22 november 2016: Bron: Journal of transational medicine
Het succes van immuuntherapie lijkt vooral afhankelijk van vooraf te meten DNA mutaties en receptorenexpressie stellen onderzoekers op een congres over immuuntherapie bij melanomen. Echter ook stellen zij dat immuuntherapie zonder vooraf vastgestelde biomarkers zeker ook succes kan hebben, zoals bv via verschillende vormen van T-cel stimulerende behandelingen of algemene dendritische celtherapie. al of niet in combinatie met andere middelen / medicijnen.
In The Journal of translational Medicine is afgelopen week (16 november 2016) een artikel verschenen met als titel: Future perspectives in melanoma research Meeting report from the “Melanoma Bridge”. Napoli, December 1st–4th 2015
Bron: Translational Medicine
Afgelopen jaar vond in Napels dit 6e "Melanoma Bridge Meeting" plaats. Er vonden vier sessies plaats met de focus op 4 verschillende aspecten:
De vier sessies op deze bijeenkomst richtte zich op
- Moleculaire en immuuntherapeutische ontwikkelingen
- Combinatietherapieën
- Nieuwe ontwikkelingen specifiek in immuuntherapie
- Micro omgeving van tumor en biomarkers.
Recente ontwikkelingen in de tumor biologie en immunologie heeft geleid tot de ontwikkeling van nieuwe gerichte immuuntherapeutische middelen die progressievrije overleving (PFS) en algehele overleving (OS) van kankerpatiënten verlengen. Immuuntherapie met name is een zeer succesvolle benadering gebleken voor patiënten met kanker zoals melanoom, niet-kleincellige longkanker (NSCLC), niercelcarcinoom (RCC), blaaskanker en ziekte van Hodgkin.
In het bijzonder zijn veel klinische successen geboekt met behulp van checkpoint receptorblokkering, waaronder T-cel remmende receptoren zoals cytotoxische-T-lymfocyt-geassocieerd antigeen 4 (CTLA-4) en de geprogrammeerde celdood-1 (PD-1) en zijn ligand PD-L1.
Maar ondanks bewezen successen op immunotherapeutische interventies doen deze zich alleen voor in een relatief klein aantal patiënten. Getracht wordt om reacties op immuuntherapie te verbeteren door de ontwikkeling van biomarkers. Het optimaliseren van biomarkers voor immunotherapie zou kunnen helpen de juiste patiënten te selecteren voor de behandeling en helpen bij het controleren van de ziekte. Het monitoren zou de kennis op respons, progressie van de ziekte en de resistentie kunnen verbeteren, welke natuurlijk de uitdagingen zijn voor het immuuntherapeutische veld in de oncologie.
Belangrijk is ook dat biomarkers kunnen helpen om rationele combinatietherapieën te ontwerpen. Bovendien kunnen biomarkers helpen de werkingsmechanisme van verschillende middelen te ontrafelen, de dosis te bepalen en volgorde van combinaties van geneesmiddelen vast te stellen.
Echter, biomarkers en ontwikkeling van begeleidende assays van kanker immunotherapie is een uitdaging om verschillende redenen: (i) multipliciteit van immunotherapeutische middelen met verschillende werkingsmechanismen waaronder immuuntherapie met gerichte, activerende en remmende T-celreceptoren (bijvoorbeeld, CTLA-4, PD-1, enz.); adoptieve T-cel therapieën met in weefsel infiltrerende lymfocyten (TIL), chimeer antigen receptoren (CAR-T-cells), en T-cel receptor (TCR) bevatten gemodificeerde T-cellen.............................
Daarna wordt het abstract m.i. te medisch technisch en heb ik maar niet verder vertaald, maar artsen en wetenschappers zullen dit ongetwijfeld begrijpen. Maar zie daarvoor het volledige studierapport: Future perspectives in melanoma research dat vrij is te lezen en een interessante referentielijst heeft.
Mocht u kanker-actueel de moeite waard vinden en ons willen ondersteunen om kanker-actueel online te houden dan kunt u ons machtigen voor een periodieke donatie via donaties: https://kanker-actueel.nl/NL/donaties.html of doneer al of niet anoniem op - rekeningnummer NL79 RABO 0372931138 t.n.v. Stichting Gezondheid Actueel in Amersfoort. Onze IBANcode is NL79 RABO 0372 9311 38
Elk bedrag is welkom. En we zijn een ANBI instelling dus uw donatie of gift is in principe aftrekbaar voor de belasting.
En als donateur kunt u ook korting krijgen bij verschillende bedrijven:
Hier het abstract plus die referentielijst:
In conclusion, immunotherapies have emerged as the most promising class of drugs to treat patients with cancer with diverse tumor types, however many patients do not respond to these therapies. Therefore, determining which patients derive clinical benefit from immune checkpoint agents remains an important clinical question and efforts to identify predictive markers of response are ongoing. The analytical and clinical validation of predictive biomarkers require appropriate clinical studies in which the evaluation of the clinical utility of the biomarker is a pre-specified endpoint of the study. A variety of study designs have been proposed for this purpose. Although, the randomized biomarker stratified design provides the most rigorous assessment of biomarker clinical utility, other study designs might be acceptable depending on the clinical context.
