Mocht u de informatie op onze website kanker-actueel.nl waarderen dan wilt u ons misschien ondersteunen met een donatie

Ons rekeningnummer is: RABO 37.29.31.138 t.n.v. Stichting Gezondheid Actueel in Terneuzen. 

Onze IBANcode is NL79 RABO 0372 9311 38

Als donateur kunt u ook korting krijgen bij verschillende bedrijven. En we hebben een ANBI status


26 september 2021: Bron:  2020 Jun; 12(6): 1718. Published online 2020 Jun 8

Zoals in gerelateerde artikelen te lezen blijken bepaalde voedingssupplementen of een dieet/leefstijl zowel preventief als aanvullend op een behandeling of ook alleen als behandeling voor patiénten besmet met het coronavirus - Covid-19 voor goede resultaten te zorgen. In Nutrient een mooi overzicht van de voordelen van niet-toxische aanpak en de studies die reeds zijn gedaan daarmee. 

Hier de nagenoeg letterlijke vertaling met behulp van google translate van de introductie van dit overzichtsartikel dat al juni 2020 werd gepubliceerd dus bepaalde gegevens zijn al weer achterhaald, zoals de vaccins die er nu wel zijn, maar ook nieuwe studies met probiotica, vitamine C, vitamine D en TCM - Traditionele Chinese Medicijnen / Kruiden die terug te vinden zijn in gerelateerde artikelen of zie referentielijst behorend bij deze 'scoping review':

Diet Supplementation, Probiotics, and Nutraceuticals in SARS-CoV-2 Infection: A Scoping Review

Abstract:

De wereldwijde pandemie van het ernstige acute respiratoire syndroom coronavirus 2 (Sars-CoV-2) is een verwoestende gebeurtenis die elke dag duizenden slachtoffers maakt over de hele wereld. Een van de belangrijkste redenen van de grote impact van de coronavirusziekte 2019 (COVID-19) op de samenleving is de onverwachte verspreiding ervan, waardoor een adequate voorbereiding niet mogelijk was. De wetenschappelijke gemeenschap vecht tegen de tijd voor de productie van een vaccin, maar het is moeilijk om een ​​veilig en effectief product op de markt te brengen zo snel als het virus zich verspreidt.
Evenzo is de productietijd van geneesmiddelen die direct kunnen interfereren met virale routes, lang, ondanks de grote inspanningen die zijn geleverd. Om deze redenen hebben we de mogelijke rol geanalyseerd van niet-farmacologische stoffen zoals supplementen, probiotica en nutraceuticals bij het verminderen van het risico op Sars-CoV-2-infectie of het verminderen van de symptomen van COVID-19. Deze stoffen kunnen in de huidige omstandigheden tal van voordelen hebben, zijn over het algemeen gemakkelijk verkrijgbaar en hebben verwaarloosbare bijwerkingen als ze worden toegediend in de reeds gebruikte en geteste doseringen.

Groot wetenschappelijk bewijs ondersteunt de voordelen die sommige bacteriële en moleculaire producten kunnen uitoefenen op de immuunrespons op respiratoire virussen. Deze kunnen ook een regulerende rol spelen bij systemische ontsteking of endotheelschade, twee cruciale aspecten van COVID-19. Er zijn echter geen specifieke gegevens beschikbaar en er moeten rigoureuze klinische onderzoeken worden uitgevoerd om de vermeende voordelen van voedingssuppletie, probiotica en nutraceuticals in de huidige pandemie te bevestigen.

Figures

Figure 1
 
Figure 2


Abstract

The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) global pandemic is a devastating event that is causing thousands of victims every day around the world. One of the main reasons of the great impact of coronavirus disease 2019 (COVID-19) on society is its unexpected spread, which has not allowed an adequate preparation. The scientific community is fighting against time for the production of a vaccine, but it is difficult to place a safe and effective product on the market as fast as the virus is spreading. Similarly, for drugs that can directly interfere with viral pathways, their production times are long, despite the great efforts made. For these reasons, we analyzed the possible role of non-pharmacological substances such as supplements, probiotics, and nutraceuticals in reducing the risk of Sars-CoV-2 infection or mitigating the symptoms of COVID-19. These substances could have numerous advantages in the current circumstances, are generally easily available, and have negligible side effects if administered at the already used and tested dosages. Large scientific evidence supports the benefits that some bacterial and molecular products may exert on the immune response to respiratory viruses. These could also have a regulatory role in systemic inflammation or endothelial damage, which are two crucial aspects of COVID-19. However, there are no specific data available, and rigorous clinical trials should be conducted to confirm the putative benefits of diet supplementation, probiotics, and nutraceuticals in the current pandemic.

