8 juni 2023: Bron JAMA. Published online June 5, 2023.

Volgens een studie die op 5 juni online is gepubliceerd en op  ASCO 2023 werd gepresenteerd ondergingen in de periode van 2013 tot 2021 maar weinig kankerpatiënten binnen twee jaar na de eerste diagnose een genetische test via een germline test / kiembaantest ook wel Whole Genome Sequensing genoemd. 

In een observatie studie met 1.369.602 patiënten bij wie kanker was vastgesteld in Californië en Georgia, was het testen van DNA - kiembaangenetica na de diagnose van kanker erg laag (6,8%; n = 93052) ondanks dat in die periode er wel al werd geadviseerd om genetisch te testen bij een aantal vormen van kanker. Het genetische testen was het hoogst bij mannen met borstkanker (50%) en bij patiënten met eierstokkanker (38,6%). 

Uit het abstract de resultaten vertaald:

Resultaten:

Van de 1369602 patiënten met de diagnose kanker tussen 2013 en 2019 in Californië en Georgia, ondergingen 93052 (6,8%) kiembaantesten tot en met 31 maart 2021.
Het aantal geteste patiënten varieerde per kankertype: mannelijke borstkanker (50%), eierstokkanker (38,6%), vrouwelijke borstkanker (26%), meerdere vormen van kanker (7,5%), endometriumkanker (6,4%), alvleesklierkanker (5,6%), darmkanker (5,6%), prostaatkanker (1,1%) en longkanker (0,3%).

In een logistisch regressiemodel, vergeleken met de 31% (95% BI, 30%-31%) van niet-Spaanse blanke patiënten met borstkanker bij mannen, borstkanker bij vrouwen of eierstokkanker die werden getest, werden patiënten van andere rassen en etniciteiten minder vaak getest: 22% (95% BI, 21%-22%) van de Aziatische patiënten, 25% (95% BI, 24%-25%) van de zwarte patiënten en 23% (95% BI, 23%- 23%) van Spaanse patiënten (P < .001 met behulp van de χ2-test).

Van alle pathogene resultaten werd 67,5% tot 94,9% van de varianten geïdentificeerd in genen waarvoor klinische praktijkrichtlijnen genetische testen aanbevelen en 68,3% tot 83,8% van de varianten werd geïdentificeerd in genen die verband houden met het gediagnosticeerde kankertype.

Het volledige studierapport is gratis te downloaden of te lezen. Klik daarvoor op de titel van het abstract:

editorial comment icon 
Editorial
Comment
related articles icon 
Related
Articles
Key Points

Question  Among patients in the Surveillance, Epidemiology, and End Results registries diagnosed with cancer between 2013 and 2019, what was the prevalence of germline genetic testing?

Findings  In this observational study that included 1 369 602 patients diagnosed with cancer in California and Georgia, germline genetic testing after cancer diagnosis was low (6.8%; n = 93 052). Testing was highest in males with breast cancer (50%) and in patients with ovarian cancer (38.6%).

Meaning  Few patients diagnosed with cancer between 2013 and 2019 in California and Georgia underwent germline testing.

Abstract

Importance  Germline genetic testing is recommended by practice guidelines for patients diagnosed with cancer to enable genetically targeted treatment and identify relatives who may benefit from personalized cancer screening and prevention.

Objective  To describe the prevalence of germline genetic testing among patients diagnosed with cancer in California and Georgia between 2013 and 2019.

Design, Setting, and Participants  Observational study including patients aged 20 years or older who had been diagnosed with any type of cancer between January 1, 2013, and March 31, 2019, that was reported to statewide Surveillance, Epidemiology, and End Results registries in California and Georgia. These patients were linked to genetic testing results from 4 laboratories that performed most germline testing for California and Georgia.

Main Outcomes and Measures  The primary outcome was germline genetic testing within 2 years of a cancer diagnosis. Testing trends were analyzed with logistic regression modeling. The results of sequencing each gene, including variants associated with increased cancer risk (pathogenic results) and variants whose cancer risk association was unknown (uncertain results), were evaluated. The genes were categorized according to their primary cancer association, including breast or ovarian, gastrointestinal, and other, and whether practice guidelines recommended germline testing.