Future perspectives in melanoma research
- Paolo A. AsciertoEmail author,
- Sanjiv Agarwala,
- Gerardo Botti,
- Alessandra Cesano,
- Gennaro Ciliberto,
- Michael A. Davies,
- Sandra Demaria,
- Reinhard Dummer,
- Alexander M. Eggermont,
- Soldano Ferrone,
- Yang Xin Fu,
- Thomas F. Gajewski,
- Claus Garbe,
- Veronica Huber,
- Samir Khleif,
- Michael Krauthammer,
- Roger S. Lo,
- Giuseppe Masucci,
- Giuseppe Palmieri,
- Michael Postow,
- Igor Puzanov,
- Ann Silk,
- Stefani Spranger,
- David F. Stroncek,
- Ahmad Tarhini,
- Janis M. Taube,
- Alessandro Testori,
- Ena Wang,
- Jennifer A. Wargo,
- Cassian Yee,
- Hassane Zarour,
- Laurence Zitvogel,
- Bernard A. Fox,
- Nicola Mozzillo,
- Francesco M. Marincola and
- Magdalena ThurinEmail author
DOI: 10.1186/s12967-016-1070-y
© The Author(s) 2016
Received: 19 September 2016
Accepted: 27 October 2016
Published: 15 November 2016
Abstract
The sixth “Melanoma Bridge Meeting” took place in Naples, Italy, December 1st–4th, 2015. The four sessions at this meeting were focused on: (1) molecular and immune advances; (2) combination therapies; (3) news in immunotherapy; and 4) tumor microenvironment and biomarkers. Recent advances in tumor biology and immunology has led to the development of new targeted and immunotherapeutic agents that prolong progression-free survival (PFS) and overall survival (OS) of cancer patients. Immunotherapies in particular have emerged as highly successful approaches to treat patients with cancer including melanoma, non-small cell lung cancer (NSCLC), renal cell carcinoma (RCC), bladder cancer, and Hodgkin’s disease. Specifically, many clinical successes have been using checkpoint receptor blockade, including T cell inhibitory receptors such as cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death-1 (PD-1) and its ligand PD-L1. Despite demonstrated successes, responses to immunotherapy interventions occur only in a minority of patients. Attempts are being made to improve responses to immunotherapy by developing biomarkers. Optimizing biomarkers for immunotherapy could help properly select patients for treatment and help to monitor response, progression and resistance that are critical challenges for the immuno-oncology (IO) field. Importantly, biomarkers could help to design rational combination therapies. In addition, biomarkers may help to define mechanism of action of different agents, dose selection and to sequence drug combinations. However, biomarkers and assays development to guide cancer immunotherapy is highly challenging for several reasons: (i) multiplicity of immunotherapy agents with different mechanisms of action including immunotherapies that target activating and inhibitory T cell receptors (e.g., CTLA-4, PD-1, etc.); adoptive T cell therapies that include tissue infiltrating lymphocytes (TILs), chimeric antigen receptors (CARs), and T cell receptor (TCR) modified T cells; (ii) tumor heterogeneity including changes in antigenic profiles over time and location in individual patient; and (iii) a variety of immune-suppressive mechanisms in the tumor microenvironment (TME) including T regulatory cells (Treg), myeloid derived suppressor cells (MDSC) and immunosuppressive cytokines. In addition, complex interaction of tumor-immune system further increases the level of difficulties in the process of biomarkers development and their validation for clinical use. Recent clinical trial results have highlighted the potential for combination therapies that include immunomodulating agents such as anti-PD-1 and anti-CTLA-4. Agents targeting other immune inhibitory (e.g., Tim-3) or immune stimulating (e.g., CD137) receptors on T cells and other approaches such as adoptive cell transfer are tested for clinical efficacy in melanoma as well. These agents are also being tested in combination with targeted therapies to improve upon shorter-term responses thus far seen with targeted therapy. Various locoregional interventions that demonstrate promising results in treatment of advanced melanoma are also integrated with immunotherapy agents and the combinations with cytotoxic chemotherapy and inhibitors of angiogenesis are changing the evolving landscape of therapeutic options and are being evaluated to prevent or delay resistance and to further improve survival rates for melanoma patients’ population. This meeting’s specific focus was on advances in immunotherapy and combination therapy for melanoma. The importance of understanding of melanoma genomic background for development of novel therapies and biomarkers for clinical application to predict the treatment response was an integral part of the meeting. The overall emphasis on biomarkers supports novel concepts toward integrating biomarkers into personalized-medicine approach for treatment of patients with melanoma across the entire spectrum of disease stage. Translation of the knowledge gained from the biology of tumor microenvironment across different tumors represents a bridge to impact on prognosis and response to therapy in melanoma. We also discussed the requirements for pre-analytical and analytical as well as clinical validation process as applied to biomarkers for cancer immunotherapy. The concept of the fit-for-purpose marker validation has been introduced to address the challenges and strategies for analytical and clinical validation design for specific assays.
References
- Cancer Genome Atlas. Genomic classification of cutaneous melanoma. Cell. 2015;161(7):1681–96. doi:10.1016/j.cell.2015.05.044.View ArticleGoogle Scholar
- Bucheit AD, Chen G, Siroy A, et al. Complete loss of PTEN protein expression correlates with shorter time to brain metastasis and survival in stage IIIB/C melanoma patients with BRAFV600 mutations. Clin Cancer Res. 2014;20(21):5527–36. doi:10.1158/1078-0432.CCR-14-1027.View ArticlePubMedPubMed CentralGoogle Scholar
- Chen G, Chakravarti N, Aardalen K, et al. Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin Cancer Res. 2014;20(21):5537–46. doi:10.1158/1078-0432.CCR-13-3003.View ArticlePubMedPubMed CentralGoogle Scholar
- Gopal YN, Rizos H, Chen G, et al. Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma. Cancer Res. 2014;74(23):7037–47. doi:10.1158/0008-5472.CAN-14-1392.View ArticlePubMedPubMed CentralGoogle Scholar
- Peng W, Chen JQ, Liu C, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6(2):202–16. doi:10.1158/2159-8290.CD-15-0283.View ArticlePubMedGoogle Scholar
