Helpt u ons aan 500 donateurs?

28 mei 2018: Bron: RIVM

Het RIVM heeft een rapport opgemaakt over het gebrijk van bateriofagen bij infecties na bezoek aan het Georgische George Eliava Instituut waar al heel lang gewerkt wordt met bacteriofagen. (zie verderop in dit artikel)

Het RIVM schrijft in hun rapport dat er is te weinig kennis is over hoe bacteriofagen werken in het menselijk lichaam om ze nu al bij infecties te kunnen gaan gebruiken. Naast meer onderzoek zou ook aangepaste wet- en regelgeving nodig zijn om deze virussen in te kunnen zetten bij infecties in mensen. Tot die conclusie komt het Rijksinstituut voor Volksgezondheid en Milieu (RIVM), dat de huidige kennis over en ervaring met bacteriofagen in een rapport op een rijtje heeft gezet.

Het rapport: Bacteriofagen. Huidige kennis, onderzoek en toepassingen’  is gratis in te zien op de website van het RIVM.

Publiekssamenvatting

Bacteriofagen (ofwel fagen) zijn virussen die bacteriën kunnen doden. Ze werden begin vorige eeuw ontdekt, ongeveer tegelijk met antibiotica. Fagen hebben een ander werkingsmechanisme dan antibiotica. In theorie zouden ze daarom kunnen worden ingezet om infecties te behandelen die ongevoelig zijn voor antibiotica. Er is echter nog te weinig onderbouwd klinisch onderzoek beschikbaar om de meerwaarde van bacteriofaagbehandeling te kennen en dit veilig en voor meerdere soorten infecties te kunnen doen. Dit blijkt uit een inventarisatie die het RIVM heeft gemaakt van de huidige kennis over bacteriofagen voor de behandeling van infecties bij mensen.

Een faag werkt heel specifiek tegen één type bacterie, terwijl antibiotica werkzaam zijn tegen meerdere bacteriesoorten. Hierdoor kunnen fagen niet zo snel worden ingezet tegen infecties: eerst moet de ziekmakende bacterie geïdentificeerd en opgekweekt worden, waarna er een bijpassende faag of fagen bij moeten worden gezocht. Om deze praktische redenen hadden antibiotica meer succes en is het gebruik van fagen op de achtergrond geraakt.

De kennis over de precieze werking van bacteriofagen bij behandeling van infecties, hoe ze zich gedragen in het lichaam, welke dosering en behandelduur nodig zijn, en de risico's van gebruik is nog beperkt. Door het tijdrovende en complexe bereidingsproces zijn bacteriofagen niet geschikt om acute infecties te behandelen. In theorie zouden ze wel bij chronische infecties kunnen werken, bijvoorbeeld voor oppervlakkige huidinfecties. Om vragen over zulke toepassingen en de meerwaarde daarvan te beantwoorden is gecontroleerd klinisch onderzoek noodzakelijk, maar dat ontbreekt nog.

Daar komt bij dat de huidige Europese wet- en regelgeving voor geneesmiddelen niet gemaakt is voor patiëntspecifieke biologische producten, zoals bacteriofagen. In Europees verband wordt erover nagedacht om de wet- en regelgeving voor biologische producten te veranderen. In andere sectoren, zoals landbouw en voedselproductie, gelden minder strenge regels voor werkzaamheid en het gebruik van deze producten dan voor gebruik bij mensen. In deze sectoren worden fagen al wel ingezet.

24 oktober 2017: Bron o.a. DWDD en Wikipedia

Afgelopen vrijdag 20 oktober 2017 vertelde Antoinette Hertsenberg in DWDD (zie hier de uitzending van DWDD) over de aanpak met een bacteriofaag, virussen die bacteriën van binnenuit doden, voor resistente bacteriën waar antibiotica niet meer werkt. Met een sprekend voorbeeld van iemand die door de bacteriofaag zijn benen zou verliezen (diabeteswonden), maar door de bacteriofaag aanpak de bacterie in zijn been volledig wegkreeg en daarmee zijn been behield. Het verhaal werd zoals we wel kennen van Antoinette Hertsenberg uit haar RADAR uitzendingen met veel drama en overdrijving, maar was natuurlijk in eerste instantie bedoeld om aandacht te vragen voor de uitzending van Dokters van Morgen te zien op dinsdag 24 oktober 2017 21.30 uur NPO 1.