6. Conclusions

Although orally administered probiotics are not currently an integral part of a specific protocol for the treatment of respiratory viral infections, many studies suggest their potential modulation of the systemic immune system that can improve the response to viruses and balance the inflammatory response. SARS-CoV-2 infects the gastrointestinal tract, causing inflammation of the absorbent mucosa and sometimes diarrhea. Dysbiosis could participate in this scenario, exacerbating the immune response and the production of systemic inflammation mediators. Based on the revised evidence, oral probiotics could therefore play a role in the intestinal and systemic effects of COVID-19. Moreover, inhaled microorganisms could have a more direct action on the respiratory epithelium and on the immune system cells that populate it. In some circumstances, they have been shown to reduce the accumulation of inflammatory cells and facilitate virus clearance. Several nutrients have shown utility in preserving endothelial integrity thanks to the maintenance of oxidative–reductive homeostasis. COVID-19 can induce pulmonary vascular damage and systemic hypercoagulability. During the pandemic, as in all other circumstances, it is reasonable to recommend a proper nutrition rich in antioxidant nutrients. Vitamin C and D play a well-proven role in the immune system. However, it is not known whether a supplemental dose of these vitamins administered to patients without their deficiency would result in a benefit. Specific clinical studies are underway on the intra-venous administration of vitamin C in hospitalized COVID-19 patients. Vitamin D deficiency has been associated with increased susceptibility to respiratory infections, therefore it is reasonable, even in the absence of specific data, to administer vitamin D to healthy individuals and COVID-19 patients.

While diet, nutritional supplements, and similar interventions show great promise for preventing and managing COVID-19, it is also true that strong clinical research data are required to support any such claim. Otherwise, we risk the emergence of gurus or other more or less well-meaning experts aiming at speculating on the appeal of these interventions for laypersons [].

