5 januari 2021: Veel informatie over de vaccins en de tijdschema's van vaccineren tegen het coronavirus staan op deze website: https://www.rijksoverheid.nl/onderwerpen/coronavirus-vaccinatie
23 november 2020: zie ook dit artikel: 

https://kanker-actueel.nl/oxford-vaccin-azd1222-geeft-60-tot-90-procent-bescherming-tegen-het-coronavirus-covid-19-zegt-producent-astrazeneca-in-een-persbericht.html

Zie ook dit artikel: 

https://kanker-actueel.nl/enkele-vaccins-tegen-het-corona-virus-covid-19-gaan-in-fase-iii-studies-verder-onderzocht-worden-na-goede-resultaten-bij-groepen-mensen.html

23 november 2020: In The Lancet werd deze studie met het AZD1222 vaccin gepubliceerd (abstract in dit artikel): Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial (abstract onderaan artikel)

27 oktober 2020: Bron: Financial Times en The Lancet

Het vaccin tegen Covid-19 dat wordt ontwikkeld door de Universiteit van Oxford, in samenwerking met AstraZeneca, heeft aangetoond beschermende antilichamen en T-cellen op te wekken, ook bij oudere leeftijdsgroepen.

Een vaccin dat wordt beschouwd als een van de eerste vaccins die beschikbaar komen tegen het coronavirus - Covid-19, heeft een sterke immuunrespons aangetoond bij ouderen (55+). Ouderen van boven de 65 jaar zijn de mensen met het hoogste risico op de ziekte, en de laatste resultaten geven hoop dat het vaccin voor deze groep van mensen immuniteit kan geven.

Journalisten van de Financial Times zeggen dat mensen die op de hoogte zijn van de resultaten van zogenaamde immunogeniteitsbloedtesten die zijn uitgevoerd op een subgroep van oudere deelnemers. Zij schrijven dat de bevindingen overeenkomen met gegevens die eerder in juli zijn vrijgegeven en die aantonen dat het vaccin 'robuuste immuunresponsen' genereerde bij een groep gezonde volwassenen tussen 18 en 55 jaar. De eerdere resultaten toonden aan dat het vaccin twee vormen van menselijke immuunrespons bewerkstelligde - het genereren van antilichamen en T-cellen - gedurende ten minste 56 dagen, volgens een analyse gepubliceerd in The Lancet.

In the Lancet is deze studie recent gepubliceerd en interessant: SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates

Afgelopen zondag vertelde arts-wetenschapper Marcel Levi in Buitenhof over de ontwikkeling van verschillende vaccins. Hij is zelf proefpersoon voor het Oxfordvaccin: zie Buitenhof zondag 25 oktober 2020 

Uit Welingelichte Kringen:

“De technologie heeft ons voor het eerst een duidelijk antwoord gegeven. Het vaccin doet wat we er van verlangen en dat is goed nieuws in onze strijd tegen de ziekte”, aldus onderzoeksleider David Matthews in The Guardian.

Sarah Gilbert, hoofd van de testfase, is eveneens optimistisch. “Grote delen van het zogeheten spike-eiwit worden efficiënt aangemaakt. Op die manier wordt een sterke immuunreactie uitgelokt en dat verklaart het succes van het vaccin.”

Naar verwachting zijn de eerste vaccins rond kerst klaar. “Als dat lukt, zouden we op termijn geen mondkapjes meer hoeven te dragen en kunnen stoppen met afstand houden”, stelt Patrick Vallance, wetenschappelijke adviseur van de Britse regering.