Ook de gespeelde verbazing en onwetendheid van Matthijs van Nieuwwkerk klonk echt ongeloofwaardig. Ik neem toch aan dat bij het aanbod van Antoinette Hertsberg om haar verhaal te doen de redactie op z'n minst even heeft gezocht via google. Dan hadden zij heel veel informatie gevonden. Want er was al eerder een uitzending over dit onderwerp, zie Bacteriofagen: een alternatief voor antibiotica?   d.d. 21 maart 2017 op NPO 1.

Of bekijk: Eerste Nederlander gered met bacteriofaag hoewel de man Bart Vissers later alsnog toch is overleden aan een hartstilstand: Volgens de programmamakers van het AVROTROS-programma Zorg.nu staat het overlijden van Bart Vissers (61) los van de therapie die hij ondergaan heeft. "Vissers leed aan meerdere complicaties en is uiteindelijk overleden aan een hartstilstand", aldus zijn behandelend arts.(tekst gaat verder onder plaatje van bacteriofaag)

bacteriofaagEen bacteriofaag

En ook in België en Nederland worden bacteriofagen dus ontwikkeld. In belgië in samenwerking met het door Antionette Hertsenberg genoemde Eliava instituut in Georgië. Dit Instituut is al sinds de jaren twintig van de vorige eeuw met deze techniek bezig. Het instituut in Tblisi is in 1923 opgericht. Het is daar heel normaal om voor een fagenbehandeling te kiezen. De wachtkamer zit vol met Georgiërs met de meest uiteenlopende kwalen. Maar sinds een paar jaar komen er ook vanuit Amerika, Frankrijk, India, Zwitserland en zelfs uit Uruguay patiënten die als laatste redmiddel voor een fagentherapie kiezen. Zij komen uit landen waar antibioticagebruik buitensporig is en resistentie daardoor ook.

In het militair hospitaal Koningin Astrid in Brussel is dr. Jean Paul Pirnay hoofd van het fagenlab. Hij produceert fagen voor mensen die aan het eind van hun latijn zijn. Antibiotica werken niet meer voor deze patiënten. Hij gebruikt hierbij de verklaring van Helsinki (artikel 37) die het toestaat met goedkeuring van de patiënt een experimenteel medicijn toe te dienen wanneer niets anders meer helpt. Zo produceerde hij ook fagen voor Bart Vissers die door doorligwonden de gevaarlijke Pseudomonas bacterie opliep.  Hij kon geen antibioticakuur meer verdragen en dreigde te sterven. Hij had al maanden kuren achter de rug. Dr. Serge Jennes, hoofd Brandwondencentrum diende hem als laatste redmiddel een fagenkuur toe. De Pseudomonasbacterie verdween. De Belgische minister van Volksgezondheid heeft onlangs toestemming gegeven om apotheken in België ook fagen te laten verstrekken. Dr. Pirnay kan ze in zijn lab ontwikkelen, in eerste instantie voor 'hopeloze gevallen' en voor gecontroleerde studies. Als deze applicaties succesvol zijn, dan hoopt Pirnay dat de industrie deze fagen op grotere schaal zal produceren.

(Tekst gaat verder onder plaatje dat het werkingsmechaniosme van de bacetriofasgen weergeeft)

bacteriofaag mechanisme

 

Bron foto boven: Kennislink

Het goede van de publiciteit is dat het werkingsmechanisme interessant is en wellicht ook gebruikt kan worden bij kankerpatienten die in bestraald gebied een bacterie hebben gekregen en die amper zijn te behandelen. Denk maar aan borstkankerpatiënten die nu via hyperbare zuurstoftherapie soms proberen de problemen in bestraald gebied op te lossen. (ik heb zelf ook 40 dagen hyperbare zuurstoftherapie gehad en op sommige dagen waren er ook borstkankerpatienten met infecties in bestraald gebied.) Al is in dit geval niet altijd sprake van een resistente bacterie denk ik. Maar weet dat niet zeker. Misschien is een bacterie wel altijd de oorzaak. Bij mij werd het preventief voorgeschreven om infecties te voorkomen bij het operatief verwijderen van mijn kiezen, liggend in bestraald gebied.)

