Aan dit artikel is enkele uren gewerkt. Beoordelen, opzoeken relevante informatie, uitleggen, vertalen en plaatsen op de website. Mocht u ons willen ondersteunen om kanker-actueel online te houden zodat we meer van dit soort artikelen kunnen bijven publiceren dan kunt u ons helpen via donaties: https://kanker-actueel.nl/NL/donaties.html of doneer al of niet anoniem op - rekeningnummer NL79 RABO 0372931138 t.n.v. Stichting Gezondheid Actueel Terneuzen.

En als donateur kunt u ook korting krijgen bij verschillende bedrijven dus voor allemaal een win win situatie: 

https://kanker-actueel.nl/NL/voordelen-van-ops-lidmaatschap-op-een-rijtje-gezet-inclusief-hoe-het-kookboek-en-de-recepten-op-basis-van-uitgangspunten-van-houtsmullerdieet-te-downloaden-enof-in-te-zien.html

26 september 2017:J Clin Invest. 2016 Jun 1; 126(6): 2334–2340. 

De laatste jaren worden veel studies gepubliceerd waarin kankerpatiënten met veel verschillende vormen van kanker alsnog goed reageren op immuuntherapie met een anti-PD medicijn, zoals de inmiddels voor sommige vormen van kanker goedgekeurde pembrolizumab, nivolumab, atezolizumab, avelumab enz.. En wie zoekt in clinical trials ziet dat er nog tientallen andere vergelijkbare medicijnen in onderzoek zijn, allemaal meestal in naam eindigend op......mab.

Deze vormen van immuuntherapie met zogeheten antilichamen zijn gericht op het zogeheten immune checkpoint receptor programmed cell death protein 1 (PD-1). Deze receptor (P1-ligand) zorgt ervoor dat er geen apoptose - zelfdoding plaatsvindt van beschadigde kankercellen of als cellen hun werk hebben verricht, die daardoor uit kunnen groeien tot tumoren want ze blijven maar delen. De immuuntherapie met anti-PD medicijnen schakelt die receptoren (PD-1 ligand) als het ware weer in zodat het immuunsysteem de beschadigde of uitgewerkte cellen kan vernietigen / verwijderen.

Uit studies blijkt dat als deze vorm van immuuntherapie aanslaat er langdurige complete remissies kunnen ontstaan met vaak ook echt genezing. Echter een anti-PD-1 therapie heeft niet bij alle patiënten een goed en volledig effect en kan soms ook tot nadelige bijwerkingen leiden. De factoren die bepalen waarom patiënten gevoelig of juist resistent zijn voor een anti-PD aanpak, worden nog niet helemaal begrepen. Maar wordt wel steeds verder via genomische profilering - receptoren en DNA mutatie onderzoek - onderzocht en de onderzoekers komen steeds verder daarmee.

Bv. in deze studie, gepresenteerd op ESMO 2016: Mutations in the POLE proofreading domain identifiy a subset of colorectal cancers that have enhanced immunogenicity blijkt dat ook andere mutaties een prognose kunnen geven op aanslaan of niet. En vooral dat deze darmkankerpatiënten langere ziektevrije tijd en overall overleving hadden. Onder grafiek andere studie bij darmkanker en twee casestudies van vrouwen met darmkanker en buikvliestumoren met bepaalde mutaties.

pole mutatie bij darmkanker

Interessant is bv. dat een andere mutatie, de POLE mutatie genoemd (DNA polymerase epsilon), een belangrijk inzicht kan geven in het eventueel wel of niet reageren op een anti-PD behandeling.

Zo werd onlangs deze studie gepresenteerd: Immunotherapy for Colorectal Cancer waarin wordt beschreven welke mutaties een rol spelen bij immuuntherapie met anti-PD medicijnen.  Op dit moment wordt de MSI-H bij darmkanker gezien als een voorspeller voor aanslaan van immuuntherapie met anti-PD medicijnen (checkpointremmers) maar er zijn er dus meer:

Uit dit studierapport: The majority of colorectal cancers demonstrate activation of the wnt/B-catenin pathway, in part due to inactivation of the tumor suppressor gene, APC. Relevant to therapeutic targeting, in metastatic disease RAS (KRAS or NRAS), mutations are seen in over 50% of patients, with BRAF mutations seen in 5–10% [3,4]. Additional emerging targets include HER-2 amplifications, seen in 2–5% of all colorectal cancers [5]. ............

A subset of colorectal cancers possesses markedly elevated mutational rates. Predominantly, these tumors are characterized by dysfunction of the mismatch repair genes (microsatellite high or MSI-H). MSI-H tumors make up a minority of colorectal cancers, with decreasing frequency in more advanced stage disease. The prevalence of MSI-H in stage II, III and IV colorectal cancers stands at 22%, 12%, and 3%, respectively [7,8]. A small fraction of hyper-mutated tumors possesses polymerase mutations, specifically within the catalytic domain of DNA polymerase epsilon (POLE) or delta (POLD1). These hypermutated tumors are of great relevance in our current understanding of colorectal cancer subtyping and the role of immunotherapy.