In The Financial Times in het artikel over het Oxford vaccin staat een mooi schema hoe een vaccin precies werkt binnen het immuunsysteem met grafieken en uitleg: 

Oxford Covid vaccine trials offer hope for elderly

Hier het abstract van het recente artikel uit the Lancet met interessante referentielijst

SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates

Published:October 13, 2020DOI:https://doi.org/10.1016/S0140-6736(20)32137-1

Summary

Understanding immune responses to severe acute respiratory syndrome coronavirus 2 is crucial to understanding disease pathogenesis and the usefulness of bridge therapies, such as hyperimmune globulin and convalescent human plasma, and to developing vaccines, antivirals, and monoclonal antibodies. A mere 11 months ago, the canvas we call COVID-19 was blank. Scientists around the world have worked collaboratively to fill in this blank canvas. In this Review, we discuss what is currently known about human humoral and cellular immune responses to severe acute respiratory syndrome coronavirus 2 and relate this knowledge to the COVID-19 vaccines currently in phase 3 clinical trials.

References

  1. 1.
    • To KK-W 
    • Hung IF-N 
    • Ip JD 
    • et al.
    COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing.
    Clin Infect Dis. 2020; (published online Aug 25.)
  2. 2.
    • Cavanaugh D
    Coronaviruses and toroviruses.
    in: Zuckerman AJ Banatvala JE Pattinson JR Griffiths P Schoub B Principles and practice of clinical virology. 5th edn. John Wiley & SonsLondon, UK2004379-397
  3. 3.
    • Wu LP 
    • Wang NC 
    • Chang YH 
    • et al.
    Duration of antibody responses after severe acute respiratory syndrome.
    Emerg Infect Dis. 2007; 131562-1564
  4. 4.
    • Payne DC 
    • Iblan I 
    • Rha B 
    • et al.
    Persistence of antibodies against Middle East respiratory syndrome coronavirus.
    Emerg Infect Dis. 2016; 221824-1826
  5. 5.
    • Moderbacher CR 
    • Ramirez SI 
    • Dan JM 
    • et al.
    Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity.
    Cell. 2020; (published online Sept 16.)
  6. 6.
    • Ou X 
    • Liu Y 
    • Lei X 
    • et al.
    Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.
    Nat Commun. 2020; 111620
  7. 7.
    • Wong SK 
    • Li W 
    • Moore MJ 
    • Choe H 
    • Farzan M
    A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2.
    J Biol Chem. 2004; 2793197-3201
  8. 8.
    • Tai W 
    • He L 
    • Zhang X 
    • et al.
    Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine.
    Cell Mol Immunol. 2020; 17613-620
  9. 9.
    • Jiang H-w 
    • Li Y 
    • Zhang H-n 
    • et al.
    Global profiling of SARS-CoV-2 specific IgG/IgM responses of convalescents using a proteome microarray.
    medRxiv. 2020; (published online March 27.(preprint)
  10. 10.
    • Okba NMA 
    • Müller MA 
    • Li W 
    • et al.
    Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients.
    Emerg Infect Dis. 2020; 261478-1488
  11. 11.
    • Martinez-Fleta P 
    • Alfranca A 
    • González-Álvaro I 
    • et al.
    SARS-Cov-2 cysteine-like protease (Mpro) is immunogenic and can be detected in serum and saliva of COVID-19-seropositive individuals.
    medRxiv. 2020; (published online July 18.(preprint)
  12. 12.
    • Ni L 
    • Ye F 
    • Cheng ML 
    • et al.
    Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals.
    Immunity. 2020; 52 (77.e3)971
  13. 13.
    • Padoan A 
    • Sciacovelli L 
    • Basso D 
    • et al.
    IgA-Ab response to spike glycoprotein of SARS-CoV-2 in patients with COVID-19: a longitudinal study.