Informatie over bacteriofagen zijn al jaren te vinden op internet. Dit artikel: Virussen: een goed alternatief voor anti-biotica? in Kennisnet geeft duidelijke en heldere informatie over de ontwikkeling van bacteriofagen. 

bacteriofaag uit WikipediaBacteriofaag uit Wikipedia

En ook op wikepedia is veel informatie over bacteriofagen te vinden.

En uiteraard is al onderzoek gedaan naar bacteriofagen therapie. Dit volledige studierapport van een reviewstudie uit 2014 geeft interessante informatie: Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens gepubliceerd in het tijdschrift met de veelzeggende titel: Journal of antimicrobial chemotherapy. Abstract staat hieronder met referentielijst. 

Hun conclusie: 

As a final remark, patients suffering from multidrug-resistant pathogenic infections should soon be allowed access to phage therapy to ultimately achieve an ‘ESKAPE’ from the threat of untreatable bacterial infections.

Samenvattend wellicht de moeite waard naar de uitzending van Dokters van Morgen te kijken op dinsdag 24 oktober 2017 21.30 uur NPO 1, maar de aanpak daarmee is niet in alle gevallen succesvol. Al blijft het een interessante ontwikkeling.

This review presents novel strategies for phage-related therapies and describes our current knowledge of natural bacteriophages within the human microbiome.

Viruses versus bacteria—novel approaches to phage therapy as a tool against multidrug-resistant pathogens

Journal of Antimicrobial Chemotherapy, Volume 69, Issue 9, 1 September 2014, Pages 2326–2336, https://doi.org/10.1093/jac/dku173
Published:
28 May 2014

Bacteriophage therapy (the application of phages to treat bacterial infections) has a tradition dating back almost a century, but interest in phage therapy slowed down in the West when antibiotics were discovered. With the emerging threat of infections caused by multidrug-resistant bacteria and scarce prospects of newly introduced antibiotics in the future, phages are currently being reconsidered as alternative therapeutics. Conventional phage therapy uses lytic bacteriophages for treatment and recent human clinical trials have revealed encouraging results. In addition, several other modern approaches to phages as therapeutics have been made in vitro and in animal models. Dual therapy with phages and antibiotics has resulted in significant reductions in the number of bacterial pathogens. Bioengineered phages have overcome many of the problems of conventional phage therapy, enabled targeted drug delivery or reversed the resistance of drug-resistant bacteria. The use of enzymes derived from phages, such as endolysin, as therapeutic agents has been efficient in the elimination of Gram-positive pathogens. This review presents novel strategies for phage-related therapies and describes our current knowledge of natural bacteriophages within the human microbiome. Our aim is to provide an overview of the high number of different methodological concepts, thereby encouraging further research on this topic, with the ultimate goal of using phages as therapeutic or preventative medicines in daily clinical practice.

As a final remark, patients suffering from multidrug-resistant pathogenic infections should soon be allowed access to phage therapy to ultimately achieve an ‘ESKAPE’ from the threat of untreatable bacterial infections.