Hier een overzicht van enkele belangrijke studies van afgelopen jaren bij darmkanker met bepaalde mutaties van immuuntherapie met anti-PD medicijnen. (Tekst gaat verder onder grafiek)

TABLE 1:
Key immunotherapy trials in metastatic colorectal cancer (CRC).

Drug(s)TargetPopulationPatientsResponse RateIdentifier
Trials for MSI-H CRC
Pembrolizumab PD-1 Refractory MSI-H CRC 25 57% Le et al. [30]
Nivolumab Nivolumab + Ipilimumab PD-1 Refractory MSI-H CRC 47 26% NCT02060188 [31]
PD-1 + CTLA-4 Refractory MSI-H CRC 30 33%
Trials for MSS CRC
Pembrolizumab PD-1 Refractory MSS CRC 28 0% Le et al. [30]
Nivolumab + Ipilimumab PD-1 + CTLA-4 Refractory MSS CRC 20 5% NCT02060188 [31]
Trials of Various CRC Sub-Types
Tremelimumab CTLA-4 Refractory CRC 49 2% Chung et al. [28]
Nivolumab PD-1 Refractory CRC 19 0% Topalian et al. [32]
BMS-936559 PD-L1 Refractory CRC 18 0% Brahmer et al. [33]
Atezolizumab + Bevacizumab PD-L1 Refractory CRC 14 7% NCT01633970 [34]
Atezolizumab + FOLFOX/bev Metastatic CRC
(70% first line)
30 40% (total)
48% (first-line)
Atezolizumab + Cobimetinib PD-L1 MEK Refractory CRC (30% MSS, 70% unknown) 23 17% (3 MSS, 1 unknown) NCT01988896 [35]

Op ESMO 2017 werd een studie gepresenteerd waarin onderzoekers een vrouw met een geschiedenis van kanker met buikvliestumoren analyseerden. Zij reageerde uiteindelijk na vele chemokuren heel goed op immuuntherapie met het anti-PD-1 medicijn pembrolizumab. Een analyse van de Cancer Genome Atlas (TCGA) liet zien dat de aanwezigheid van een POLE mutatie gerelateerd bleek aan een verhoogde expressie van verschillende checkpoint controle genen. Samen tonen deze gegevens aan dat tumoren die POLE-mutaties bevatten, goede kandidaten zijn voor immuuntherapie met anti-PD medicijnen.

Het volledige studierapport van deze vrouw, een casestudie: Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer  is gratis in te zien. Onderaan dit artikel het abstract plus referentielijst.

Een ander voorbeeld van een vrouw met gevorderde darmkanker met een POLE mutatie die uitstekend reageerde is dit studierapport: Exceptional Chemotherapy Response in Metastatic Colorectal Cancer Associated With Hyper-Indel–Hypermutated Cancer Genome and Comutation of POLD1 and MLH1  dat ook gratis is in te zien. Abstract eveneens onderaan dit artikel.

POLE mutatie

Hier de abstracten van eerder genoemde studies met referentielijsten enz.

Here, we review the contemporary understanding of the immune and molecular landscape in colorectal cancer and discuss ongoing clinical trials evaluating novel combination regimens based on immune checkpoint inhibitors.

Cancers (Basel). 2017 May; 9(5): 50.
Published online 2017 May 11. doi:  10.3390/cancers9050050
PMCID: PMC5447960

Immunotherapy for Colorectal Cancer

Vita Golubovskaya, Academic Editor

Abstract

The recent success of anti-PD1 drugs in metastatic colorectal cancer patients with mismatch repair deficiency generated overwhelming enthusiasm for immunotherapy in the disease. However, patients with mismatch repair deficient colorectal cancer represent only a small subset of the metastatic population. Current research focuses on advancing immunotherapy to earlier stages of the disease including adjuvant and first-line metastatic settings, and on inducing sensitivity to immune checkpoint inhibitor therapy through a combinatorial approach. Here, we review the contemporary understanding of the immune and molecular landscape in colorectal cancer and discuss ongoing clinical trials evaluating novel combination regimens based on immune checkpoint inhibitors.

5. Conclusions

The American Society of Clinical Oncology (ASCO) declared Immunotherapy to be the 2016 Clinical Cancer Advance of the Year. In 2017, the advance of the year has already been announced to be Immunotherapy 2.0. Despite years of frustration, we are beginning to see some success through the use of the immunotherapy approach in colorectal cancer, namely PD-1 inhibition in MSI-H cancers. However, the successful targeting of MSS cancers and non-hypermutated tumors appears to be not too far off on the horizon. MEK and PD-L1 combinations are being rigorously tested, multiple agents and combinations are in development and multiple companies have shifted their focus and investments toward immunotherapeutics. Neglected in this review, but also of note, a case of remarkable success has been witnessed utilizing adoptive cell therapy via tumor infiltrating lymphocytes (TILs) in colorectal cancer [52]. Thus, cancer immunotherapy strategies appear to be moving full speed ahead. Despite the knowledge that many further failures lie in our paths, reason for great optimism remains.