Results  Among 1 369 602 patients diagnosed with cancer between 2013 and 2019 in California and Georgia, 93 052 (6.8%) underwent germline testing through March 31, 2021. The proportion of patients tested varied by cancer type: male breast (50%), ovarian (38.6%), female breast (26%), multiple (7.5%), endometrial (6.4%), pancreatic (5.6%), colorectal (5.6%), prostate (1.1%), and lung (0.3%). In a logistic regression model, compared with the 31% (95% CI, 30%-31%) of non-Hispanic White patients with male breast cancer, female breast cancer, or ovarian cancer who underwent testing, patients of other races and ethnicities underwent testing less often: 22% (95% CI, 21%-22%) of Asian patients, 25% (95% CI, 24%-25%) of Black patients, and 23% (95% CI, 23%-23%) of Hispanic patients (P < .001 using the χ2 test). Of all pathogenic results, 67.5% to 94.9% of variants were identified in genes for which practice guidelines recommend testing and 68.3% to 83.8% of variants were identified in genes associated with the diagnosed cancer type.

Conclusions and RelevanceAmong patients diagnosed with cancer in California and Georgia between 2013 and 2019, only 6.8% underwent germline genetic testing. Compared with non-Hispanic White patients, rates of testing were lower among Asian, Black, and Hispanic patients.

Article Information

Accepted for Publication: May 18, 2023.

Published Online: June 5, 2023. doi:10.1001/jama.2023.9526

Corresponding Author: Allison W. Kurian, MD, MSc, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA 94305 (akurian@stanford.edu).

Author Contributions: Dr Kurian had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: Kurian, Abrahamse, Ward, Hodan, Hofer, Katz.

Acquisition, analysis, or interpretation of data: All authors.

Drafting of the manuscript: Kurian, Abrahamse, Berek, Katz.

Critical revision of the manuscript for important intellectual content: Kurian, Abrahamse, Furgal, Ward, Hamilton, Hodan, Tocco, Liu, Hoang, Yussuf, Susswein, Esplin, Slavin, Gomez, Hofer, Katz.

Statistical analysis: Abrahamse, Furgal, Hofer, Katz.

Obtained funding: Kurian, Tocco, Katz.

Administrative, technical, or material support: Hamilton, Tocco, Liu, Yussuf, Susswein, Slavin, Katz.

Supervision: Hamilton, Berek, Katz.

Conflict of Interest Disclosures: Mss Hoang and Yusuf reported being employed by Ambry Genetics. Ms Susswein reported being employed by and having stock options in GeneDx. Dr Esplin reported being employed by and owning stock in Invitae and serving on a scientific advisory board for and owning stock in Taproot Health. Dr Slavin reported being employed by and owning stock in Myriad Genetics. No other disclosures were reported.

Funding/Support: This research was supported by grant R01 CA225697 from the National Cancer Institute (NCI) (awarded to Stanford University) and grants P01 CA163233 and P30 CA046592 from the NCI (awarded to the University of Michigan). The collection of cancer incidence data in California was supported by the California Department of Public Health pursuant to California Health and Safety Code §103885 under cooperative agreement 5NU58DP006344 with the US Centers for Disease Control and Prevention (CDC) National Program of Cancer Registries, contract HHSN261201800032I with the NCI’s Surveillance, Epidemiology, and End Results (SEER) program (awarded to the University of California, San Francisco), contract HHSN261201800015I with the NCI’s SEER program (awarded to the University of Southern California), and contract HHSN261201800009I with the NCI’s SEER program (awarded to the Public Health Institute, Cancer Registry of Greater California). The collection of cancer incidence data in Georgia was supported by contract HHSN261201800003I and task order HHSN26100001 from the NCI and cooperative agreement 5NU58DP006352-03-00 from the CDC.

Role of the Funder/Sponsor: The National Cancer Institute, the US Centers for Disease Control and Prevention, and the California Department of Public Health had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the opinions of the National Cancer Institute, the US Centers for Disease Control and Prevention, and the California Department of Public Health or their contractors and subcontractors.

Meeting Presentation: Presented in part at the American Society of Clinical Oncology annual meeting; June 5, 2023; Chicago, Illinois.

Data Sharing Statement: See Supplement 2.

Additional Contributions: We thank Nicola Schussler, BS (Information Management Services), Jill S. Dolinsky, MS, and Carolyn Horton, MS (both with Ambry Genetics), Michelle M. Morrow, PhD, MS (GeneDx), Sarah R. Poll, PhD (Invitae), and Brandon Ulm, BS (Myriad Genetics), for their collaboration on the genetic test data linkage to the Surveillance, Epidemiology, and End Results data. The acknowledged contributors were not compensated for their work.