- Krauthammer M, Kong Y, Ha BH, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44(9):1006–14. doi:10.1038/ng.2359.View ArticlePubMedPubMed CentralGoogle Scholar
- Krauthammer M, Kong Y, Bacchiocchi A, et al. Exome sequencing identifies recurrent mutations in NF1 and RASopathy genes in sun-exposed melanomas. Nat Genet. 2015;47(9):996–1002. doi:10.1038/ng.3361.View ArticlePubMedPubMed CentralGoogle Scholar
- Thiel C, Wilken M, Zenker M, et al. Independent NF1 and PTPN11 mutations in a family with neurofibromatosis-Noonan syndrome. Am J Med Genet A. 2009;149A(6):1263–7. doi:10.1002/ajmg.a.32837.View ArticlePubMedGoogle Scholar
- Kontaridis MI, Swanson KD, David FS, et al. PTPN11 (Shp2) mutations in LEOPARD syndrome have dominant negative, not activating, effects. J Biol Chem. 2006;281(10):6785–92. doi:10.1074/jbc.M513068200.View ArticlePubMedGoogle Scholar
- Hovelson DH, McDaniel AS, Cani AK, et al. Development and validation of a scalable next-generation sequencing system for assessing relevant somatic variants in solid tumors. Neoplasia. 2015;17(4):385–99. doi:10.1016/j.neo.2015.03.004.View ArticlePubMedPubMed CentralGoogle Scholar
- Shain AH, Yeh I, Kovalyshyn I, et al. The Genetic evolution of melanoma from precursor lesions. N Engl J Med. 2015;373(20):1926–36. doi:10.1056/NEJMoa1502583.View ArticlePubMedGoogle Scholar
- Little AS, Smith PD, Cook SJ. Mechanisms of acquired resistance to ERK1/2 pathway inhibitors. Oncogene. 2013;32(10):1207–15. doi:10.1038/onc.2012.160.View ArticlePubMedGoogle Scholar
- Robert C, Karaszewska B, Schachter J, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372(1):30–9. doi:10.1056/NEJMoa1412690.View ArticlePubMedGoogle Scholar
- Nazarian R, Shi H, Wang Q, et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature. 2010;468(7326):973–7. doi:10.1038/nature09626.View ArticlePubMedPubMed CentralGoogle Scholar
- Moriceau G, Hugo W, Hong A, et al. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell. 2015;27(2):240–56. doi:10.1016/j.ccell.2014.11.018.View ArticlePubMedPubMed CentralGoogle Scholar
- Shi H, Hong A, Kong X, et al. A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition. Cancer Discov. 2014;4(1):69–79. doi:10.1158/2159-8290.CD-13-0279.View ArticlePubMedGoogle Scholar
- Obenauf AC, Zou Y, Ji AL, et al. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature. 2015;520(7547):368–72. doi:10.1038/nature14336.View ArticlePubMedPubMed CentralGoogle Scholar
- Hugo W, Shi H, Sun L, et al. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015;162(6):1271–85. doi:10.1016/j.cell.2015.07.061.View ArticlePubMedPubMed CentralGoogle Scholar
- Dummer R, Goldinger SM, Paulitschke V, et al. Curing advanced melanoma by 2025. Curr Opin Oncol. 2015;27(2):125–7. doi:10.1097/CCO.0000000000000168.View ArticlePubMedGoogle Scholar
- Urosevic-Maiwald M, Barysch MJ, Cheng PF, et al. Profiling reveals immunomodulatory effects of sorafenib and dacarbazine on melanoma. Oncoimmunology. 2015;4(2):e988458. doi:10.4161/2162402X.2014.988458.View ArticlePubMedPubMed CentralGoogle Scholar
- Zingg D, Debbache J, Schaefer SM, et al. The epigenetic modifier EZH2 controls melanoma growth and metastasis through silencing of distinct tumour suppressors. Nat Commun. 2015;6:6051. doi:10.1038/ncomms7051.View ArticlePubMedGoogle Scholar
- Holderfield M, Deuker MM, McCormick F, et al. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat Rev Cancer. 2014;14(7):455–67. doi:10.1038/nrc3760.View ArticlePubMedPubMed CentralGoogle Scholar
- Fattore L, Malpicci D, Marra E, et al. Combination of antibodies directed against different ErbB3 surface epitopes prevents the establishment of resistance to BRAF/MEK inhibitors in melanoma. Oncotarget. 2015;6(28):24823–41. doi:10.18632/oncotarget.4485.View ArticlePubMedPubMed CentralGoogle Scholar
- Fattore L, Marra E, Pisanu ME, et al. Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. J Transl Med. 2013;11:180. doi:10.1186/1479-5876-11-180.View ArticlePubMedPubMed CentralGoogle Scholar
- Fattore L, Acunzo M, Romano G, et al. miR-579-3p is a novel master regulator of melanoma progression and drug resistance metastatic melanoma. Proceedings: AACR 107th Annual Meeting 2016 April 16–20, 2016; New Orleans.
- Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5(200):200ra116. doi:10.1126/scitranslmed.3006504.View ArticlePubMedPubMed CentralGoogle Scholar
- Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature. 2015;523(7559):231–5. doi:10.1038/nature14404.View ArticlePubMedGoogle Scholar
- Chapuis AG, Roberts IM, Thompson JA, et al. T-cell therapy using interleukin-21-primed cytotoxic T-cell lymphocytes combined with cytotoxic T-cell lymphocyte antigen-4 blockade results in long-term cell persistence and durable tumor regression. J Clin Oncol. 2016. doi:10.1200/JCO.2015.65.5142.PubMedGoogle Scholar
- Yee C. The use of endogenous T cells for adoptive transfer. Immunol Rev. 2014;257(1):250–63. doi:10.1111/imr.12134.View ArticlePubMedGoogle Scholar
- Chapuis AG, Thompson JA, Margolin KA, et al. Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci USA. 2012;109(12):4592–7. doi:10.1073/pnas.1113748109.View ArticlePubMedPubMed CentralGoogle Scholar
- Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21(2):233–40. doi:10.1016/j.coi.2009.03.002.View ArticlePubMedPubMed CentralGoogle Scholar
- Zhou J, Dudley ME, Rosenberg SA, et al. Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother. 2005;28(1):53–62.View ArticlePubMedPubMed CentralGoogle Scholar
- Li Y, Bleakley M, Yee C. IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol. 2005;175(4):2261–9.View ArticlePubMedGoogle Scholar
- Chapuis AG, Lee SM, Thompson JA, et al. Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J Exp Med. 2016;213(7):1133–9. doi:10.1084/jem.20152021.View ArticlePubMedGoogle Scholar
- Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56–61. doi:10.1126/science.aaa8172.View ArticlePubMedGoogle Scholar
- Demaria S, Formenti SC. Role of T lymphocytes in tumor response to radiotherapy. Front Oncol. 2012;2:95. doi:10.3389/fonc.2012.00095.PubMedPubMed CentralGoogle Scholar
- Demaria S, Kawashima N, Yang AM, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11(2 Pt 1):728–34.PubMedGoogle Scholar
- Pilones K, Koelwyn G, Emerson R, et al. Unique changes in the TCR repertoire of tumor-infiltrating lymphocytes underlie the synergy of radiotherapy with CTLA-4 blockade. Cancer Res. 2015;75(15 Suppl):2856.View ArticleGoogle Scholar