    Clin Chim Acta. 2020; 507164-166
  14. 14.
    • Lou B 
    • Li T-D 
    • Zheng S-F 
    • et al.
    Serology characteristics of SARS-CoV-2 infection since exposure and post symptom onset.
    Eur Respir J. 2020; (published online May 19.)
  15. 15.
    • Adams ER 
    • Ainsworth M 
    • Anand R 
    • et al.
    Antibody testing for COVID-19: a report from the National COVID Scientific Advisory Panel.
    medRxiv. 2020; (published online July 7.(preprint)
  16. 16.
    • Ibarrondo FJ 
    • Fulcher JA 
    • Goodman-Meza D 
    • et al.
    Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild COVID-19.
    N Engl J Med. 2020; 3831085-1087
  17. 17.
    • Röltgen K 
    • Wirz OF 
    • Stevens BA 
    • et al.
    SARS-CoV-2 antibody responses correlate with resolution of RNAemia but are short-lived in patients with mild illness.
    medRxiv. 2020; (published online Aug 17.(preprint)
  18. 18.
    • Liu T 
    • Wu S 
    • Tao H 
    • et al.
    Prevalence of IgG antibodies to SARS-CoV-2 in Wuhan—implications for the ability to produce long-lasting protective antibodies against SARS-CoV-2.
    medRxiv. 2020; (published online June 16.(preprint)
  19. 19.
    • Tan W 
    • Lu Y 
    • Zhang J 
    • et al.
    Viral kinetics and antibody responses in patients with COVID-19.
    medRxiv. 2020; (published online March 26.(preprint)
  20. 20.
    • Long QX 
    • Tang XJ 
    • Shi QL 
    • et al.
    Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections.
    Nat Med. 2020; 261200-1204
  21. 21.
    • Seow J 
    • Graham C 
    • Merrick B 
    • et al.
    Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection.
    medRxiv. 2020; (published online July 11.(preprint)
  22. 22.
    • Gudbjartsson DF 
    • Norddahl GL 
    • Melsted P 
    • et al.
    Humoral immune response to SARS-CoV-2 in Iceland.
    N Engl J Med. 2020; (published online Sept 1.)
  23. 23.
    • Robbiani DF 
    • Gaebler C 
    • Muecksch F 
    • et al.
    Convergent antibody responses to SARS-CoV-2 in convalescent individuals.
    Nature. 2020; 584437-442
  24. 24.
    • Takahashi T 
    • Ellingson MK 
    • Wong P 
    • et al.
    Sex differences in immune responses that underlie COVID-19 disease outcomes.
    Nature. 2020; (published online Aug 26.)
  25. 25.
    • Jin JM 
    • Bai P 
    • He W 
    • et al.
    Gender differences in patients with COVID-19: focus on severity and mortality.
    Front Public Health. 2020; 8152
  26. 26.
    • Zhang Q 
    • Bastard P 
    • Liu Z 
    • et al.
    Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.
    Science. 2020; (published online Sept 24.)
  27. 27.
    • Bastard P 
    • Rosen LB 
    • Zhang Q 
    • et al.
    Auto-antibodies against type I IFNs in patients with life-threatening COVID-19.
    Science. 2020; (published online Sept 24.)
  28. 28.
    • Fontanet A 
    • Cauchemez S
    COVID-19 herd immunity: where are we?.
    Nat Rev Immunol. 2020; 20583-584
  29. 29.
    • Deng W 
    • Bao L 
    • Liu J 
    • et al.
    Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques.
    Science. 2020; 369818-823
  30. 30.
    • Thevarajan I 
    • Nguyen THO 
    • Koutsakos M 
    • et al.
    Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19.
    Nat Med. 2020; 26453-455
  31. 31.
    • Xu Z 
    • Shi L 
    • Wang Y 
    • et al.
    Pathological findings of COVID-19 associated with acute respiratory distress syndrome.
    Lancet Respir Med. 2020; 8420-422
  32. 32.
    • Kuri-Cervantes L 
    • Pampena MB 
    • Meng W 
    • et al.
    Immunologic perturbations in severe COVID-19/SARS-CoV-2 infection.
