18 september 2023: Bron: J Expo Sci Environ Epidemiol (2023)

Uit Amerikaans epidemologisch onderzoek van 2005 tot 2018 naar relatie tussen PFAS (Poly- en perfluoralkylstoffen) en kanker op basis van datagegevens bij volwassenen vanaf 20 jaar uit het National Health and Nutrition Examination Survey (NHANES) blijkt dat vrouwen die veel blootgesteld waren aan bepaalde PFAS bevattende producten, gediagnosticeerd werden met vooral hormoon gerelateerde vormen van kanker, waaronder eierstokkanker maar ook vaker een diagnose hadden van melanomen. Bij mannen werden geen of nauwelijks verschillen ontdekt in diagnoses van kanker gerelateerd aan PFAS bevattende producten. 

PFAS (
Poly- en perfluoralkylstoffen) bevattende producten worden gebruikt in duizenden huishoudelijke en industriële producten. Pfas is een verzamelnaam voor duizenden chemische stoffen die van nature niet in het milieu voorkomen. De afkorting PFAS staat voor poly- en perfluoralkylstoffen. Er zijn ongeveer 5000 verschillende soorten pfas. De bekendste voorbeelden zijn GenX, PFOA en PFOS. De stoffen zijn geliefd in de industrie omdat ze hittebestendig en vocht-, vet- en vuilafstotend zijn. Ze worden gebruikt in producten als pannen, waterafstotende kleding, blusschuim en cosmetica. De stoffen zijn slecht voor het milieu, nauwelijks afbreekbaar en schadelijk voor het afweersysteem. Een aantal types zijn bij langdurige blootstelling kankerverwekkend.


PFAS was en is in het nieuws door Chemour en 3FM en de Westerschelde

In het abstract staat o.a.: "Biomarkers in alle blootstellingscategorieën (fenolen, parabenen en per- en polyfluoralkylstoffen) werden cross-sectioneel geassocieerd met een verhoogde kans op eerdere melanoomdiagnoses bij vrouwen, en een verhoogde kans op eerdere eierstokkanker werd geassocieerd met verschillende fenolen en parabenen."

Het onderzoek omvatte voor PFAS 16.696 vrouwen en mannen. Voor Fenolen 10.428 mannen en vrouwen. Zie onderstaande grafiek:

figure 1


Het Algemeen Dagblad heeft een uitgebreid artikel erover: 

Studie koppelt blootstelling aan PFAS-chemicaliën aan hogere kans op kanker bij vrouwen

Het volledige studierapport is gratis in te zien of te downloaden:

Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses

Abstract

Background

Some hormonally active cancers have low survival rates, but a large proportion of their incidence remains unexplained. Endocrine disrupting chemicals may affect hormone pathways in the pathology of these cancers.

Objective

To evaluate cross-sectional associations between per- and polyfluoroalkyl substances (PFAS), phenols, and parabens and self-reported previous cancer diagnoses in the National Health and Nutrition Examination Survey (NHANES).

Methods

We extracted concentrations of 7 PFAS and 12 phenols/parabens and self-reported diagnoses of melanoma and cancers of the thyroid, breast, ovary, uterus, and prostate in men and women (≥20 years). Associations between previous cancer diagnoses and an interquartile range increase in exposure biomarkers were evaluated using logistic regression models adjusted for key covariates. We conceptualized race as social construct proxy of structural social factors and examined associations in non-Hispanic Black, Mexican American, and other Hispanic participants separately compared to White participants.

Results

Previous melanoma in women was associated with higher PFDE (OR:2.07, 95% CI: 1.25, 3.43), PFNA (OR:1.72, 95% CI: 1.09, 2.73), PFUA (OR:1.76, 95% CI: 1.07, 2.89), BP3 (OR: 1.81, 95% CI: 1.10, 2.96), DCP25 (OR: 2.41, 95% CI: 1.22, 4.76), and DCP24 (OR: 1.85, 95% CI: 1.05, 3.26). Previous ovarian cancer was associated with higher DCP25 (OR: 2.80, 95% CI: 1.08, 7.27), BPA (OR: 1.93, 95% CI: 1.11, 3.35) and BP3 (OR: 1.76, 95% CI: 1.00, 3.09). Previous uterine cancer was associated with increased PFNA (OR: 1.55, 95% CI: 1.03, 2.34), while higher ethyl paraben was inversely associated (OR: 0.31, 95% CI: 0.12, 0.85). Various PFAS were associated with previous ovarian and uterine cancers in White women, while MPAH or BPF was associated with previous breast cancer among non-White women.