Conflicts of Interest

Patrick M. Boland has received research funding from Merck. Wen Wee Ma has no conflicts of interest to declare.

References

1. Vogelstein B., Fearon E.R., Hamilton S.R., Kern S.E., Preisinger A.C., Leppert M., Nakamura Y., White R., Smits A.M., Bos J.L. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 1988;319:525–532. doi: 10.1056/NEJM198809013190901. [PubMed] [Cross Ref]
2. Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–337. [PMC free article] [PubMed]
3. Peeters M., Kafatos G., Taylor A., Gastanaga V.M., Oliner K.S., Hechmati G., Terwey J.H., van Krieken J.H. Prevalence of RAS mutations and individual variation patterns among patients with metastatic colorectal cancer: A pooled analysis of randomised controlled trials. Eur. J. Cancer. 2015;51:1704–1713. doi: 10.1016/j.ejca.2015.05.017. [PubMed] [Cross Ref]
4. Cremolini C., Loupakis F., Antoniotti C., Lupi C., Sensi E., Lonardi S., Mezi S., Tomasello G., Ronzoni M., Zaniboni A., et al. FOLFOXIRI plus bevacizumab versus FOLFIRI plus bevacizumab as first-line treatment of patients with metastatic colorectal cancer: Updated overall survival and molecular subgroup analyses of the open-label, phase 3 TRIBE study. Lancet Oncol. 2015;16:1306–1315. doi: 10.1016/S1470-2045(15)00122-9. [PubMed] [Cross Ref]
5. Richman S.D., Southward K., Chambers P., Cross D., Barrett J., Hemmings G., Taylor M., Wood H., Hutchins G., Foster J.M., et al. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: Analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials. J. Pathol. 2016;238:562–570. doi: 10.1002/path.4679. [PMC free article] [PubMed] [Cross Ref]
6. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Borresen-Dale A.L., et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477. [PMC free article] [PubMed] [Cross Ref]
7. Klingbiel D., Saridaki Z., Roth A.D., Bosman F.T., Delorenzi M., Tejpar S. Prognosis of stage II and III colon cancer treated with adjuvant 5-fluorouracil or FOLFIRI in relation to microsatellite status: Results of the PETACC-3 trial. Ann. Oncol. 2015;26:126–132. doi: 10.1093/annonc/mdu499. [PubMed] [Cross Ref]
8. Koopman M., Kortman G.A., Mekenkamp L., Ligtenberg M.J., Hoogerbrugge N., Antonini N.F., Punt C.J., van Krieken J.H. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer. 2009;100:266–273. doi: 10.1038/sj.bjc.6604867. [PMC free article] [PubMed] [Cross Ref]
9. Guinney J., Dienstmann R., Wang X., de Reynies A., Schlicker A., Soneson C., Marisa L., Roepman P., Nyamundanda G., Angelino P., et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015;21:1350–1356. doi: 10.1038/nm.3967. [PMC free article] [PubMed] [Cross Ref]
10. Trinh A., Trumpi K., De Sousa E.M.F., Wang X., de Jong J.H., Fessler E., Kuppen P.J., Reimers M.S., Swets M., Koopman M., et al. Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. Clin. Cancer Res. 2017;23:387–398. doi: 10.1158/1078-0432.CCR-16-0680. [PubMed] [Cross Ref]
11. Becht E., de Reynies A., Giraldo N.A., Pilati C., Buttard B., Lacroix L., Selves J., Sautes-Fridman C., Laurent-Puig P., Fridman W.H. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin. Cancer Res. 2016;22:4057–4066. doi: 10.1158/1078-0432.CCR-15-2879. [PubMed] [Cross Ref]
12. Giardiello F.M., Allen J.I., Axilbund J.E., Boland C.R., Burke C.A., Burt R.W., Church J.M., Dominitz J.A., Johnson D.A., Kaltenbach T., et al. Guidelines on genetic evaluation and management of Lynch syndrome: A consensus statement by the US Multi-Society Task Force on colorectal cancer. Gastroenterology. 2014;147:502–526. doi: 10.1053/j.gastro.2014.04.001. [PubMed] [Cross Ref]
13. Jenkins M.A., Hayashi S., O’Shea A.M., Burgart L.J., Smyrk T.C., Shimizu D., Waring P.M., Ruszkiewicz A.R., Pollett A.F., Redston M., et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: A population-based study. Gastroenterology. 2007;133:48–56. doi: 10.1053/j.gastro.2007.04.044. [PMC free article] [PubMed] [Cross Ref]