    bioRxiv. 2020; (published online May 18.(preprint)
  33. 33.
    • Grifoni A 
    • Weiskopf D 
    • Ramirez SI 
    • et al.
    Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals.
    Cell. 2020; 181 (501.e15)1489
  34. 34.
    • Le Bert N 
    • Tan AT 
    • Kunasegaran K 
    • et al.
    SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls.
    Nature. 2020; 584457-462
  35. 35.
    • Braun J 
    • Loyal L 
    • Frentsch M 
    • et al.
    SARS-CoV-2 reactive T cells in healthy donors and patients with COVID-19.
    Nature. 2020; (published online July 29.)
  36. 36.
    • Peng Y 
    • Mentzer AJ 
    • Liu G 
    • et al.
    Broad and strong memory CD4 (+) and CD8 (+) T cells induced by SARS-CoV-2 in UK convalescent COVID-19 patients.
    bioRxiv. 2020; (published online June 8.(preprint)
  37. 37.
    • Sekine T 
    • Perez-Potti A 
    • Rivera-Ballesteros O 
    • et al.
    Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19.
    bioRxiv. 2020; (published online June 29.(preprint)
  38. 38.
    • Zhu F-C 
    • Li Y-H 
    • Guan X-H 
    • et al.
    Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial.
    Lancet. 2020; 3951845-1854
  39. 39.
    • Crotty S
    Follicular helper CD4 T cells (TFH).
    Annu Rev Immunol. 2011; 29621-663
  40. 40.
    • Kaneko N 
    • Kuo H-H 
    • Boucau J 
    • et al.
    The loss of Bcl-6 expressing T follicular helper cells and the absence of Germinal Centers in COVID-19.
    Cell. 2020; (published online Aug 19.)
  41. 41.
    • Meckiff BJ 
    • Ramirez-Suastegui C 
    • Fajardo V 
    • et al.
    Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4 (+) T cells.
    SSRN. 2020; (published online July 7.)
  42. 42.
    • Orlov M 
    • Wander PL 
    • Morrell ED 
    • Mikacenic C 
    • Wurfel MM
    A case for targeting Th17 cells and IL-17A in SARS-CoV-2 infections.
    J Immunol. 2020; 205892-898
  43. 43.
    • Tang Y 
    • Liu J 
    • Zhang D 
    • Xu Z 
    • Ji J 
    • Wen C
    Cytokine storm in COVID-19: the current evidence and treatment strategies.
    Front Immunol. 2020; 111708
  44. 44.
    • Hotez PJ 
    • Bottazzi ME 
    • Corry DB
    The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement.
    Microbes Infect. 2020; 22165-167
  45. 45.
    • Liu J 
    • Li S 
    • Liu J 
    • et al.
    Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients.
    EBioMedicine. 2020; 55102763
  46. 46.
    • Chen G 
    • Wu D 
    • Guo W 
    • et al.
    Clinical and immunological features of severe and moderate coronavirus disease 2019.
    J Clin Invest. 2020; 1302620-2629
  47. 47.
    • Diao B 
    • Wang C 
    • Tan Y 
    • et al.
    Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19).
    Front Immunol. 2020; 11827
  48. 48.
    • De Biasi S 
    • Meschiari M 
    • Gibellini L 
    • et al.
    Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia.
    Nat Commun. 2020; 113434
  49. 49.
    • Zheng M 
    • Gao Y 
    • Wang G 
    • et al.
    Functional exhaustion of antiviral lymphocytes in COVID-19 patients.
    Cell Mol Immunol. 2020; 17533-535
  50. 50.
    • Laing AG 
    • Lorenc A 
    • Del Molino Del Barrio I 
    • et al.
    A dynamic COVID-19 immune signature includes associations with poor prognosis.
    Nat Med. 2020; (published online Aug 17.)
  51. 51.
    • Gallais F 
    • Velay A 
    • Wendling M-J 
    • et al.
    Intrafamilial exposure to SARS-CoV-2 induces cellular immune response without seroconversion.
    medRxiv. 2020; (published online June 22.(preprint)
  52. 52.
    • Graham BS
    Rapid COVID-19 vaccine development.