Impact Statement

Biomarkers across all exposure categories (phenols, parabens, and per- and poly- fluoroalkyl substances) were cross-sectionally associated with increased odds of previous melanoma diagnoses in women, and increased odds of previous ovarian cancer was associated with several phenols and parabens. Some associations differed by racial group, which is particularly impactful given the established racial disparities in distributions of exposure to these chemicals. This is the first epidemiological study to investigate exposure to phenols in relation to previous cancer diagnoses, and the first NHANES study to explore racial/ethnic disparities in associations between environmental phenol, paraben, and PFAS exposures and historical cancer diagnosis.

Data availability

NHANES data is publicly available. The analytical dataset for this study and code can be available upon request (Amber Cathey [acathey@umich.edu], Max Aung [maxaung@usc.edu]).

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.

    Article PubMed Google Scholar 

  2. Sutton P, Kavanaugh-Lynch MHE, Plumb M, Yen IH, Sarantis H, Thomsen CL, et al. California Breast Cancer Prevention Initiatives: Setting a research agenda for prevention. Reprod Toxicol. 2015;54:11–18.

    Article CAS PubMed Google Scholar 

  3. Aul P, Ichtenstein L, Olm IVH, Erkasalo IKV, Nastasia A, Liadou I, et al. Environmental and heritable factors in the causation of cancer analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl J Med. 2000;343:78–85.

    Article Google Scholar 

  4. Risbridger GP, Davis ID, Birrell SN, Tilley WD. Breast and prostate cancer: more similar than different. Nat Rev Cancer. 2010;10:205–12.

    Article CAS PubMed Google Scholar 

  5. Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. Environ Int. 2015;83:11–40.

    Article CAS PubMed Google Scholar 

  6. Aker AM, Ferguson KK, Rosario ZY, Mukherjee B, Alshawabkeh AN, Calafat AM, et al. A repeated measures study of phenol, paraben and Triclocarban urinary biomarkers and circulating maternal hormones during gestation in the Puerto Rico PROTECT cohort. Environ Health. 2019;18:28.

    Article PubMed PubMed Central Google Scholar 

  7. Aung MT, Johns LE, Ferguson KK, Mukherjee B, McElrath TF, Meeker JD. Thyroid hormone parameters during pregnancy in relation to urinary bisphenol A concentrations: A repeated measures study. Environ Int. 2017;104:33–40.

    Article CAS PubMed PubMed Central Google Scholar 

  8. Ballesteros V, Costa O, Iñiguez C, Fletcher T, Ballester F, Lopez-Espinosa M-J. Exposure to perfluoroalkyl substances and thyroid function in pregnant women and children: A systematic review of epidemiologic studies. Environ Int. 2017;99:15–28.

    Article CAS PubMed Google Scholar 

  9. Wang Y, Aimuzi R, Nian M, Zhang Y, Luo K, Zhang J. Perfluoroalkyl substances and sex hormones in postmenopausal women: NHANES 2013-2016. Environ Int. 2021;149:106408.

    Article CAS PubMed Google Scholar 

  10. Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, et al. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect. 2016;124:713.

    Article CAS PubMed Google Scholar 

  11. Hafezi SA, Abdel-Rahman WM. The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy. Curr Mol Pharm. 2019;12:230–8.

    Article CAS Google Scholar 

  12. Bonefeld-Jorgensen EC, Long M, Bossi R, Ayotte P, Asmund G, Krüger T, et al. Perfluorinated compounds are related to breast cancer risk in Greenlandic Inuit: a case control study. Environ Health. 2011;10:88.

    Article CAS PubMed PubMed Central Google Scholar 

  13. Bonefeld-Jørgensen EC, Long M, Fredslund SO, Bossi R, Olsen J. Breast cancer risk after exposure to perfluorinated compounds in Danish women: a case-control study nested in the Danish National Birth Cohort. Cancer Causes Control. 2014;25:1439–48.

    Article PubMed PubMed Central Google Scholar 

  14. Tsai M-S, Chang S-H, Kuo W-H, Kuo C-H, Li S-Y, Wang M-Y, et al. A case-control study of perfluoroalkyl substances and the risk of breast cancer in Taiwanese women. Environ Int. 2020;142:105850.