References

1
Boucher
HW
Talbot
GH
Bradley
JS
et al.  
Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America
Clin Infect Dis
 
2009
48
1
12
2
Rice
LB
Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE
J Infect Dis
 
2008
197
1079
81
3
Srinivasiah
S
Bhavsar
J
Thapar
K
et al.  
Phages across the biosphere: contrasts of viruses in soil and aquatic environments
Res Microbiol
 
2008
159
349
57
4
Matsuzaki
S
Rashel
M
Uchiyama
J
et al.  
Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases
J Infect Chemother
 
2005
11
211
9
5
Dethlefsen
L
Huse
S
Sogin
ML
et al.  
The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing
PLoS Biol
 
2008
6
e280
6
Sarker
SA
McCallin
S
Barretto
C
et al.  
Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh
Virology
 
2012
434
222
32
7
Monk
AB
Rees
CD
Barrow
P
et al.  
Bacteriophage applications: where are we now?
Lett Appl Microbiol
 
2010
51
363
9
8
Sulakvelidze
A
Alavidze
Z
Morris
JG
Jr
Bacteriophage therapy
Antimicrob Agents Chemother
 
2001
45
649
59
9
Gilmore
BF
Bacteriophages as anti-infective agents: recent developments and regulatory challenges
Expert Rev Anti Infect Ther
 
2012
10
533
5
10
Bruttin
A
Brussow
H
Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy
Antimicrob Agents Chemother
 
2005
49
2874
8
11
Merabishvili
M
Pirnay
JP
Verbeken
G
et al.  
Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials
PLoS One
 
2009
4
e4944
12
Rhoads
DD
Wolcott
RD
Kuskowski
MA
et al.  
Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial
J Wound Care
 
2009
18
237
8
240–3
13
Wright
A
Hawkins
CH
Anggard
EE
et al.  
A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy
Clin Otolaryngol
 
2009
34
349
57
14
Miedzybrodzki
R
Borysowski
J
Weber-Dabrowska
B
et al.  
Clinical aspects of phage therapy
Adv Virus Res
 
2012
83
73
121
15
Lu
TK
Koeris
MS
The next generation of bacteriophage therapy
Curr Opin Microbiol
 
2011
14
524
31
16
Kim
KP
Cha
JD
Jang
EH
et al.  
PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response
Microb Biotechnol
 
2008
1
247
57
17
Vitiello
CL
Merril
CR
Adhya
S
An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold
Virus Res
 
2005
114
101
3
18
Pouillot
F
Blois
H
Iris
F
Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria
Biosecur Bioterror
 
2010
8
155
69
19
Yoichi
M
Abe
M
Miyanaga
K
et al.  
Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7
J Biotechnol
 
2005
115
101
7
20
Mahichi
F
Synnott
AJ
Yamamichi
K
et al.  
Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity
FEMS Microbiol Lett
 
2009
295
211
7
21
Chan
LY
Kosuri
S
Endy
D
Refactoring bacteriophage T7
Mol Syst Biol
 
2005
1
2005.0018
22
Smith
HO
Hutchison
CA
III
Pfannkoch
C
et al.  
Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides
Proc Natl Acad Sci USA
 
2003
100
15440
5
23
Shin
J
Jardine
P
Noireaux
V
Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction
ACS Synth Biol
 
2012
1
408
13
24
Hagens
S
Habel
A
von Ahsen
U
et al.  
Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage
Antimicrob Agents Chemother
 
2004
48
3817
22
25
Matsuda
T
Freeman
TA
Hilbert
DW
et al.  
Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model
Surgery
 
2005
137
639
46
26
Paul
VD
Sundarrajan
S
Rajagopalan
SS
et al.  
Lysis-deficient phages as novel therapeutic agents for controlling bacterial infection
BMC Microbiol
 
2011
11
195
27
Catalao
MJ
Gil
F
Moniz-Pereira
J
et al.  
Diversity in bacterial lysis systems: bacteriophages show the way
FEMS Microbiol Rev
 
2013
4
554
71
28
Russel
M
Linderoth
NA
Sali
A
Filamentous phage assembly: variation on a protein export theme
Gene
 
1997
192
23
32
29
Hagens
S
Blasi
U
Genetically modified filamentous phage as bactericidal agents: a pilot study
Lett Appl Microbiol
 
2003
37
318
23
30
Moradpour
Z
Sepehrizadeh
Z
Rahbarizadeh
F
et al.  
Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli
FEMS Microbiol Lett
 
2009
296
67
71
31
Westwater
C
Kasman
LM
Schofield
DA
et al.  
Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections
Antimicrob Agents Chemother
 