14. Yurgelun M.B., Kulke M.H., Fuchs C.S., Allen B.A., Uno H., Hornick J.L., Ukaegbu C.I., Brais L.K., McNamara P.G., Mayer R.J., et al. Cancer Susceptibility Gene Mutations in Individuals With Colorectal Cancer. J. Clin. Oncol. 2017;35:1086–1095. doi: 10.1200/JCO.2016.71.0012. [PMC free article] [PubMed] [Cross Ref]
15. Poynter J.N., Siegmund K.D., Weisenberger D.J., Long T.I., Thibodeau S.N., Lindor N., Young J., Jenkins M.A., Hopper J.L., Baron J.A., et al. Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening. Cancer Epidemiol. Biomark. Prev. 2008;17:3208–3215. doi: 10.1158/1055-9965.EPI-08-0512. [PMC free article] [PubMed] [Cross Ref]
16. Haraldsdottir S., Hampel H., Tomsic J., Frankel W.L., Pearlman R., de la Chapelle A., Pritchard C.C. Colon and endometrial cancers with mismatch repair deficiency can arise from somatic, rather than germline, mutations. Gastroenterology. 2014;147:1308–1316. doi: 10.1053/j.gastro.2014.08.041. [PMC free article] [PubMed] [Cross Ref]
17. Popat S., Hubner R., Houlston R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 2005;23:609–618. doi: 10.1200/JCO.2005.01.086. [PubMed] [Cross Ref]
18. Boland C.R., Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–2087. doi: 10.1053/j.gastro.2009.12.064. [PMC free article] [PubMed] [Cross Ref]
19. Giannakis M., Mu X.J., Shukla S.A., Qian Z.R., Cohen O., Nishihara R., Bahl S., Cao Y., Amin-Mansour A., Yamauchi M., et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Rep. 2016;15:857–865. doi: 10.1016/j.celrep.2016.03.075. [PMC free article] [PubMed] [Cross Ref]
20. Lipson E.J., Sharfman W.H., Drake C.G., Wollner I., Taube J.M., Anders R.A., Xu H., Yao S., Pons A., Chen L., et al. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin. Cancer Res. 2013;19:462–468. doi: 10.1158/1078-0432.CCR-12-2625. [PMC free article] [PubMed] [Cross Ref]
21. Palles C., Cazier J.B., Howarth K.M., Domingo E., Jones A.M., Broderick P., Kemp Z., Spain S.L., Guarino E., Salguero I., et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 2013;45:136–144. doi: 10.1038/ng.2503. [PMC free article] [PubMed] [Cross Ref]
22. Bellido F., Pineda M., Aiza G., Valdes-Mas R., Navarro M., Puente D.A., Pons T., Gonzalez S., Iglesias S., Darder E., et al. POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: Review of reported cases and recommendations for genetic testing and surveillance. Genet. Med. 2016;18:325–332. doi: 10.1038/gim.2015.75. [PMC free article] [PubMed] [Cross Ref]
23. Stadler Z.K., Battaglin F., Middha S., Hechtman J.F., Tran C., Cercek A., Yaeger R., Segal N.H., Varghese A.M., Reidy-Lagunes D.L., et al. Reliable Detection of Mismatch Repair Deficiency in Colorectal Cancers Using Mutational Load in Next-Generation Sequencing Panels. J. Clin. Oncol. 2016;34:2141–2147. doi: 10.1200/JCO.2015.65.1067. [PMC free article] [PubMed] [Cross Ref]
24. Spier I., Holzapfel S., Altmuller J., Zhao B., Horpaopan S., Vogt S., Chen S., Morak M., Raeder S., Kayser K., et al. Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas. Int. J. Cancer. 2015;137:320–331. doi: 10.1002/ijc.29396. [PubMed] [Cross Ref]
25. Stenzinger A., Pfarr N., Endris V., Penzel R., Jansen L., Wolf T., Herpel E., Warth A., Klauschen F., Kloor M., et al. Mutations in POLE and survival of colorectal cancer patients—Link to disease stage and treatment. Cancer Med. 2014;3:1527–1538. doi: 10.1002/cam4.305. [PMC free article] [PubMed] [Cross Ref]
26. Mehnert J.M., Panda A., Zhong H., Hirshfield K., Damare S., Lane K., Sokol L., Stein M.N., Rodriguez-Rodriquez L., Kaufman H.L., et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J. Clin. Investig. 2016;126:2334–2340. doi: 10.1172/JCI84940. [PMC free article] [PubMed] [Cross Ref]
27. Gong J., Wang C., Lee P.P., Chu P., Fakih M. Response to PD-1 Blockade in Microsatellite Stable Metastatic Colorectal Cancer Harboring a POLE Mutation. J. Natl. Compr. Cancer Netw. 2017;15:142–147. [PubMed]