    Article CAS PubMed Google Scholar 

  15. Mancini FR, Cano-Sancho G, Gambaretti J, Marchand P, Boutron-Ruault M-C, Severi G, et al. Perfluorinated alkylated substances serum concentration and breast cancer risk: Evidence from a nested case-control study in the French E3N cohort. Int J Cancer. 2020;146:917–28.

    Article CAS PubMed Google Scholar 

  16. Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, et al. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environ Int. 2020;137:105496.

    Article CAS PubMed PubMed Central Google Scholar 

  17. Patel AV, Deubler E, Teras LR, Colditz GA, Lichtman CJ, Cance WG, et al. Key risk factors for the relative and absolute 5-year risk of cancer to enhance cancer screening and prevention. Cancer. 2022;128:3502–15.

    Article PubMed Google Scholar 

  18. Calafat AM, Wong LY, Ye X, Reidy JA, Needham LL. Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003–2004. Environ Health Perspect. 2008;116:893.

    Article CAS PubMed PubMed Central Google Scholar 

  19. Saginala K, Barsouk A, Aluru JS, Rawla P, Barsouk A. Epidemiology of melanoma. Medical Sciences. 2021;9. https://doi.org/10.3390/MEDSCI9040063.

  20. Dawes SM, Tsai S, Gittleman H, Barnholtz-Sloan JS, Bordeaux JS. Racial disparities in melanoma survival. J Am Acad Dermatol. 2016;75:983–91.

    Article PubMed Google Scholar 

  21. Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121:1313–8.

    Article PubMed PubMed Central Google Scholar 

  22. Vieira VM, Hoffman K, Shin H-M, Weinberg JM, Webster TF, Fletcher T. Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environ Health Perspect. 2013;121:318–23.

    Article PubMed PubMed Central Google Scholar 

  23. Grice MM, Alexander BH, Hoffbeck R, Kampa DM. Self-reported medical conditions in perfluorooctanesulfonyl fluoride manufacturing workers. J Occup Environ Med. 2007;49:722–9.

    Article CAS PubMed Google Scholar 

  24. Leonard RC, Kreckmann KH, Sakr CJ, Symons JM. Retrospective cohort mortality study of workers in a polymer production plant including a reference population of regional workers. Ann Epidemiol. 2008;18:15–22.

    Article PubMed Google Scholar 

  25. Alexander BH, Olsen GW, Burris JM, Mandel JH, Mandel JS. Mortality of employees of a perfluorooctanesulphonyl fluoride manufacturing facility. Occup Environ Med. 2003;60:722–9.

    Article CAS PubMed PubMed Central Google Scholar 

  26. Olsen GW, Burlew MM, Marshall JC, Burris JM, Mandel JH. Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility. J Occup Environ Med. 2004;46:837–46.

    Article CAS PubMed Google Scholar 

  27. Enninga EAL, Holtan SG, Creedon DJ, Dronca RS, Nevala WK, Ognjanovic S, et al. Immunomodulatory effects of sex hormones: requirements for pregnancy and relevance in melanoma. Mayo Clin Proc. 2014;89:520–35.

    Article CAS PubMed Google Scholar 

  28. Nosrati A, Wei ML. Sex disparities in melanoma outcomes: The role of biology. Arch Biochem Biophys. 2014;563:42–50.

    Article CAS PubMed Google Scholar 

  29. Walker MJ, Beattie CW, Patel MK, Ronan SM, Das Gupta TK. Estrogen receptor in malignant melanoma. J Clin Oncol. 1987;5:1256–61.

    Article CAS PubMed Google Scholar 

  30. Houck KA, Patlewicz G, Richard AM, Williams AJ, Shobair MA, Smeltz M, et al. Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology. 2021;457:152789.

    Article CAS PubMed Google Scholar 

  31. Li J, Cao H, Feng H, Xue Q, Zhang A, Fu J. Evaluation of the estrogenic/antiestrogenic activities of perfluoroalkyl substances and their interactions with the human estrogen receptor by combining in vitro assays and in silico modeling. Environ Sci Technol. 2020;54:14514–24.