2003
47
1301
7
32
Kovacs
EW
Hooker
JM
Romanini
DW
et al.  
Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system
Bioconjug Chem
 
2007
18
1140
7
33
Vaks
L
Benhar
I
In vivo characteristics of targeted drug-carrying filamentous bacteriophage nanomedicines
J Nanobiotechnology
 
2011
9
58
34
Yacoby
I
Bar
H
Benhar
I
Targeted drug-carrying bacteriophages as antibacterial nanomedicines
Antimicrob Agents Chemother
 
2007
51
2156
63
35
Embleton
ML
Nair
SP
Heywood
W
et al.  
Development of a novel targeting system for lethal photosensitization of antibiotic-resistant strains of Staphylococcus aureus
Antimicrob Agents Chemother
 
2005
49
3690
6
36
Hope
CK
Packer
S
Wilson
M
et al.  
The inability of a bacteriophage to infect Staphylococcus aureus does not prevent it from specifically delivering a photosensitizer to the bacterium enabling its lethal photosensitization
J Antimicrob Chemother
 
2009
64
59
61
37
Fischetti
VA
Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens
Int J Med Microbiol
 
2010
300
357
62
38
Uchiyama
J
Takemura
I
Hayashi
I
et al.  
Characterization of lytic enzyme open reading frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage phiEF24C
Appl Environ Microbiol
 
2011
77
580
5
39
Proenca
D
Fernandes
S
Leandro
C
et al.  
Phage endolysins with broad antimicrobial activity against Enterococcus faecalis clinical strains
Microb Drug Resist
 
2012
18
322
32
40
Yoong
P
Schuch
R
Nelson
D
et al.  
Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium
J Bacteriol
 
2004
186
4808
12
41
Rashel
M
Uchiyama
J
Ujihara
T
et al.  
Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11
J Infect Dis
 
2007
196
1237
47
42
Becker
SC
Foster-Frey
J
Donovan
DM
The phage K lytic enzyme LysK and lysostaphin act synergistically to kill MRSA
FEMS Microbiol Lett
 
2008
287
185
91
43
O'Flaherty
S
Coffey
A
Meaney
W
et al.  
The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus
J Bacteriol
 
2005
187
7161
4
44
Daniel
A
Euler
C
Collin
M
et al.  
Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus
Antimicrob Agents Chemother
 
2010
54
1603
12
45
Pastagia
M
Euler
C
Chahales
P
et al.  
A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains
Antimicrob Agents Chemother
 
2011
55
738
44
46
Fenton
M
Casey
PG
Hill
C
et al.  
The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice
Bioeng Bugs
 
2010
1
404
7
47
Gu
J
Xu
W
Lei
L
et al.  
LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection
J Clin Microbiol
 
2011
49
111
7
48
Gupta
R
Prasad
Y
P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections
Curr Microbiol
 
2011
63
39
45
49
Gilmer
DB
Schmitz
JE
Euler
CW
et al.  
Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus
Antimicrob Agents Chemother
 
2013
57
2743
50
50
Fernandes
S
Proenca
D
Cantante
C
et al.  
Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus
Microb Drug Resist
 
2012
18
333
43
51
Loeffler
JM
Fischetti
VA
Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains
Antimicrob Agents Chemother
 
2003
47
375
7
52
Jado
I
Lopez
R
Garcia
E
et al.  
Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model
J Antimicrob Chemother
 
2003
52
967
73
53
Walmagh
M
Boczkowska
B
Grymonprez
B
et al.  
Characterization of five novel endolysins from Gram-negative infecting bacteriophages
Appl Microbiol Biotechnol
 
2013
97
4369
75
54
Lai
MJ
Lin
NT
Hu
A
et al.  
Antibacterial activity of Acinetobacter baumannii phage varphiAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria
Appl Microbiol Biotechnol
 
2011
90
529
39
55
Orito
Y
Morita
M
Hori
K
et al.  
Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis
Appl Microbiol Biotechnol
 