28. Chung K.Y., Gore I., Fong L., Venook A., Beck S.B., Dorazio P., Criscitiello P.J., Healey D.I., Huang B., Gomez-Navarro J., et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol. 2010;28:3485–3490. doi: 10.1200/JCO.2010.28.3994. [PubMed] [Cross Ref]
29. Brahmer J.R., Drake C.G., Wollner I., Powderly J.D., Picus J., Sharfman W.H., Stankevich E., Pons A., Salay T.M., McMiller T.L., et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 2010;28:3167–3175. doi: 10.1200/JCO.2009.26.7609. [PMC free article] [PubMed] [Cross Ref]
30. Le D.T., Uram J.N., Wang H., Bartlett B.R., Kemberling H., Eyring A.D., Skora A.D., Luber B.S., Azad N.S., Laheru D., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015;372:2509–2520. doi: 10.1056/NEJMoa1500596. [PMC free article] [PubMed] [Cross Ref]
31. Overman M.J., Kopetz S., McDermott R.S., Leach J., Lonardi S., Lenz H.-J., Morse M.A., Desai J., Hill A., Axelson M.D., et al. Nivolumab ± ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results. J. Clin. Oncol. 2016;34:3501.
32. Topalian S.L., Hodi F.S., Brahmer J.R., Gettinger S.N., Smith D.C., McDermott D.F., Powderly J.D., Carvajal R.D., Sosman J.A., Atkins M.B., et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 2012;366:2443–2454. doi: 10.1056/NEJMoa1200690. [PMC free article] [PubMed] [Cross Ref]
33. Brahmer J.R., Tykodi S.S., Chow L.Q., Hwu W.J., Topalian S.L., Hwu P., Drake C.G., Camacho L.H., Kauh J., Odunsi K., et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 2012;366:2455–2465. doi: 10.1056/NEJMoa1200694. [PMC free article] [PubMed] [Cross Ref]
34. Bendell J.C., Powderly J.D., Lieu C.H., Eckhardt S.G., Hurwitz H., Hochster H.S., Murphy J.E., Funke R.P., Rossi C., Wallin J., et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with bevacizumab (bev) and/or FOLFOX in patients (pts) with metastatic colorectal cancer (mCRC) J. Clin. Oncol. 2015;33(Suppl. S3):704. doi: 10.1200/jco.2015.33.3_suppl.704. [Cross Ref]
35. Bendell J.C., Kim T.W., Goh B.C., Wallin J., Oh D.-Y., Han S.-W., Carrie B., Lee C.B., Hellmann M.D., Desai J., et al. Clinical activity and safety of cobimetinib (cobi) and atezolizumab in colorectal cancer (CRC) J. Clin. Oncol. 2016;34:3502.
36. Wolchok J.D., Hoos A., O’Day S., Weber J.S., Hamid O., Lebbe C., Maio M., Binder M., Bohnsack O., Nichol G., et al. Guidelines for the evaluation of immune therapy activity in solid tumors: Immune-related response criteria. Clin. Cancer Res. 2009;15:7412–7420. doi: 10.1158/1078-0432.CCR-09-1624. [PubMed] [Cross Ref]
37. Overman M.J., Lonardi S., Leone F., McDermott R.S., Morse M.A., Wong K.Y.M., Neyns B., Leach J.L., Alfonso P.G., Lee J.J., et al. Nivolumab in patients with DNA mismatch repair deficient/microsatellite instability high metastatic colorectal cancer: Update from CheckMate 142. J. Clin. Oncol. 2017;35(Suppl. S4):519. doi: 10.1200/JCO.2017.35.4_suppl.519. [Cross Ref]
38. Liu L., Mayes P.A., Eastman S., Shi H., Yadavilli S., Zhang T., Yang J., Seestaller-Wehr L., Zhang S.Y., Hopson C., et al. The BRAF and MEK Inhibitors Dabrafenib and Trametinib: Effects on Immune Function and in Combination with Immunomodulatory Antibodies Targeting PD-1, PD-L1, and CTLA-4. Clin. Cancer Res. 2015;21:1639–1651. doi: 10.1158/1078-0432.CCR-14-2339. [PubMed] [Cross Ref]
39. Loi S., Dushyanthen S., Beavis P.A., Salgado R., Denkert C., Savas P., Combs S., Rimm D.L., Giltnane J.M., Estrada M.V., et al. RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clin. Cancer Res. 2016;22:1499–1509. doi: 10.1158/1078-0432.CCR-15-1125. [PMC free article] [PubMed] [Cross Ref]
40. Tesniere A., Schlemmer F., Boige V., Kepp O., Martins I., iringhelli F., Aymeric L., Michaud M., Apetoh L., Barault L., et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–491. doi: 10.1038/onc.2009.356. [PubMed] [Cross Ref]