    Article CAS PubMed Google Scholar 

  32. Grønnestad R, Johanson SM, Müller MHB, Schlenk D, Tanabe P, Krøkje Å, et al. Effects of an environmentally relevant PFAS mixture on dopamine and steroid hormone levels in exposed mice. Toxicol Appl Pharm. 2021;428:115670.

    Article Google Scholar 

  33. Behr A-C, Lichtenstein D, Braeuning A, Lampen A, Buhrke T. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett. 2018;291:51–60.

    Article CAS PubMed Google Scholar 

  34. Cronin KA, Scott S, Firth AU, Sung H, Henley SJ, Sherman RL, et al. Annual report to the nation on the status of cancer, part 1: National cancer statistics. Cancer. 2022;128:4251–84.

    Article PubMed Google Scholar 

  35. Henley SJ, Miller JW, Dowling NF, Benard VB, Richardson LC. Uterine cancer incidence and mortality — United States, 1999–2016. Morbidity Mortal Wkly Rep. 2018;67:1333.

    Article Google Scholar 

  36. Felix AS, Brinton LA. Cancer progress and priorities: Uterine cancer. Cancer Epidemiol Biomark Prev. 2018;27:985–94.

    Article CAS Google Scholar 

  37. Messmer MF, Salloway J, Shara N, Locwin B, Harvey MW, Traviss N Risk of cancer in a community exposed to per- and poly-fluoroalkyl substances. Environ Health Insights 2022; 16. https://doi.org/10.1177/11786302221076707.

  38. Wu NX, Deng LJ, Xiong F, Xie JY, Li XJ, Zeng Q, et al. Risk of thyroid cancer and benign nodules associated with exposure to parabens among Chinese adults in Wuhan, China. Environ Sci Pollut Res Int. 2022;29:70125–34.

    Article CAS PubMed Google Scholar 

  39. Doherty JA, Peres LC, Wang C, Way GP, Greene CS, Schildkraut JM. Challenges and opportunities in studying the epidemiology of ovarian cancer subtypes. Curr Epidemiol Rep. 2017;4:211–20.

    Article PubMed PubMed Central Google Scholar 

  40. Huffman DL, Jayakrishnan TT, Shankar K, Peterson CE, Wegner RE. Disparities in ovarian cancer treatment and overall survival according to race: An update. Gynecol Oncol. 2021;162:674–8.

    Article PubMed Google Scholar 

  41. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14:9–32.

    Article CAS PubMed PubMed Central Google Scholar 

  42. Menon U, Karpinskyj C, Gentry-Maharaj A. Ovarian cancer prevention and screening. Obstet Gynecol. 2018;131:909–27.

    Article PubMed Google Scholar 

  43. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.

    Article CAS PubMed Google Scholar 

  44. Kim Y-S, Hwang K-A, Hyun S-H, Nam K-H, Lee C-K, Choi K-C, et al. and nonylphenol have the potential to stimulate the migration of ovarian cancer cells by inducing epithelial-mesenchymal transition via an estrogen receptor dependent pathway. Chem Res Toxicol. 2015;28:662–71.

    Article CAS PubMed Google Scholar 

  45. Ptak A, Hoffmann M, Gruca I, Barć J. Bisphenol A induce ovarian cancer cell migration via the MAPK and PI3K/Akt signalling pathways. Toxicol Lett. 2014;229:357–65.

    Article CAS PubMed Google Scholar 

  46. Lau KM, Mok SC, Ho SM. Expression of human estrogen receptor-alpha and -beta, progesterone receptor, and androgen receptor mRNA in normal and malignant ovarian epithelial cells. Proc Natl Acad Sci USA. 1999;96:5722–7.

    Article CAS PubMed PubMed Central Google Scholar 

  47. Gao H, Yang B-J, Li N, Feng L-M, Shi X-Y, Zhao W-H, et al. Bisphenol A and hormone-associated cancers: current progress and perspectives. Medicine. 2015;94:e211.

    Article CAS PubMed PubMed Central Google Scholar 

  48. Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast, and ovarian cancers. Endocr Connect. 2019;8:R10–R26.

    Article CAS PubMed PubMed Central Google Scholar 

  49. Gonzalez TL, Rae JM, Colacino JA. Implication of environmental estrogens on breast cancer treatment and progression. Toxicology. 2019;421:41–48.

    Article CAS PubMed Google Scholar 

  50. Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, et al. Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol. 2010;28:509–18.