2004
65
105
9
56
Hancock
RE
Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative Gram-negative bacteria
Clin Infect Dis
 
1998
27
Suppl 1
S93
9
57
Schuch
R
Nelson
D
Fischetti
VA
A bacteriolytic agent that detects and kills Bacillus anthracis
Nature
 
2002
418
884
9
58
Nelson
D
Loomis
L
Fischetti
VA
Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme
Proc Natl Acad Sci USA
 
2001
98
4107
12
59
Rodriguez-Rubio
L
Martinez
B
Rodriguez
A
et al.  
The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance
PLoS One
 
2013
8
e64671
60
Garcia
E
Garcia
JL
Garcia
P
et al.  
Molecular evolution of lytic enzymes of Streptococcus pneumoniae and its bacteriophages
Proc Natl Acad Sci USA
 
1988
85
914
8
61
Bedi
MS
Verma
V
Chhibber
S
Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055
World J Microbiol Biotechnol
 
2009
25
1145
51
62
Chhibber
S
Kaur
T
Sandeep
K
Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections
PLoS One
 
2013
8
e56022
63
Huff
WE
Huff
GR
Rath
NC
et al.  
Therapeutic efficacy of bacteriophage and baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilers
Poult Sci
 
2004
83
1944
7
64
Kirby
AE
Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus
PLoS One
 
2012
7
e51017
65
Rahman
M
Kim
S
Kim
SM
et al.  
Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin
Biofouling
 
2011
27
1087
93
66
Zhang
QG
Buckling
A
Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms
Evol Appl
 
2012
5
575
82
67
Verma
V
Harjai
K
Chhibber
S
Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae
Biofouling
 
2010
26
729
37
68
Escobar-Paramo
P
Gougat-Barbera
C
Hochberg
ME
Evolutionary dynamics of separate and combined exposure of Pseudomonas fluorescens SBW25 to antibiotics and bacteriophage
Evol Appl
 
2012
5
583
92
69
Verma
V
Harjai
K
Chhibber
S
Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment
J Antimicrob Chemother
 
2009
64
1212
8
70
Burrowes
B
Harper
DR
Anderson
J
et al.  
Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens
Expert Rev Anti Infect Ther
 
2011
9
775
85
71
Brussow
H
Bacteriophage-host interaction: from splendid isolation into a messy reality
Curr Opin Microbiol
 
2013
16
500
6
72
Lu
TK
Collins
JJ
Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy
Proc Natl Acad Sci USA
 
2009
106
4629
34
73
Comeau
AM
Tetart
F
Trojet
SN
et al.  
Phage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growth
PLoS One
 
2007
2
e799
74
Ryan
EM
Alkawareek
MY
Donnelly
RF
et al.  
Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro
FEMS Immunol Med Microbiol
 
2012
65
395
8
75
Hagens
S
Habel
A
Blasi
U
Augmentation of the antimicrobial efficacy of antibiotics by filamentous phage
Microb Drug Resist
 
2006
12
164
8
76
Knezevic
P
Curcin
S
Aleksic
V
et al.  
Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa
Res Microbiol
 
2013
164
55
60
77
Brussow
H
Canchaya
C
Hardt
WD
Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion
Microbiol Mol Biol Rev
 
2004
68
560
602
table of contents
78
Edgar
R
Friedman
N
Molshanski-Mor
S
et al.  
Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes
Appl Environ Microbiol
 
2012
78
744
51
79
Jnawali
HN
Yoo
H
Ryoo
S
et al.  
Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea
World J Microbiol Biotechnol
 
2013
29
975
82
80
Miskinyte
M
Gordo
I
Increased survival of antibiotic-resistant Escherichia coli inside macrophages
Antimicrob Agents Chemother
 
2013
57
189
95
81
Kozoderovic
G
Velhner
M
Jelesic
Z
et al.  
Prevalence of quinolone resistance and mutations in the topoisomerase genes in Salmonella enterica serotype Enteritidis isolates from Serbia
Int J Antimicrob Agents
 