References
1.
Geyer  CE  Jr, Garber  JE, Gelber  RD,  et al; OlympiA Clinical Trial Steering Committee and Investigators.  Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer.   Ann Oncol. 2022;33(12):1250-1268. doi:10.1016/j.annonc.2022.09.159PubMedGoogle ScholarCrossref
2.
Hussain  M, Mateo  J, Fizazi  K,  et al; PROfound Trial Investigators.  Survival with olaparib in metastatic castration-resistant prostate cancer.   N Engl J Med. 2020;383(24):2345-2357. doi:10.1056/NEJMoa2022485PubMedGoogle ScholarCrossref
3.
Domchek  SM, Friebel  TM, Singer  CF,  et al.  Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality.   JAMA. 2010;304(9):967-975. doi:10.1001/jama.2010.1237
ArticlePubMedGoogle ScholarCrossref
4.
Ladabaum  U, Wang  G, Terdiman  J,  et al.  Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis.   Ann Intern Med. 2011;155(2):69-79. doi:10.7326/0003-4819-155-2-201107190-00002PubMedGoogle ScholarCrossref
5.
National Comprehensive Cancer Network. Genetic/familial high risk assessment: breast, ovarian and pancreatic: version 3. Published February 13, 2023. Accessed March 19, 2023. https://www.nccn.org
6.
National Comprehensive Cancer Network. Genetic/familial high-risk assessment: colorectal: version 2. Published December 7, 2022. Accessed March 19, 2023. https://www.nccn.org
7.
National Comprehensive Cancer Network. Prostate cancer early detection: version 1. Published January 9, 2023. Accessed March 19, 2023. https://www.nccn.org
8.
Kurian  AW, Ward  KC, Howlader  N,  et al.  Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients.   J Clin Oncol. 2019;37(15):1305-1315. doi:10.1200/JCO.18.01854PubMedGoogle ScholarCrossref
9.
Kurian  AW, Griffith  KA, Hamilton  AS,  et al.  Genetic testing and counseling among patients with newly diagnosed breast cancer.   JAMA. 2017;317(5):531-534. doi:10.1001/jama.2016.16918
ArticlePubMedGoogle ScholarCrossref
10.
US Department of Health and Human Services. Guidance regarding methods for de-identification of protected health information in accordance with the Health Insurance Portability and Accountability Act (HIPAA) privacy rule. Accessed March 19, 2023. https://www.hhs.gov/hipaa/for-professionals/privacy/special-topics/de-identification/index.html#safeharborguidance
11.
Kalia  SS, Adelman  K, Bale  SJ,  et al.  Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics.   Genet Med. 2017;19(2):249-255. doi:10.1038/gim.2016.190PubMedGoogle ScholarCrossref
12.
North American Association of Central Cancer Registries. Data dictionary. Accessed March 19, 2023. http://datadictionary.naaccr.org/default.aspx?c=10&Version=23#220
13.
Sorscher  S, LoPiccolo  J, Chen  E,  et al.  Landscape of pathogenic germline variants in patients with lung cancer.   J Clin Oncol. 2022;40(suppl 36):388570. doi:10.1200/JCO.2022.40.36_suppl.388570Google ScholarCrossref
14.
Maxwell  KN, Wenz  BM, Kulkarni  A,  et al.  Mutation rates in cancer susceptibility genes in patients with breast cancer with multiple primary cancers.   JCO Precision Oncol. 2020;4:916-925. doi:10.1200/PO.19.00301Google ScholarCrossref
15.
Daly  MB, Pilarski  R, Axilbund  JE,  et al; National Comprehensive Cancer Network.  Genetic/familial high-risk assessment: breast and ovarian, version 1.2014.   J Natl Compr Canc Netw. 2014;12(9):1326-1338. doi:10.6004/jnccn.2014.0127PubMedGoogle ScholarCrossref
16.
McCarthy  AM, Bristol  M, Domchek  SM,  et al.  Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer.   J Clin Oncol. 2016;34(22):2610-2618. doi:10.1200/JCO.2015.66.0019PubMedGoogle ScholarCrossref
17.