    Article CAS PubMed Google Scholar 

  51. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-Year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N. Engl J Med. 2017;377:1836–46.

    Article PubMed PubMed Central Google Scholar 

  52. Zota AR, Shamasunder B. The environmental injustice of beauty: framing chemical exposures from beauty products as a health disparities concern. Am J Obstet Gynecol. 2017;217:418.e1–418.e6.

    Article CAS PubMed Google Scholar 

  53. Lee S, Kar A, Reade A. Dirty water: Toxic ‘forever’ PFAS chemicals are prevalent in the drinking water of environmental justice communities. https://www.nrdc.org/sites/default/files/dirty-water-pfas-ej-communities-report.pdf (accessed 28 Jun 2023).

  54. Henley SJ, Miller JW, Dowling NF, Benard VB, Richardson LC. Uterine cancer incidence and mortality - United States, 1999-2016. MMWR Morb Mortal Wkly Rep. 2018;67:1333–8.

    Article PubMed PubMed Central Google Scholar 

  55. Zavala VA, Bracci PM, Carethers JM, Carvajal-Carmona L, Coggins NB, Cruz-Correa MR, et al. Cancer health disparities in racial/ethnic minorities in the United States. Br J Cancer. 2021;124:315–32.

    Article PubMed Google Scholar 

  56. Liu Y, Zhou JW, Liu CD, Yang JK, Liao DY, Liang ZJ, et al. Comprehensive signature analysis of drug metabolism differences in the White, Black and Asian prostate cancer patients. Aging. 2021;13:16316–40.

    Article CAS PubMed PubMed Central Google Scholar 

  57. Bergmann MM, Calle EE, Mervis CA, Miracle-McMahill HL, Thun MJ, Heath CW. Validity of self-reported cancers in a prospective cohort study in comparison with data from state cancer registries. Am J Epidemiol. 1998;147:556–62.

    Article CAS PubMed Google Scholar 

Download references

Acknowledgements

Support for this research was provided by core center grant P30-ES030284 from the National Institute of Environmental Health Sciences and the Helen Diller Family Comprehensive Cancer Center grant 5P30CA082103-23. Support for Drs. Aung, Woodruff, and Reynolds was provided in part by NCI/NIEHS grant 1UG3CA265845-01. Support for Dr. Aung was also partly provided by NIEHS core center grant P30-ES00748. Support for Drs. Colacino and Nguyen were partly provided by NIEHS core center grant P30ES017885 and NIEHS grant R01ES028802. Dr. Colacino was also partly supported by NCI/NIEHS grant UG3CA267907. Dr. Nguyen was partially supported by the Harvard Data Science Initiative.

Funding

Open access funding provided by SCELC, Statewide California Electronic Library Consortium.

Author information

Authors and Affiliations

Contributions

ALC: formal analysis, investigation, methodology, visualization, writing - original draft, writing - review and editing; VKN: methodology, writing - review and editing; JAC: supervision, writing - review and editing; TJW: supervision, writing - review and editing; PR: conceptualization, project administration, supervision, writing - review and editing; MTA: conceptualization, funding acquisition, project administration, supervision, writing - review and editing.

Corresponding author

Correspondence to Max T. Aung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cathey, A.L., Nguyen, V.K., Colacino, J.A. et al. Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. J Expo Sci Environ Epidemiol (2023). https://doi.org/10.1038/s41370-023-00601-6

Download citation

  • Received

  • Revised

  • Accepted

  • Published

  • DOIhttps://doi.org/10.1038/s41370-023-00601-6

Share this article

Anyone you share the following link with will be able to read this content:

Provided by the Springer Nature SharedIt content-sharing initiative


Plaats een reactie ...

Reageer op "PFAS producten lijken groter risico te geven op vormen van hormoongerelateerde kanker bij vrouwen, zoals eierstokkanker maar ook op een melanoom"


Gerelateerde artikelen
 

Gerelateerde artikelen

Algemeen: Voeding en voedingstoffen >> Alzheimer - dementie is via >> Antibiotica speelt mogelijk >> Asbest lijkt ook kanker in >> Aspirine ter voorkoming van >> Bacterien in de mond - Commensale >> Diakonessenhuis Utrecht biedt >> DIM - diindolylmethane voorkomt >> Bloedbiomarker waarden van >> Bloedtest die methyl meet >>