41. Hodi F.S., Lawrence D., Lezcano C., Wu X., Zhou J., Sasada T., Zeng W., Giobbie-Hurder A., Atkins M.B., Ibrahim N., et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol. Res. 2014;2:632–642. doi: 10.1158/2326-6066.CIR-14-0053. [PMC free article] [PubMed] [Cross Ref]
42. Limagne E., Euvrard R., Thibaudin M., Rebe C., Derangere V., Chevriaux A., Boidot R., Vegran F., Bonnefoy N., Vincent J., et al. Accumulation of MDSC and Th17 Cells in Patients with Metastatic Colorectal Cancer Predicts the Efficacy of a FOLFOX-Bevacizumab Drug Treatment Regimen. Cancer Res. 2016;76:5241–5252. doi: 10.1158/0008-5472.CAN-15-3164. [PubMed] [Cross Ref]
43. Park S.S., Dong H., Liu X., Harrington S.M., Krco C.J., Grams M.P., Mansfield A.S., Furutani K.M., Olivier K.R., Kwon E.D., et al. PD-1 Restrains Radiotherapy-Induced Abscopal Effect. Cancer Immunol. Res. 2015;3:610–619. doi: 10.1158/2326-6066.CIR-14-0138. [PMC free article] [PubMed] [Cross Ref]
44. Duffy A.G., Makarova-Rusher O.V., Fioravanti S., Walker M., Venkatesan A., Abi-Jaoudeh N., Wood B.J., Citrin D.E., Greten T.F., National Cancer Institute at the National Institutes of Health et al. A pilot study of AMP-224, a PD-L2 Fc fusion protein, in combination with stereotactic body radiation therapy (SBRT) in patients with metastatic colorectal cancer. J. Clin. Oncol. 2016;34(Suppl. S4):560. doi: 10.1200/jco.2016.34.4_suppl.560. [Cross Ref]
45. Selvan S.R., Dowling J.P., Kelly W.K., Lin J. Indoleamine 2,3-dioxygenase (IDO): Biology and Target in Cancer Immunotherapies. Curr. Cancer Drug Targets. 2016;16:755–764. doi: 10.2174/1568009615666151030102250. [PubMed] [Cross Ref]
46. Brandacher G., Perathoner A., Ladurner R., Schneeberger S., Obrist P., Winkler C., Werner E.R., Werner-Felmayer G., Weiss H.G., Gobel G., et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: Effect on tumor-infiltrating T cells. Clin. Cancer Res. 2006;12:1144–1151. doi: 10.1158/1078-0432.CCR-05-1966. [PubMed] [Cross Ref]
47. Beatty G.L., O’Dwyer P.J., Clark J., Shi J.G., Bowman K.J., Scherle P., Newton R.C., Schaub R., Maleski J., Leopold L., et al. First-in-Human Phase 1 Study of the Oral Inhibitor of Indoleamine 2,3-dioxygenase-1 Epacadostat (INCB024360) in Patients With Advanced Solid Malignancies. Clin. Cancer Res. 2017 doi: 10.1158/1078-0432.CCR-16-2272. [PMC free article] [PubMed] [Cross Ref]
48. Gangadhar T.C., Hamid O., Smith C.D., Bauer T.M., Wasser J.S., Olszanski A.J., Luke J.J., Balmanoukian A.S., Kaufman D.R., Zhao Y., et al. Epacadostat plus pembrolizumab in patients with advanced melanoma and select solid tumors: Updated phase 1 results from ECHO-202/KEYNOTE-037. Ann. Oncol. 2016;27(Suppl. S6):1110PD. doi: 10.1093/annonc/mdw379.06. [Cross Ref]
49. Zhu Y., Knolhoff B.L., Meyer M.A., Nywening T.M., West B.L., Luo J., Wang-Gillam A., Goedegebuure S.P., Linehan D.C., DeNardo D.G. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057–5069. doi: 10.1158/0008-5472.CAN-13-3723. [PMC free article] [PubMed] [Cross Ref]
50. Srivastava R.M., Lee S.C., Andrade Filho P.A., Lord C.A., Jie H.B., Davidson H.C., Lopez-Albaitero A., Gibson S.P., Gooding W.E., Ferrone S., et al. Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin. Cancer Res. 2013;19:1858–1872. doi: 10.1158/1078-0432.CCR-12-2426. [PMC free article] [PubMed] [Cross Ref]
51. Van Den Eynde M., Mlecnik B., Machiels J.-P.H., Debetancourt D., Bindea G., Jouret-Mourin A., Sempoux C., Carrasco J., Gigot J.F., Hubert C., et al. Characterization of the immune microenvironment of synchronous primary tumor and liver colorectal metastases. J. Clin. Oncol. 2015;33:3610. doi: 10.1200/jco.2015.33.3_suppl.602. [Cross Ref]
52. Tran E., Robbins P.F., Lu Y.C., Prickett T.D., Gartner J.J., Jia L., Pasetto A., Zheng Z., Ray S., Groh E.M., et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N. Engl. J. Med. 2016;375:2255–2262. doi: 10.1056/NEJMoa1609279. [PMC free article] [PubMed] [Cross Ref]