- Dewan MZ, Galloway AE, Kawashima N, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15(17):5379–88. doi:10.1158/1078-0432.CCR-09-0265.View ArticlePubMedPubMed CentralGoogle Scholar
- Golden EB, Chachoua A, Fenton-Kerimian MB, et al. Abscopal responses in metastatic non-small cell lung cancer (NSCLC) patients treatded on a phase 2 study of combined radiation therapy and ipilimumab: evidence for the in situ vaccination hypothesis of radiation. Int J Radiat Oncol Biol Phys. 2015;93:S66–7.View ArticleGoogle Scholar
- VanpouilleBox C, Formenti S, Demaria S. TGFb and activin A control regulatory T cells in irradiated tumors. J Immunother Cancer. 2015;3:277.View ArticleGoogle Scholar
- Golden EB, Frances D, Pellicciotta I, et al. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 2014;3:e28518. doi:10.4161/onci.28518.View ArticlePubMedPubMed CentralGoogle Scholar
- Wennerberg E, Kremer V, Childs R, et al. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer Immunol Immunother. 2015;64(2):225–35. doi:10.1007/s00262-014-1629-5.View ArticlePubMedGoogle Scholar
- Abu-Eid R, Samara RN, Ozbun L, et al. Selective inhibition of regulatory T cells by targeting the PI3K-Akt pathway. Cancer Immunol Res. 2014;2(11):1080–9. doi:10.1158/2326-6066.CIR-14-0095.View ArticlePubMedPubMed CentralGoogle Scholar
- Park S, Jiang Z, Mortenson ED, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell. 2010;18(2):160–70. doi:10.1016/j.ccr.2010.06.014.View ArticlePubMedPubMed CentralGoogle Scholar
- Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, Tenga MW, Smytha MJ. Anti–ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA 2011;108(17):7142–47. doi:10.1073/pnas.1016569108.View ArticlePubMedPubMed CentralGoogle Scholar
- Gajewski TF, Schreiber H, Fu Y-X. Defective IFN production can reduce cross priming while targeting tumor tissues with type I IFN can bridge innate and adaptive immune responses. Nat Immunol. 2013;14(10):1014–22. doi:10.1038/ni.2703.View ArticlePubMedPubMed CentralGoogle Scholar
- Chao MP, Majeti R, Weissman IL. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer. 2012;12(1):58–67. doi:10.1038/nrc3171.Google Scholar
- Liu X, Pu Y, Cron K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 2015;21(10):1209–15. doi:10.1038/nm.3931.View ArticlePubMedPubMed CentralGoogle Scholar
- Tang H, Wang Y, Chlewicki LK, et al. Facilitating T cell infiltration in tumor microenvironment overcomes resistance to PD-L1 blockade. Cancer Cell. 2016;29(3):285–96. doi:10.1016/j.ccell.2016.02.004.View ArticlePubMedGoogle Scholar
- Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type chemokines shapes tumour immunity and immunotherapy. Nature. 2015;527(7577):249–53. doi:10.1038/nature15520.View ArticlePubMedPubMed CentralGoogle Scholar
- Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol. 2004;4(5):336–47. doi:10.1038/nri1349.View ArticlePubMedGoogle Scholar
- Wu BX, Hong F, Zhang Y, et al. GRP94/gp96 in cancer: biology, structure, immunology, and drug development. Adv Cancer Res. 2016;129:165–90. doi:10.1016/bs.acr.2015.09.001.View ArticlePubMedGoogle Scholar
- Sabbatino F, Favoino E, Wang Y, et al. Grp94-specific monoclonal antibody to counteract BRAF inhibitor resistance in BRAFV600E melanoma. J Transl Med. 2015;13:1.View ArticleGoogle Scholar
- Wang Y, Wang X, Ferrone CR, et al. Intracellular antigens as targets for antibody based immunotherapy of malignant diseases. Mol Oncol. 2015;9(10):1982–93. doi:10.1016/j.molonc.2015.10.019.View ArticlePubMedGoogle Scholar
- Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62. doi:10.1038/nrd4663.View ArticlePubMedGoogle Scholar
- Zamarin D, Holmgaard RB, Subudhi SK, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6(226):226ra32. doi:10.1126/scitranslmed.3008095.View ArticlePubMedPubMed CentralGoogle Scholar
- Andtbacka RHI. 8th World Congress of melanoma. Hamburg: European Association of Dermatology (EADO); 2013.Google Scholar
- Andtbacka RHI, Curti B, Kaufman H, et al. Secondary endpoints of a Phase II study of a novel oncolytic immunotherapeutic agent, Coxsackievirus A21, delivered intratumorally in patients with advanced malignant melanoma. Madrid: ESMO Congress; 2014.Google Scholar
- Andtbacka RH, Curti BD, Kaufman H, et al. Final data from CALM: A phase II study of Coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol. 2015;33(15):9030.Google Scholar
- Varghese S, Rabkin SD. Oncolytic herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9(12):967–78. doi:10.1038/sj.cgt.7700537.View ArticlePubMedGoogle Scholar
- Hawkins LK, Lemoine NR, Kirn D. Oncolytic biotherapy: a novel therapeutic plafform. Lancet Oncol. 2002;3(1):17–26.View ArticlePubMedGoogle Scholar
- Fukuhara H, Todo T. Oncolytic herpes simplex virus type 1 and host immune responses. Curr Cancer Drug Targets. 2007;7(2):149–55.View ArticlePubMedGoogle Scholar
- Sobol PT, Boudreau JE, Stephenson K, et al. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther. 2011;19(2):335–44. doi:10.1038/mt.2010.264.View ArticlePubMedGoogle Scholar
- Liu BL, Robinson M, Han ZQ, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10(4):292–303. doi:10.1038/sj.gt.3301885.View ArticlePubMedGoogle Scholar
- Melcher A, Parato K, Rooney CM, et al. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther. 2011;19(6):1008–16. doi:10.1038/mt.2011.65.View ArticlePubMedPubMed CentralGoogle Scholar
- Dranoff G. GM-CSF-secreting melanoma vaccines. Oncogene. 2003;22(20):3188–92. doi:10.1038/sj.onc.1206459.View ArticlePubMedGoogle Scholar
- Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. doi:10.1200/JCO.2014.58.3377.View ArticlePubMedGoogle Scholar
- Puzanov I, Milhem MM, Minor D, et al. Talimogene Laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB–IV melanoma. J Clin Oncol. 2016. doi:10.1200/JCO.2016.67.1529.Google Scholar
- Rajani K, Parrish C, Kottke T, et al. Combination therapy with reovirus and anti-PD-1 blockade controls tumor growth through innate and adaptive immune responses. Mol Ther. 2016;24(1):166–74. doi:10.1038/mt.2015.156.View ArticlePubMedGoogle Scholar
- Pilon-Thomas S, Liu H, Kodumudi K. Efficacy of intralesional injection with PV-10 in combination with co-inhibitory blockade in a murine model of melanoma. Society for Immunotherapy of Cancer Annual Meeting; 2014.