    Science. 2020; 368945-946
  53. 53.
    • Poland GA 
    • Ovsyannikova IG 
    • Crooke SN 
    • Kennedy RB
    SARS-CoV-2 vaccine development: current status.
    Mayo Clin Proc. 2020; (published online Aug 30.)
  54. 54.
    • Kaur SP 
    • Gupta V
    COVID-19 vaccine: a comprehensive status report.
    Virus Res. 2020; 288198114
  55. 55.
    • Amanat F 
    • Krammer F
    SARS-CoV-2 vaccines: status report.
    Immunity. 2020; 52583-589
  56. 56.
    • Hassan AO 
    • Kafai NM 
    • Dmitriev IP 
    • et al.
    A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2.
    Cell. 2020; (published online Aug 19.)
  57. 57.
    • Bloomberg News
    China starts testing COVID-19 nasal spray vaccine.
  58. 58.
    • MediciNova
    MediciNova announces that its intranasal COVID-19 vaccine successfully induced systemic IgG and mucosal IgA neutralizing antibodies against SARS-CoV-2 in mice using BC-PIV vector technology.
  59. 59.
    • US Food and Drug Administration
    Coronavirus (COVID-19) update: FDA takes action to help facilitate timely development of safe, effective COVID-19 vaccines.
  60. 60.
    • Long SW 
    • Olsen RJ 
    • Christensen PA 
    • et al.
    Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area.
    medRxiv. 2020; (published online Sept 23.(preprint)
  61. 61.
    • Poland GA
    Tortoises, hares, and vaccines: a cautionary note for SARS-CoV-2 vaccine development.
    Vaccine. 2020; 384219-4220
  62. 62.
    • van Doremalen N 
    • Lambe T 
    • Spencer A 
    • et al.
    ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques.
    bioRxiv. 2020; (published online May 13.(preprint)
  63. 63.
    • Folegatti PM 
    • Ewer KJ 
    • Aley PK 
    • et al.
    Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.
    Lancet. 2020; 396467-478
  64. 64.
    • Corbett KS 
    • Flynn B 
    • Foulds KE 
    • et al.
    Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates.
    N Engl J Med. 2020; (published online July 28.)
  65. 65.
    • Jackson LA 
    • Anderson EJ 
    • Rouphael NG 
    • et al.
    An mRNA vaccine against SARS-CoV-2—preliminary report.
    N Engl J Med. 2020; (published online July 28.)
  66. 66.
    • Mulligan MJ 
    • Lyke KE 
    • Kitchin N 
    • et al.
    Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults.
    Nature. 2020; (published online Aug 12.)
  67. 67.
    • Loftus P
    For COVID-19 vaccine, J&J plans 60,000-subject pivotal trial.
  68. 68.
    • Mercado NB 
    • Zahn R 
    • Wegmann F 
    • et al.
    Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques.
    Nature. 2020; (published online July 30.)
  69. 69.
    • Logunov DY 
    • Dolzhikova IV 
    • Zubkova OV 
    • et al.
    Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia.
    Lancet. 2020; 396887-897
  70. 70.
    • Bucci E
    Note of concern.
    https://cattiviscienziati.com/2020/09/07/note-of-concern/
    Date: Sept 17, 2020
    Date accessed: September 17, 2020
  71. 71.
    • Wee S-L 
    • Simões M
    In coronavirus vaccine race, China strays from the official paths.
    https://www.nytimes.com/2020/07/16/business/china-vaccine-coronavirus.html
    Date: July 16, 2020
    Date accessed: September 18, 2020
  72. 72.
    • Deng C
    China injects hundreds of thousands with experimental COVID-19 vaccines.
  73. 73.
    • Zhang Y-J 
    • Zeng G 
    • Pan H-X 
    • et al.
    Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18–59 years: report of the randomized, double-blind, and placebo-controlled phase 2 clinical trial.
    medRxiv. 2020; (published online August 10.(preprint)
  74. 74.
    • Xia S 