2012
40
455
7
82
Chasteen
TG
Fuentes
DE
Tantalean
JC
et al.  
Tellurite: history, oxidative stress, and molecular mechanisms of resistance
FEMS Microbiol Rev
 
2009
33
820
32
83
Bohnert
JA
Schuster
S
Fahnrich
E
et al.  
Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF)
J Antimicrob Chemother
 
2007
59
1216
22
84
Nikaido
H
Pages
JM
Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria
FEMS Microbiol Rev
 
2012
36
340
63
85
Jalasvuori
M
Friman
VP
Nieminen
A
et al.  
Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids
Biol Lett
 
2011
7
902
5
86
Ojala
V
Laitalainen
J
Jalasvuori
M
Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance
Evol Appl
 
2013
6
925
32
87
Foulongne
V
Sauvage
V
Hebert
C
et al.  
Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing
PLoS One
 
2012
7
e38499
88
Marinelli
LJ
Fitz-Gibbon
S
Hayes
C
et al.  
Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates
MBio
 
2012
3
e00279
89
Aswani
VH
Shukla
SK
Prevalence of Staphylococcus aureus and lack of its lytic bacteriophages in the anterior nares of patients and healthcare workers at a rural clinic
Clin Med Res
 
2011
9
75
81
90
Aswani
V
Tremblay
DM
Moineau
S
et al.  
Staphylococcus epidermidis bacteriophages from the anterior nares of humans
Appl Environ Microbiol
 
2011
77
7853
5
91
Ma
XX
Sun
DD
Wang
S
et al.  
Nasal carriage of methicillin-resistant Staphylococcus aureus among preclinical medical students: epidemiologic and molecular characteristics of methicillin-resistant S. aureus clones
Diagn Microbiol Infect Dis
 
2011
70
22
30
92
Willner
D
Furlan
M
Haynes
M
et al.  
Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals
PLoS One
 
2009
4
e7370
93
Willner
D
Furlan
M
Schmieder
R
et al.  
Metagenomic detection of phage-encoded platelet-binding factors in the human oral cavity
Proc Natl Acad Sci USA
 
2011
108
Suppl 1
4547
53
94
Pride
DT
Salzman
J
Haynes
M
et al.  
Evidence of a robust resident bacteriophage population revealed through analysis of the human salivary virome
ISME J
 
2012
6
915
26
95
Hitch
G
Pratten
J
Taylor
PW
Isolation of bacteriophages from the oral cavity
Lett Appl Microbiol
 
2004
39
215
9
96
Bachrach
G
Leizerovici-Zigmond
M
Zlotkin
A
et al.  
Bacteriophage isolation from human saliva
Lett Appl Microbiol
 
2003
36
50
3
97
Krupovic
M
Forterre
P
Microviridae goes temperate: microvirus-related proviruses reside in the genomes of Bacteroidetes
PLoS One
 
2011
6
e19893
98
Kim
MS
Park
EJ
Roh
SW
et al.  
Diversity and abundance of single-stranded DNA viruses in human feces
Appl Environ Microbiol
 
2011
77
8062
70
99
Minot
S
Sinha
R
Chen
J
et al.  
The human gut virome: inter-individual variation and dynamic response to diet
Genome Res
 
2011
21
1616
25
100
Reyes
A
Haynes
M
Hanson
N
et al.  
Viruses in the faecal microbiota of monozygotic twins and their mothers
Nature
 
2010
466
334
8
101
Stern
A
Mick
E
Tirosh
I
et al.  
CRISPR targeting reveals a reservoir of common phages associated with the human gut microbiome
Genome Res
 
2012
22
1985
94
102
Perez-Brocal
V
Garcia-Lopez
R
Vazquez-Castellanos
JF
et al.  
Study of the viral and microbial communities associated with Crohn's disease: a metagenomic approach
Clin Transl Gastroenterol
 
2013
4
e36
103
Breitbart
M
Hewson
I
Felts
B
et al.  
Metagenomic analyses of an uncultured viral community from human feces
J Bacteriol
 