Dharwadkar  P, Greenan  G, Stoffel  EM,  et al.  Racial and ethnic disparities in germline genetic testing of patients with young-onset colorectal cancer.   Clin Gastroenterol Hepatol. 2022;20(2):353-361.e3. doi:10.1016/j.cgh.2020.12.025PubMedGoogle ScholarCrossref
18.
Reid  S, Spalluto  LB, Pal  T.  Strategies to enhance identification of hereditary breast cancer gene carriers.   Expert Rev Mol Diagn. 2020;20(9):861-865. doi:10.1080/14737159.2020.1816829PubMedGoogle ScholarCrossref
19.
Lin  J, Sharaf  RN, Saganty  R,  et al.  Achieving universal genetic assessment for women with ovarian cancer: are we there yet? a systematic review and meta-analysis.   Gynecol Oncol. 2021;162(2):506-516. doi:10.1016/j.ygyno.2021.05.011PubMedGoogle ScholarCrossref
20.
Buchanan  AH, Lester Kirchner  H, Schwartz  MLB,  et al.  Clinical outcomes of a genomic screening program for actionable genetic conditions.   Genet Med. 2020;22(11):1874-1882. doi:10.1038/s41436-020-0876-4PubMedGoogle ScholarCrossref
21.
Risch  HA, McLaughlin  JR, Cole  DE,  et al.  Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada.   J Natl Cancer Inst. 2006;98(23):1694-1706.Google ScholarCrossref
22.
Stadler  ZK, Maio  A, Chakravarty  D,  et al.  Therapeutic implications of germline testing in patients with advanced cancers.   J Clin Oncol. 2021;39(24):2698-2709. doi:10.1200/JCO.20.03661PubMedGoogle ScholarCrossref
23.
Offit  K, Tkachuk  KA, Stadler  ZK,  et al.  Cascading after peridiagnostic cancer genetic testing: an alternative to population-based screening.   J Clin Oncol. 2020;38(13):1398-1408. doi:10.1200/JCO.19.02010PubMedGoogle ScholarCrossref
24.
Kurian  AW, Katz  SJ.  Emerging opportunity of cascade genetic testing for population-wide cancer prevention and control.   J Clin Oncol. 2020;38(13):1371-1374. doi:10.1200/JCO.20.00140PubMedGoogle ScholarCrossref
25.
Kim  G, Ison  G, McKee  AE,  et al.  FDA approval summary: olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy.   Clin Cancer Res. 2015;21(19):4257-4261. doi:10.1158/1078-0432.CCR-15-0887PubMedGoogle ScholarCrossref
26.
Robson  M, Im  SA, Senkus  E,  et al.  Olaparib for metastatic breast cancer in patients with a germline BRCA mutation.   N Engl J Med. 2017;377(6):523-533. doi:10.1056/NEJMoa1706450PubMedGoogle ScholarCrossref
27.
Golan  T, Hammel  P, Reni  M,  et al.  Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.   N Engl J Med. 2019;381(4):317-327. doi:10.1056/NEJMoa1903387PubMedGoogle ScholarCrossref
28.
Domchek  S, Brower  J, Symecko  H,  et al.  Uptake of oophorectomy in women with findings on multigene panel testing: results from the Prospective Registry of Multiplex Testing (PROMPT).   J Clin Oncol. 2020;38(1508). doi:10.1200/JCO.2020.38.15_suppl.1508Google ScholarCrossref
29.
Kurian  AW, Li  Y, Hamilton  AS,  et al.  Gaps in incorporating germline genetic testing into treatment decision-making for early-stage breast cancer.   J Clin Oncol. 2017;35(20):2232-2239. doi:10.1200/JCO.2016.71.6480PubMedGoogle ScholarCrossref
30.
Manrai  AK, Funke  BH, Rehm  HL,  et al.  Genetic misdiagnoses and the potential for health disparities.   N Engl J Med. 2016;375(7):655-665. doi:10.1056/NEJMsa1507092PubMedGoogle ScholarCrossref

 


Plaats een reactie ...

Reageer op "Genetisch onderzoek via Germline testen (kiembaan testen) werd in periode 2013 tot 2019 in Georgie en Californie bij slechts 7 procent gedaan onder 1 369 602 patienten met twee jaar kanker."


Gerelateerde artikelen
 

Gerelateerde artikelen

6 nieuwe doorbraken in de >> 90 procent van mensen met >> Antibiotica binnen een maand >> Anti-PD medicijnen zoals nivolumab, >> Bacterien in uitzaaiingen >> Behandelen van kanker verschuift >> Biomarkers zoals PD-L1, CD163+ >> Bloedtest, uitgevoerd op in >> CHRISPR-CAS9 infuus blijkt >> De biologische processen waarom >>