Articles from Cancers are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

POLE proofreading domain mutations identify a subset of immunogenic colorectal cancers with excellent prognosis. This association underscores the importance of rare biomarkers in precision cancer medicine, but also raises important questions about how to identify and implement them in practice.

Somatic POLE proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study

Enric Domingo, PhD
,
Luke Freeman-Mills, BA
,
Emily Rayner, BSc
,
Mark Glaire, MBBS
,
Sarah Briggs, MBBS
,
Louis Vermeulen, MD
,
Evelyn Fessler, MSc
,
Prof Jan Paul Medema, PhD
,
Arnoud Boot, MSc
,
Prof Hans Morreau, PhD
,
Tom van Wezel, PhD
,
Gerrit-Jan Liefers, MD
,
Prof Ragnhild A Lothe, PhD
,
Stine A Danielsen, PhD
,
Anita Sveen, PhD
,
Prof Arild Nesbakken, MD
,
Prof Inti Zlobec, MD
,
Prof Alessandro Lugli, MD
,
Viktor H Koelzer, MD
,
Martin D Berger, MD
,
Sergi Castellví-Bel, PhD
,
Jenifer Muñoz, MSc
, The Epicolon consortium*,
Marco de Bruyn, PhD
,
Prof Hans W Nijman, MD
,
Prof Marco Novelli, PhD
,
Kay Lawson, MBBS
,
Dahmane Oukrif, MSc
,
Eleni Frangou, MSc
,
Peter Dutton, MSc
,
Sabine Tejpar, MD
,
Mauro Delorenzi, PhD
,
Prof Rachel Kerr, MBBS
,
Prof David Kerr, MBChB
,
Prof Ian Tomlinson, PhD
,
Dr David N Church, DPhil,'Correspondence information about the author Dr David N Church
*List of Epicolon investigators is provided in the appendix
Contributed equally
Show all authors

Summary

Background

Precision cancer medicine depends on defining distinct tumour subgroups using biomarkers that may occur at very modest frequencies. One such subgroup comprises patients with exceptionally mutated (ultramutated) cancers caused by mutations that impair DNA polymerase epsilon (POLE) proofreading.

Methods

We examined the association of POLE proofreading domain mutation with clinicopathological variables and immune response in colorectal cancers from clinical trials (VICTOR, QUASAR2, and PETACC-3) and colorectal cancer cohorts (Leiden University Medical Centre 1 and 2, Oslo 1 and 2, Bern, AMC-AJCC-II, and Epicolon-1). We subsequently investigated its association with prognosis in stage II/III colorectal cancer by Cox regression of pooled individual patient data from more than 4500 cases from these studies.

Findings

Pathogenic somatic POLE mutations were detected in 66 (1·0%) of 6517 colorectal cancers, and were mutually exclusive with mismatch repair deficiency (MMR-D) in the 6277 cases for whom both markers were determined (none of 66 vs 833 [13·4%] of 6211; p<0·0001). Compared with cases with wild-type POLE, cases with POLE mutations were younger at diagnosis (median 54·5 years vs 67·2 years; p<0·0001), were more frequently male (50 [75·8%] of 66 vs 3577 [55·5%] of 6445; p=0·0010), more frequently had right-sided tumour location (44 [68·8%] of 64 vs 2463 [39·8%] of 6193; p<0·0001), and were diagnosed at an earlier disease stage (p=0·006, χ2 test for trend). Compared with mismatch repair proficient (MMR-P) POLE wild-type tumours, POLE-mutant colorectal cancers displayed increased CD8+ lymphocyte infiltration and expression of cytotoxic T-cell markers and effector cytokines, similar in extent to that observed in immunogenic MMR-D cancers. Both POLE mutation and MMR-D were associated with significantly reduced risk of recurrence compared with MMR-P colorectal cancers in multivariable analysis (HR 0·34 [95% CI 0·11–0·76]; p=0·0060 and 0·72 [0·60–0·87]; p=0·00035), although the difference between the groups was not significant.

Interpretation

POLE proofreading domain mutations identify a subset of immunogenic colorectal cancers with excellent prognosis. This association underscores the importance of rare biomarkers in precision cancer medicine, but also raises important questions about how to identify and implement them in practice.

Funding

Cancer Research UK, Academy of Medical Sciences, Health Foundation, EU, ERC, NIHR, Wellcome Trust, Dutch Cancer Society, Dutch Digestive Foundation.

Analysis of The Cancer Genome Atlas (TCGA) revealed that the presence of POLE mutation associates with high mutational burden and elevated expression of several immune checkpoint genes. Together, these data suggest that cancers harboring POLE mutations are good candidates for immune checkpoint inhibitor therapy.

J Clin Invest. 2016 Jun 1; 126(6): 2334–2340.
Published online 2016 May 9. doi:  10.1172/JCI84940
PMCID: PMC4887167

Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer

Abstract

Antibodies that target the immune checkpoint receptor programmed cell death protein 1 (PD-1) have resulted in prolonged and beneficial responses toward a variety of human cancers. However, anti–PD-1 therapy in some patients provides no benefit and/or results in adverse side effects. The factors that determine whether patients will be drug sensitive or resistant are not fully understood; therefore, genomic assessment of exceptional responders can provide important insight into patient response. Here, we identified a patient with endometrial cancer who had an exceptional response to the anti–PD-1 antibody pembrolizumab. Clinical grade targeted genomic profiling of a pretreatment tumor sample from this individual identified a mutation in DNA polymerase epsilon (POLE) that associated with an ultramutator phenotype. Analysis of The Cancer Genome Atlas (TCGA) revealed that the presence of POLE mutation associates with high mutational burden and elevated expression of several immune checkpoint genes. Together, these data suggest that cancers harboring POLE mutations are good candidates for immune checkpoint inhibitor therapy.

Reference information:J Clin Invest. 2016;126(6):2334–2340. doi:10.1172/JCI84940.