- Agarwala SS. Intralesional therapy for advanced melanoma: promise and limitation. Curr Opin Oncol. 2015;27(2):151–6. doi:10.1097/CCO.0000000000000158.View ArticlePubMedPubMed CentralGoogle Scholar
- Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015;372(21):2006–17. doi:10.1056/NEJMoa1414428.View ArticlePubMedGoogle Scholar
- Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi:10.1056/NEJMoa1504030.View ArticlePubMedGoogle Scholar
- Larkin J, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(13):1270–1. doi:10.1056/NEJMc1509660.View ArticlePubMedGoogle Scholar
- Hoshimoto S, Faries MB, Morton DL, et al. Assessment of prognostic circulating tumor cells in a phase III trial of adjuvant immunotherapy after complete resection of stage IV melanoma. Ann Surg. 2012;255(2):357–62. doi:10.1097/SLA.0b013e3182380f56.View ArticlePubMedPubMed CentralGoogle Scholar
- Howard JH, Thompson JF, Mozzillo N, et al. Metastasectomy for distant metastatic melanoma: analysis of data from the first multicenter selective lymphadenectomy trial (MSLT-I). Ann Surg Oncol. 2012;19(8):2547–55. doi:10.1245/s10434-012-2398-z.View ArticlePubMedPubMed CentralGoogle Scholar
- Simeone E, Gentilcore G, Giannarelli D, et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother. 2014;63(7):675–83. doi:10.1007/s00262-014-1545-8.View ArticlePubMedGoogle Scholar
- Amaravadi RK, Kim KB, Flaherty KT, et al. Prolonged responses to vemurafenib in patients with BRAFV600E mutant melanoma with low tumor burden at baseline. 8th International Congress of the Society for Melanoma Research; Tampa: 2013.
- Tarhini AA, Gogas H, Kirkwood JM. IFN-alpha in the treatment of melanoma. J Immunol. 2012;189(8):3789–93. doi:10.4049/jimmunol.1290060.View ArticlePubMedPubMed CentralGoogle Scholar
- Mocellin S, Lens MB, Pasquali S, Pilati P, Chiarion Sileni V. Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst Rev. 2013(6):CD008955.
- Eggermont AM, Suciu S, Testori A, et al. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol. 2012;30(31):3810–8. doi:10.1200/JCO.2011.41.3799.View ArticlePubMedGoogle Scholar
- Corrie PG, Marshall A, Dunn JA, et al. Adjuvant bevacizumab in patients with melanoma at high risk of recurrence (AVAST-M): preplanned interim results from a multicentre, open-label, randomised controlled phase 3 study. Lancet Oncol. 2014;15(6):620–30. doi:10.1016/S1470-2045(14)70110-X.View ArticlePubMedGoogle Scholar
- Estevez LG, Gradishar WJ. Evidence-based use of neoadjuvant taxane in operable and inoperable breast cancer. Clin Cancer Res. 2004;10(10):3249–61. doi:10.1158/1078-0432.CCR-03-0133.View ArticlePubMedGoogle Scholar
- Grossman HB, Natale RB, Tangen CM, et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med. 2003;349(9):859–66. doi:10.1056/NEJMoa022148.View ArticlePubMedGoogle Scholar
- Fisher B, Brown A, Mamounas E, et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol. 1997;15(7):2483–93.PubMedGoogle Scholar
- Medical Research Council Oesophageal Cancer Working G. Surgical resection with or without preoperative chemotherapy in oesophageal cancer: a randomised controlled trial. Lancet. 2002;359(9319):1727–33. doi:10.1016/S0140-6736(02)08651-8.View ArticleGoogle Scholar
- Tarhini AA, Edington H, Butterfield LH, et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE. 2014;9(2):e87705. doi:10.1371/journal.pone.0087705.View ArticlePubMedPubMed CentralGoogle Scholar
- Tarhini AA, Zahoor H, Lin Y, et al. Baseline circulating IL-17 predicts toxicity while TGF-beta1 and IL-10 are prognostic of relapse in ipilimumab neoadjuvant therapy of melanoma. J Immunother Cancer. 2015;3:39. doi:10.1186/s40425-015-0081-1.View ArticlePubMedPubMed CentralGoogle Scholar
- Salama AK, Flaherty KT. BRAF in melanoma: current strategies and future directions. Clin Cancer Res. 2013;19(16):4326–34. doi:10.1158/1078-0432.CCR-13-0779.View ArticlePubMedGoogle Scholar
- Hu-Lieskovan S, Robert L, Homet Moreno B, et al. Combining targeted therapy with immunotherapy in BRAF-mutant melanoma: promise and challenges. J Clin Oncol. 2014;32(21):2248–54. doi:10.1200/JCO.2013.52.1377.View ArticlePubMedPubMed CentralGoogle Scholar
- Tarhini AA. Neoadjuvant therapy for melanoma: a promising therapeutic approach and an ideal platform in drug development. Am Soc Clin Oncol Educ Book. 2015. doi:10.14694/EdBook_AM.2015.35.e535.PubMedGoogle Scholar
- Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23. doi:10.1056/NEJMoa1003466.View ArticlePubMedPubMed CentralGoogle Scholar
- Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from Phase II and Phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015;33(17):1889–94. doi:10.1200/JCO.2014.56.2736.View ArticlePubMedGoogle Scholar
- Eggermont AM, Suciu S, Santinami M, et al. Adjuvant therapy with pegylated interferon alfa-2b versus observation alone in resected stage III melanoma: final results of EORTC 18991, a randomised phase III trial. Lancet. 2008;372(9633):117–26. doi:10.1016/S0140-6736(08)61033-8.View ArticlePubMedGoogle Scholar
- Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014;383(9919):816–27. doi:10.1016/S0140-6736(13)60802-8.View ArticlePubMedGoogle Scholar
- van Akkooi AC, Nowecki ZI, Voit C, et al. Sentinel node tumor burden according to the Rotterdam criteria is the most important prognostic factor for survival in melanoma patients: a multicenter study in 388 patients with positive sentinel nodes. Ann Surg. 2008;248(6):949–55. doi:10.1097/SLA.0b013e31818fefe0.View ArticlePubMedGoogle Scholar
- van der Ploeg AP, van Akkooi AC, Rutkowski P, et al. Prognosis in patients with sentinel node-positive melanoma is accurately defined by the combined Rotterdam tumor load and Dewar topography criteria. J Clin Oncol. 2011;29(16):2206–14. doi:10.1200/JCO.2010.31.6760.View ArticlePubMedGoogle Scholar
- Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 2015;16(5):522–30. doi:10.1016/S1470-2045(15)70122-1.View ArticlePubMedGoogle Scholar
- Eggermont AM, Suciu S, MacKie R, et al. Post-surgery adjuvant therapy with intermediate doses of interferon alfa 2b versus observation in patients with stage IIb/III melanoma (EORTC 18952): randomised controlled trial. Lancet. 2005;366(9492):1189–96. doi:10.1016/S0140-6736(05)67482-X.View ArticlePubMedGoogle Scholar
- Eggermont AM, Suciu S, Testori A, et al. Ulceration and stage are predictive of interferon efficacy in melanoma: results of the phase III adjuvant trials EORTC 18952 and EORTC 18991. Eur J Cancer. 2012;48(2):218–25. doi:10.1016/j.ejca.2011.09.028.View ArticlePubMedGoogle Scholar
- Eggermont AM, Suciu S, Rutkowski P, et al. Long term follow up of the EORTC 18952 trial of adjuvant therapy in resected stage IIB-III cutaneous melanoma patients comparing intermediate doses of interferon-alpha-2b (IFN) with observation: ulceration of primary is key determinant for IFN-sensitivity. Eur J Cancer. 2016;55:111–21. doi:10.1016/j.ejca.2015.11.014.View ArticlePubMedGoogle Scholar
- Suciu S, Ives N, Eggermont A, et al. Predictive importance of ulceration on the efficacy of adjuvant interferon-a (IFN): An individual patient data (IPD) meta-analysis of 15 randomized trials in more than 7500 melanoma patients (pts). J Clin Oncol. 2014;32(5):9067.Google Scholar
- Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–30. doi:10.1056/NEJMoa1412082.View ArticlePubMedGoogle Scholar
- Larkin J, Lao CD, Urba WJ, et al. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40. doi:10.1001/jamaoncol.2015.1184.View ArticlePubMedGoogle Scholar
- Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32. doi:10.1056/NEJMoa1503093.View ArticlePubMedGoogle Scholar
- Weber J, Grob JJ, Margolin KA, et al. A Phase III study (CheckMate 238) of adjuvant immunotherapy with nivolumab (NIVO) versus ipilimumab (IPI) after complete resection of stage IIIb/c or stage IV melanoma (MEL) in patients (pts) at high risk for recurrence. J Transl Med. 2015;3(Suppl 2):166.Google Scholar
- Eggermont AM, Maio M, Robert C. Immune checkpoint inhibitors in melanoma provide the cornerstones for curative therapies. Semin Oncol. 2015;42(3):429–35. doi:10.1053/j.seminoncol.2015.02.010.View ArticlePubMedGoogle Scholar
- Zarour HM. Reversing T-cell dysfunction and exhaustion in cancer. Clin Cancer Res. 2016;22(8):1856–64. doi:10.1158/1078-0432.CCR-15-1849.View ArticlePubMedGoogle Scholar
- Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175–86. doi:10.1084/jem.20100637.View ArticlePubMedPubMed CentralGoogle Scholar
- Fourcade J, Sun Z, Pagliano O, et al. CD8(+) T cells specific for tumor antigens can be rendered dysfunctional by the tumor microenvironment through upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res. 2012;72(4):887–96. doi:10.1158/0008-5472.CAN-11-2637.View ArticlePubMedGoogle Scholar
- Fourcade J, Sun Z, Pagliano O, et al. PD-1 and Tim-3 regulate the expansion of tumor antigen-specific CD8(+) T cells induced by melanoma vaccines. Cancer Res. 2014;74(4):1045–55. doi:10.1158/0008-5472.CAN-13-2908.View ArticlePubMedGoogle Scholar
- Chauvin JM, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest. 2015;125(5):2046–58. doi:10.1172/JCI80445.View ArticlePubMedPubMed CentralGoogle Scholar
- Jensen SM, Twitty CG, Maston LD, et al. Increased frequency of suppressive regulatory T cells and T cell-mediated antigen loss results in murine melanoma recurrence. J Immunol. 2012;189(2):767–76. doi:10.4049/jimmunol.1103822.View ArticlePubMedPubMed CentralGoogle Scholar
- Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol. 2011;32(11):548–58. doi:10.1016/j.it.2011.08.001.View ArticlePubMedPubMed CentralGoogle Scholar
- Li Y, Wang LX, Yang G, et al. Efficient cross-presentation depends on autophagy in tumor cells. Cancer Res. 2008;68(17):6889–95. doi:10.1158/0008-5472.CAN-08-0161.View ArticlePubMedPubMed CentralGoogle Scholar
- Twitty CG, Jensen SM, Hu HM, et al. Tumor-derived autophagosome vaccine: induction of cross-protective immune responses against short-lived proteins through a p62-dependent mechanism. Clin Cancer Res. 2011;17(20):6467–81. doi:10.1158/1078-0432.CCR-11-0812.View ArticlePubMedPubMed CentralGoogle Scholar
- Sanborn R, Boulmay B, Li R, et al. Preliminary analysis of immune responses in patients enrolled in a Phase II trial of cyclophosphamide with allogenic dribble vaccine alone (DPV-001) or with GM-CSF or imiquimod for adjuvant treatment of stage IIIa or IIIb NSCLC. J Immunother Cancer. 2015;3(Suppl 2):435.View ArticleGoogle Scholar
- Page DB, Hulett TW, Hilton TL, Hu HM, Urba WJ, Fox BA. Glimpse into the future: harnessing autophagy to promote anti-tumor immunity with the DRibbles vaccine. J Immunother Cancer. 2016;4:25. doi:10.1186/s40425-016-0130-4.View ArticlePubMedPubMed CentralGoogle Scholar
- Lee DW, Kochenderfer JN, Stetler-Stevenson M, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28. doi:10.1016/S0140-6736(14)61403-3.View ArticlePubMedGoogle Scholar
- Stroncek DF, Ren J, Lee DW, et al. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells. Cytotherapy. 2016;18(7):893–901. doi:10.1016/j.jcyt.2016.04.003.View ArticlePubMedGoogle Scholar
- Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer. 2005;5(11):845–56. doi:10.1038/nrc1739.View ArticlePubMedGoogle Scholar
- Ribas A, Robert C, Hodi FS, et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. J Clin Oncol. 2015;33:3001.View ArticleGoogle Scholar