    • Duan K 
    • Zhang Y 
    • et al.
    Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: interim analysis of 2 randomized clinical trials.
    JAMA. 2020; 324951-960
  75. 75.
    • Arvin AM 
    • Fink K 
    • Schmid MA 
    • et al.
    A perspective on potential antibody-dependent enhancement of SARS-CoV-2.
    Nature. 2020; 584353-363
  76. 76.
    • Tetro JA
    Is COVID-19 receiving ADE from other coronaviruses?.
    Microbes Infect. 2020; 2272-73
  77. 77.
    • Taylor A 
    • Foo SS 
    • Bruzzone R 
    • Dinh LV 
    • King NJ 
    • Mahalingam S
    Fc receptors in antibody-dependent enhancement of viral infections.
    Immunol Rev. 2015; 268340-364
  78. 78.
    • Ruckwardt TJ 
    • Morabito KM 
    • Graham BS
    Immunological lessons from respiratory syncytial virus vaccine development.
    Immunity. 2019; 51429-442
  79. 79.
    • Iankov ID 
    • Pandey M 
    • Harvey M 
    • Griesmann GE 
    • Federspiel MJ 
    • Russell SJ
    Immunoglobulin g antibody-mediated enhancement of measles virus infection can bypass the protective antiviral immune response.
    J Virol. 2006; 808530-8540
  80. 80.
    • Katzelnick LC 
    • Gresh L 
    • Halloran ME
    Antibody-dependent enhancement of severe dengue disease in humans.
    Science. 2017; 358929-932
  81. 81.
    • Lambert PH 
    • Ambrosino DM 
    • Andersen SR 
    • et al.
    Consensus summary report for CEPI/BC March 12-13, 2020 meeting: assessment of risk of disease enhancement with COVID-19 vaccines.
    Vaccine. 2020; 384783-4791
  82. 82.
    • Yang ZY 
    • Werner HC 
    • Kong WP 
    • et al.
    Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses.
    Proc Natl Acad Sci USA. 2005; 102797-801
  83. 83.
    • Yip MS 
    • Leung NH 
    • Cheung CY 
    • et al.
    Antibody-dependent infection of human macrophages by severe acute respiratory syndrome coronavirus.
    Virol J. 2014; 1182
  84. 84.
    • Jaume M 
    • Yip MS 
    • Cheung CY 
    • et al.
    Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway.
    J Virol. 2011; 8510582-10597
  85. 85.
    • Liu L 
    • Wei Q 
    • Lin Q 
    • et al.
    Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection.
    JCI Insight. 2019; 4123158
  86. 86.
    • Chandrashekar A 
    • Liu J 
    • Martinot AJ 
    • et al.
    SARS-CoV-2 infection protects against rechallenge in rhesus macaques.
    Science. 2020; 369812-817
  87. 87.
    • Smatti MK 
    • Al Thani AA 
    • Yassine HM
    Viral-induced enhanced disease illness.
    Front Microbiol. 2018; 92991
  88. 88.
    • Peignier A 
    • Parker D
    Trained immunity and host-pathogen interactions.
    Cell Microbiol. 2020; (published online Sept 9.)
  89. 89.
    • Xing Z 
    • Afkhami S 
    • Bavananthasivam J 
    • et al.
    Innate immune memory of tissue-resident macrophages and trained innate immunity: re-vamping vaccine concept and strategies.
    J Leukoc Biol. 2020; 108825-834
  90. 90.
    • WHO
    Key criteria for the ethical acceptability of COVID-19 human challenge studies.


Plaats een reactie ...

Reageer op "Oxford studie naar vaccin tegen coronavirus - Covid-19 toont een robuuste immuunrespons bij ouderen (55+), de groep met het hoogste risico op de ziekte"


Gerelateerde artikelen
 

Gerelateerde artikelen

Booster vaccinaties lijken >> Maurice de Hond geeft commentaar >> Opsluiting van kwetsbare mensen >> mRNA vaccinatie tegen coronavirus >> Vitamine-C infusen met hoge >> Hydroxychloroquine plus azithromycine >> Oversterfte in Nederland en >> Oversterfte in Duitsland is >> Duitse gezondheidswerkers >> Vitamine D suppletie geeft >>