2003
185
6220
3
104
Okerman
L
Croubels
S
De Baere
S
et al.  
Inhibition tests for detection and presumptive identification of tetracyclines, β-lactam antibiotics and quinolones in poultry meat
Food Addit Contam
 
2001
18
385
93
105
Darwish
WS
Eldaly
EA
El-Abbasy
MT
et al.  
Antibiotic residues in food: the African scenario
Jpn J Vet Res
 
2013
61
Suppl
S13
22
106
Minot
S
Bryson
A
Chehoud
C
et al.  
Rapid evolution of the human gut virome
Proc Natl Acad Sci USA
 
2013
110
12450
5
107
Gill
SR
Pop
M
Deboy
RT
et al.  
Metagenomic analysis of the human distal gut microbiome
Science
 
2006
312
1355
9
108
Damelin
LH
Paximadis
M
Mavri-Damelin
D
et al.  
Identification of predominant culturable vaginal Lactobacillus species and associated bacteriophages from women with and without vaginal discharge syndrome in South Africa
J Med Microbiol
 
2011
60
180
3
109
Kilic
AO
Pavlova
SI
Alpay
S
et al.  
Comparative study of vaginal Lactobacillus phages isolated from women in the United States and Turkey: prevalence, morphology, host range, and DNA homology
Clin Diagn Lab Immunol
 
2001
8
31
9
110
Stern
A
Sorek
R
The phage-host arms race: shaping the evolution of microbes
Bioessays
 
2011
33
43
51
111
Breitbart
M
Rohwer
F
Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing
BioTechniques
 
2005
39
729
36
112
Gorski
A
Miedzybrodzki
R
Borysowski
J
et al.  
Phage as a modulator of immune responses: practical implications for phage therapy
Adv Virus Res
 
2012
83
41
71
113
Nakamura
S
Yang
CS
Sakon
N
et al.  
Direct metagenomic detection of viral pathogens in nasal and fecal specimens using an unbiased high-throughput sequencing approach
PLoS One
 
2009
4
e4219
114
Wylie
KM
Weinstock
GM
Storch
GA
Emerging view of the human virome
Transl Res
 
2012
160
283
90
115
Lepage
P
Colombet
J
Marteau
P
et al.  
Dysbiosis in inflammatory bowel disease: a role for bacteriophages?
Gut
 
2008
57
424
5
116
Merril
CR
Scholl
D
Adhya
SL
The prospect for bacteriophage therapy in Western medicine
Nat Rev Drug Discov
 
2003
2
489
97
117
Oliveira
DC
Tomasz
A
de Lencastre
H
Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus
Lancet Infect Dis
 
2002
2
180
9
118
McCallin
S
Alam Sarker
S
Barretto
C
et al.  
Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects
Virology
 
2013
2
187
96
119
Seed
KD
Lazinski
DW
Calderwood
SB
et al.  
A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity
Nature
 
2013
494
489
91
120
Barr
JJ
Auro
R
Furlan
M
et al.  
Bacteriophage adhering to mucus provide a non-host-derived immunity
Proc Natl Acad Sci USA
 
2013
110
10771
6
121
Meyer
JR
Sticky bacteriophage protect animal cells
Proc Natl Acad Sci USA
 
2013
110
10475
6
122
Wootton
L
Phage biology: a new barrier at mucosal surfaces
Nat Rev Microbiol
 
2013
11
430
1

Plaats een reactie ...

Reageer op "Is bacteriofaag de oplossing voor resistente bacterien waar antibiotica faalt? Antoinette Hertsenberg prijst deze aanpak aan in DWDD die al veel langer bekend is."


Gerelateerde artikelen
 

Gerelateerde artikelen

Archief nieuwsberichten over >> Kankerpatiënten met een laag >> Nederlandse filmpremière >> Wim Hof die wereldberoemd >> Retour Hemel: documentaire >> Kankerpil - AOH1996, van professor >> Patienten met zeldzame vormen >> Sterkere MRI-scanner met nieuw >> Er dreigt een wereldwijde >> 34 procent van alle kankerpatienten >>