- Seiwert TY, Burtness B, Weiss J, et al. Inflamed-phenotype gene expression signatures to predict benefit from the anti-PD-1 antibody pembrolizumab in PD-L1+ head and neck cancer patients. J Clin Oncol. 2015;33:6017.Google Scholar
- Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22. doi:10.1038/ni.2703.View ArticlePubMedPubMed CentralGoogle Scholar
- Spranger S, Sivan A, Corrales L, et al. Tumor and host factors controlling antitumor immunity and efficacy of cancer immunotherapy. Adv Immunol. 2016;130:75–93. doi:10.1016/bs.ai.2015.12.003.View ArticlePubMedPubMed CentralGoogle Scholar
- Sivan A, Corrales L, Hubert N, et al. Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350(6264):1084–9. doi:10.1126/science.aac4255.View ArticlePubMedPubMed CentralGoogle Scholar
- Taube JM, Anders RA, Young GD, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4(127):127ra37. doi:10.1126/scitranslmed.3003689.View ArticlePubMedPubMed CentralGoogle Scholar
- Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. doi:10.1158/1078-0432.CCR-13-3271.View ArticlePubMedPubMed CentralGoogle Scholar
- Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54. doi:10.1056/NEJMoa1200690.View ArticlePubMedPubMed CentralGoogle Scholar
- Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clin Cancer Res. 2013;19(5):1225–31. doi:10.1158/1078-0432.CCR-12-1630.View ArticlePubMedPubMed CentralGoogle Scholar
- Cooper ZA, Frederick DT, Juneja VR, et al. BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes. Oncoimmunology. 2013;2(10):e26615. doi:10.4161/onci.26615.View ArticlePubMedPubMed CentralGoogle Scholar
- Cooper ZA, Juneja VR, Sage PT, et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res. 2014;2(7):643–54. doi:10.1158/2326-6066.CIR-13-0215.View ArticlePubMedPubMed CentralGoogle Scholar
- Chen PL, Roh W, Reuben A, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016. doi:10.1158/2159-8290.CD-15-1545.Google Scholar
- Filipazzi P, Valenti R, Huber V, et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol. 2007;25(18):2546–53. doi:10.1200/JCO.2006.08.5829.View ArticlePubMedGoogle Scholar
- Filipazzi P, Burdek M, Villa A, et al. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin Cancer Biol. 2012;22(4):342–9. doi:10.1016/j.semcancer.2012.02.005.View ArticlePubMedGoogle Scholar
- Ridder K, Sevko A, Heide J, et al. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment. Oncoimmunology. 2015;4(6):e1008371. doi:10.1080/2162402X.2015.1008371.View ArticlePubMedPubMed CentralGoogle Scholar
- Jacquelot N, Roberti MP, Enot DP, et al. Immunophenotyping of stage III melanoma reveals parameters associated with patient prognosis. J Invest Dermatol. 2016. doi:10.1016/j.jid.2015.12.042.PubMedGoogle Scholar
- Jacquelot N, Enot DP, Flament C, et al. Chemokine receptor patterns in lymphocytes mirror metastatic spreading in melanoma. J Clin Invest. 2016;126(3):921–37. doi:10.1172/JCI80071.View ArticlePubMedPubMed CentralGoogle Scholar
- Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84. doi:10.1126/science.aad1329.View ArticlePubMedPubMed CentralGoogle Scholar
- Lee JW, Devanarayan V, Barrett YC, et al. Fit-for-purpose method development and validation for successful biomarker measurement. Pharm Res. 2006;23(2):312–28. doi:10.1007/s11095-005-9045-3.View ArticlePubMedGoogle Scholar
- Dako. PD-L1 IHC 22C3 pharmDx specification sheet. 2015. http://www.dako.com/download.pdf?objectid=128206001. Accessed 3 Oct 2016.
- Cree IA, Deans Z, Ligtenberg MJ, et al. Guidance for laboratories performing molecular pathology for cancer patients. J Clin Pathol. 2014;67(11):923–31. doi:10.1136/jclinpath-2014-202404.View ArticlePubMedPubMed CentralGoogle Scholar
- Pant S, Weiner R, Marton MJ. Navigating the rapids: the development of regulated next-generation sequencing-based clinical trial assays and companion diagnostics. Front Oncol. 2014;4:78. doi:10.3389/fonc.2014.00078.View ArticlePubMedPubMed CentralGoogle Scholar
- Rehm HL, Bale SJ, Bayrak-Toydemir P, et al. ACMG clinical laboratory standards for next-generation sequencing. Genet Med. 2013;15(9):733–47. doi:10.1038/gim.2013.92.View ArticlePubMedPubMed CentralGoogle Scholar
- Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.View ArticlePubMedGoogle Scholar
- Mandrekar SJ, Sargent DJ. Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol. 2009;27(24):4027–34. doi:10.1200/JCO.2009.22.3701.View ArticlePubMedPubMed CentralGoogle Scholar
Copyright
Gerelateerde artikelen
- Immuuntherapie met pembrolizumab of ipilimumab voor patienten met melanomen stadium IV en III inoperabel geeft overall overleving van 45 procent op 10 jaars meting, aldus de resultaten uit de Keynote 006 studie
- Immuuntherapie vooraf aan operatie geeft sterk verbeterde resultaten op overall overleving en minder recidieven bij patienten met een melanoom
- Uitgezaaide oogmelanoom bevat soms immuuncelkenmerken die patienten gevoelig kan maken voor TIL therapie (adoptieve tumor-infiltrerende lymfocyten - TIL)
- mRNA-4157 (V940) in combinatie met pembrolizumab geeft veel langere recidiefvrije overleving en minder uitzaaiingen op afstand bij patiënten met hoogrisico stadium III/IV melanoom na operatie in vergelijking met alleen pembrolizumab
- Mediterraan dieet stimuleert effectiviteit van immuuntherapie met anti-PD medicijnen - checkpointremmers voor patiënten met een melanoom in een gevorderd stadium copy 1
- Tumor-infiltrerende lymfocyten therapie (TIL) verbetert progressievrije overleving en mediane overall overleving bij patiënten met gevorderd melanoom (Stadium IIIc - IV) in vergelijking met standaard immunotherapie met ipilimumab.
