal cancer: >> AMC start studieproject EIGEN >> Periodieke screening kan veel >> Chemo stimuleert juist kankergroei >>