References

1. Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372(4):320–330. doi: 10.1056/NEJMoa1412082. [PubMed] [Cross Ref]
2. McDermott DF, et al. Survival, durable response, and long-term safety in patients with previously treated advanced renal cell carcinoma receiving nivolumab. J Clin Oncol. 2015;33(18):2013–2030. doi: 10.1200/JCO.2014.58.1041. [PMC free article] [PubMed] [Cross Ref]
3. Gettinger SN, et al. Overall survival and long-term safety of nivolumab (anti-programmed death 1 antibody, BMS-936558, ONO-4538) in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol. 2015;33(18):2004–2012. doi: 10.1200/JCO.2014.58.3708. [PMC free article] [PubMed] [Cross Ref]
4. Rizvi NA, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–265. doi: 10.1016/S1470-2045(15)70054-9. [PubMed] [Cross Ref]
5. Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–319. doi: 10.1056/NEJMoa1411087. [PMC free article] [PubMed] [Cross Ref]
6. Ott PA, et al. Pembrolizumab (MK-3475) in patients (pts) with extensive-stage small cell lung cancer (SCLC): Preliminary safety and efficacy results from KEYNOTE- 028. J Clin Oncol. 2015;33(suppl):
7. Varga A, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with PD-L1 positive advanced ovarian cancer: Interim results from a phase Ib study. J Clin Oncol. 2015;33(suppl):
8. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. doi: 10.1056/NEJMoa1504030. [PubMed] [Cross Ref]
9. Saltz LB. Perspectives on value. Presented at: The Plenary Session of the 2015 American Society of Clinical Oncology Annual Meeting; May 31, 2015; Chicago, Illinois, USA.
10. Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–1030. doi: 10.1200/JCO.2013.53.0105. [PMC free article] [PubMed] [Cross Ref]
11. Rizvi NA, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–128. doi: 10.1126/science.aaa1348. [PMC free article] [PubMed] [Cross Ref]
12. Snyder A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371(23):2189–2199. doi: 10.1056/NEJMoa1406498. [PMC free article] [PubMed] [Cross Ref]
13. Le DT, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–2520. doi: 10.1056/NEJMoa1500596. [PMC free article] [PubMed] [Cross Ref]
14. Van Allen EM, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350(6257):207–211. doi: 10.1126/science.aad0095. [PMC free article] [PubMed] [Cross Ref]
15. Heitzer E, Tomlinson I. Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev. 2014;24:107–113. doi: 10.1016/j.gde.2013.12.005. [PMC free article] [PubMed] [Cross Ref]
16. Hussein YR, et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol. 2015;28(4):505–514. doi: 10.1038/modpathol.2014.143. [PubMed] [Cross Ref]
17. van Gool IC, et al. POLE proofreading mutations elicit an anti-tumor immune response in endometrial cancer. Clin Cancer Res. 2015;21(14):3347–3355. doi: 10.1158/1078-0432.CCR-15-0057. [PMC free article] [PubMed] [Cross Ref]
18. Bellone S, et al. Polymerase epsilon (POLE) ultra-mutated tumors induce robust tumor-specific CD4+ T cell responses in endometrial cancer patients. Gynecol Oncol. 2015;138(1):11–17. doi: 10.1016/j.ygyno.2015.04.027. [PMC free article] [PubMed] [Cross Ref]
19. Howitt BE, et al. Association of POLE-mutated and MSI endometrial cancers with an elevated number of tumor-infiltrating and peritumoral lymphocytes and higher expression of PD-L1. J Clin Oncol. 2015;33(suppl):
20. Kandoth C, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi: 10.1038/nature12113. [PMC free article] [PubMed] [Cross Ref]
21. Garon EB, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–2028. doi: 10.1056/NEJMoa1501824. [PubMed] [Cross Ref]
22. Newman AM, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453–457. doi: 10.1038/nmeth.3337. [PMC free article] [PubMed] [Cross Ref]
23. Billingsley CC, Cohn DE, Mutch DG, Stephens JA, Suarez AA, Goodfellow PJ. Polymerase epsilon (POLE) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. Cancer. 2015;121(3):386–394. doi: 10.1002/cncr.29046. [PMC free article] [PubMed] [Cross Ref]

Articles from The Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

Plaats een reactie ...

Reageer op "POLE mutatie: veel kankerpatienten met erfelijke vormen van kanker hebben naast een P1-ligand een POLE mutatie en reageren goed op immuuntherapie met anti-PD medicijnen - checkpointremmers als pembrolizumab en nivolumab"


Gerelateerde artikelen
 

Gerelateerde artikelen

Immuuntherapie met HER2-gerichte >> Kankermedicijnen geven in >> 6 nieuwe doorbraken in de >> 90 procent van mensen met >> Antibiotica binnen een maand >> Anti-PD medicijnen zoals nivolumab, >> Behandelen van kanker verschuift >> Biomarkers zoals PD-L1, CD163+ >> Bloedtest, uitgevoerd op in >> CHRISPR-CAS9 infuus blijkt >>