- Vrouw met een progressief stadium IIIB-melanoom behandeld met oncolytisch ECHO-7-virus = RIGVIR virus komt in totale remissie en is nu al 10 jaar klinisch kankervrij na 1e diagnose
- Pembrolizumab gegeven na operatie voor melanoompatienten met stadium IIB en IIC verminderde het risico op overlijden en recidief met 35 procent in vergelijking met een placebo
- Relatlimab plus nivolumab geeft in vergelijking met alleen nivolumab langere ziektevrije tijd bij eerstelijns gevorderde melanoom
- Nivolumab plus ipilimumab geeft betere mediane overall overleving (72 maanden vs 37 maanden) dan alleen nivolumab of alleen ipilimumab bij patienten met inoperabele melanomen.
- Pembrolizumab geeft betere ziektevrije tijd en minder bijwerkingen in vergelijking met hoge dosis interferon (HDI) of ipilimumab bij patiënten met een geopereerd melanoom met een hoog risico op een recidief
- Chronische immuungerelateerde bijwerkingen komen veelvuldig voor bij patiënten met stadium III-IV melanoom die worden behandeld met immuuntherapie met anti-PD medicijnen
- Fecale microbiota transplantatie - FMT overwint resistentie tegen anti-PD-1-therapie bij melanoompatiënten en zorgt alsnog voor aanslaan van immuuntherapie met anti-PD medicijnen
- Immuuntherapie met nivolumab plus ipilimumab geeft veel betere overall ziektevrije overleving (plus 28 en 38 procent) in vergelijking met alleen nivolumab of placebo bij patiënten met operabele stadium IV melanoom zonder bewijs van ziekte na operatie
- Melanoompatiënten (stadium IV) die na een gerichte behandeling toch ziekteprogressie tonen, hebben baat bij daarna immuuntherapie met anti-PD-1 medicijnen en gelijke overall overleving als bij eerstelijns met anti-PD-1 medicijnen.
- Er is een sterk positief verband met het aantal immuun-gerelateerde bijwerkingen (irAE's) en recidiefvrije overleving bij melanoompatiënten met een hoog risico in stadium III die werden behandeld met pembrolizumab.
- Immuuntherapie met T-VEC = talimogene laherparepvec voor huidkanker waaronder melanomen wordt ook in Nederland toegepast in studieverband. Bv. In UMCG Groningen
- Melanoom tumoren met V600K BRAF mutatie reageren minder goed op gerichte behandelingen dan met V600E mutaties, maar V600K BRAF geeft betere resultaten op immuuntherapie met anti-PD medicijnen copy 1
- Biomarkers zoals PD-L1, CD163+ en NRAS mutaties en gegevens zoals uitzaaiingen later ontstaan bepalen kans van effectiviteit van immuuntherapie met anti PD medicijnen bij melanomen copy 1
- Immuuntherapie met pembrolizumab voorkomt veel beter recidief (met 43 procent) van operabele melanoom stadium III in vergelijking met placebo ook zonder PD-1 mutatie
- Bepaalde darmbacteriën kunnen de effectiviteit van immunotherapie met anti-PD medicijnen verhogen bij de behandeling van melanomen copy 1
- Pembrolizumab superieur in ziektevrije tijd, overall overleving en met significant minder bijwerkingen dan Ipilimumab bij inoperabele gevorderde melanomen.
- Immuuntherapie met een gepersonaliseerd vaccin geeft uitstekende resultaten bij operabele melanoompatienten, meer dan de helft bereikte een duurzame complete remissie copy 1
- Immuuntherapie met gemoduleerd herpes virus succesvol bij melanoompatienten in Anthonie van Leeuwenhoek ziekenhuis.
- Biomarkers - DNA mutaties en receptorenexpressie - zijn bepalend voor succes van immuuntherapie bij melanomen al lijkt algemene dendritische celtherapie als immuuntherapie ook zinvol
- Nivolumab als enige behandeling geeft 34 procent 5 jaars overleving bij zwaar voorbehandelde melanoompatienten
- Immuuntherapie met het RIGVIR virus bij operabele melanomen met stadia IA t/m IIC geeft 35 procent meer overlevingen op 3 tot 5 jaar in vergelijking met standaard behandeling copy 1
- Immuuntherapie met TIL - tumor infiltrating lymfocyten zorgt bij een kwart van de deelnemers voor jarenlange ziektevrije tijd bij patienten met uitgezaaide melanomen copy 1
- Dendritische celtherapie gecombineerd met hyperthermie verdubbelt overleving (van 6 tot 13 maanden) van patienten met vergevorderde melanomen.
- Vaccinatie samen met interleukon-2 (IL-2) verlengt significant ziektevrije tijd van melanoompatienten in vergelijkiing met alleen interleukon 2.
- Immunotherapie - na chemo lijkt succesvol bij melanomen graad IV.
- Immuuntherapie Onderzoekers aan de universiteit van Virginia melden positieve resultaten uit een kleinschalige (26 deelnemers) gerandomiseerde phase II studie naar de effecten van een vaccin met multi-peptides
- Nederlandse ziekenhuizen die ipilimumab (Yervoy) of vemurafenib (Zelboraf) mogen voorschrijven voor uitgezaaide melanoom
- Immuuntherapie met Interferon Alpha 2B bij patienten met melanomen geeft ten opzichte van een wait and see beleid op een meetpunt van 3,8 jaar een significant verschil in mediane ziektevrije overlevingstijd van 18%. Aldus gerandomiseerde fase III studie
- Immuuntherapie: autovaccinatie (van eigen kankercellen wordt een vaccin gemaakt) bij melanoompatienten zorgt bij 50 procent van deelnemende patienten voor langjarige remissies. Vooral melanoompatienten met MELOE-1 lijken gevoelig voor deze aanpak
- Immuuntherapie: patient met vergevorderde melanoomkanker geneest doordat gekloonde cellen van eigen afweercellen als vaccin zijn teruggebracht in zjin lichaam.
- Monoclonaal middel werkt uitstekend als vaccinatie en immuunstimulerend middel bij muizen met melanoomkanker.
- Immuuntherapie en melanomen: Antibody therapie kan het positieve effect van een vaccin vergroten blijkt uit kleinschalige studie met 9 uitbehandelde eierstokkankerpatiënten en melanoompatiënten.
- Immuuntherapie bij melanomen: een overzicht van recente ontwikkelingen en belangrijke studies
Plaats een reactie ...
Reageer op "Biomarkers - DNA mutaties en receptorenexpressie - zijn bepalend voor succes van immuuntherapie bij melanomen al lijkt algemene dendritische celtherapie als immuuntherapie ook zinvol"