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. WHO COVID-19 Dashboard. [(accessed on 13 April 2020)]; Available online: https://who.sprinklr.com/
2. COVID-19 Map Johns Hopkins Coronavirus Resource Center. [(accessed on 19 April 2020)]; Available online: https://coronavirus.jhu.edu/map.html.
3. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., Ruan L., Song B., Cai Y., Wei M., et al. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001282. [PMC free article] [PubMed] [CrossRef[]
4. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S., et al. Remdesivir for the Treatment of Covid-19—Preliminary Report. New. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2007764. [PMC free article] [PubMed] [CrossRef[]
5. Russell B., Moss C., Rigg A., Van Hemelrijck M. COVID-19 and treatment with NSAIDs and corticosteroids: Should we be limiting their use in the clinical setting? Ecancermedicalscience. 2020;14 doi: 10.3332/ecancer.2020.1023. [PMC free article] [PubMed] [CrossRef[]
6. Funck-Brentano C., Salem J.-E. Comment Chloroquine or hydroxychloroquine for COVID-19: Why might they be hazardous? Lancet. 2020 doi: 10.1016/S0140-6736(20)31174-0. [PMC free article] [PubMed] [CrossRef[]
7. Mehra M.R., Desai S.S., Ruschitzka F., Patel A.N. Articles Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis. Lancet. 2020 doi: 10.1016/S0140-6736(20)31180-6. [PMC free article] [PubMed] [CrossRef[] Retracted
8. Coronavirus: WHO halts trials of hydroxychloroquine over safety fears—BBC News. [(accessed on 28 May 2020)]; Available online: https://www.bbc.com/news/health-52799120.
9. Tocilizumab in COVID-19 Pneumonia (TOCIVID-19)—Full Text View—ClinicalTrials.gov. [(accessed on 13 April 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04317092.
10. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., et al. First Case of 2019 Novel Coronavirus in the United States. New. Engl. J. Med. 2020;382:929–936. doi: 10.1056/NEJMoa2001191. [PMC free article] [PubMed] [CrossRef[]
11. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 doi: 10.1016/j.cell.2020.02.052. [PMC free article] [PubMed] [CrossRef[]
12. Zhang H., Kang Z., Gong H., Xu D., Wang J., Li Z., Cui X., Xiao J., Meng T., Zhou W., et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes. bioRxiv. 2020 doi: 10.1101/2020.01.30.927806. [CrossRef[]
13. Bertram S., Heurich A., Lavender H., Gierer S., Danisch S., Perin P., Lucas J.M., Nelson P.S., Pöhlmann S., Soilleux E.J. Influenza and SARS-Coronavirus Activating Proteases TMPRSS2 and HAT Are Expressed at Multiple Sites in Human Respiratory and Gastrointestinal Tracts. PLoS ONE. 2012;7:e35876. doi: 10.1371/journal.pone.0035876. [PMC free article] [PubMed] [CrossRef[]
14. Gu J., Han B., Wang J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020 doi: 10.1053/j.gastro.2020.02.054. [PMC free article] [PubMed] [CrossRef[]
15. Xiao F., Tang M., Zheng X., Li C., He J., Hong Z., Huang S., Zhang Z., Lin X., Fang Z., et al. Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv. 2020 doi: 10.1053/j.gastro.2020.02.055. [PMC free article] [PubMed] [CrossRef[]
16. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA J. Am. Med. Assoc. 2020;323:1061–1069. doi: 10.1001/jama.2020.1585. [PMC free article] [PubMed] [CrossRef[]
17. Leung W.K., To K., Chan P.K.S., Chan H.L.Y., Wu A.K.L., Lee N., Yuen K.Y., Sung J.J.Y. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology. 2003;125:1011–1017. doi: 10.1016/j.gastro.2003.08.001. [PMC free article] [PubMed] [CrossRef[]
18. Hashimoto T., Perlot T., Rehman A., Trichereau J., Ishiguro H., Paolino M., Sigl V., Hanada T., Hanada R., Lipinski S. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammatio. Nature. doi: 10.1038/nature11228. [PMC free article] [PubMed] [CrossRef[]
19. Lloyd-Price J., Abu-Ali G., Huttenhower C. The healthy human microbiome. Genome Med. 2016;8:1–11. doi: 10.1186/s13073-016-0307-y. [PMC free article] [PubMed] [CrossRef[]
20. Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J.H., Chinwalla A.T., Creasy H.H., Earl A.M., Fitzgerald M.G., Fulton R.S., et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. [CrossRef[]
21. Methé B.A., Nelson K.E., Pop M., Creasy H.H., Giglio M.G., Huttenhower C., Gevers D., Petrosino J.F., Abubucker S., Badger J.H., et al. A framework for human microbiome research. Nature. 2012;486:215–221. doi: 10.1038/nature11209. [CrossRef[]
22. Hooper L.V., Gordon J.I. Commensal host-bacterial relationships in the gut. Science. 2001;292:1115–1118. doi: 10.1126/science.1058709. [PubMed] [CrossRef[]
23. Chervonsky A. Innate receptors and microbes in induction of autoimmunity. Curr. Opin. Immunol. 2009;21:641–647. doi: 10.1016/j.coi.2009.08.003. [PMC free article] [PubMed] [CrossRef[]
24. Round J.L., Mazmanian S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009;9:313–323. doi: 10.1038/nri2515. [PMC free article] [PubMed] [CrossRef[]
25. Macpherson A.J., Harris N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004;4:478–485. doi: 10.1038/nri1373. [PubMed] [CrossRef[]
26. Owaga E., Hsieh R.H., Mugendi B., Masuku S., Shih C.K., Chang J.S. Th17 cells as potential probiotic therapeutic targets in inflammatory bowel diseases. Int. J. Mol. Sci. 2015;16:20841–20858. doi: 10.3390/ijms160920841. [PMC free article] [PubMed] [CrossRef[]
27. Francino M.P. Early development of the gut microbiota and immune health. Pathogens. 2014;3:769–790. doi: 10.3390/pathogens3030769. [PMC free article] [PubMed] [CrossRef[]
28. Hussell T., Bell T.J. Alveolar macrophages: Plasticity in a tissue-specific context. Nat. Rev. Immunol. 2014;14:81–93. doi: 10.1038/nri3600. [PubMed] [CrossRef[]
29. Soroosh P., Doherty T.A., Duan W., Mehta A.K., Choi H., Adams Y.F., Mikulski Z., Khorram N., Rosenthal P., Broide D.H., et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 2013;210:775–788. doi: 10.1084/jem.20121849. [PMC free article] [PubMed] [CrossRef[]
30. Gollwitzer E.S., Saglani S., Trompette A., Yadava K., Sherburn R., McCoy K.D., Nicod L.P., Lloyd C.M., Marsland B.J. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 2014;20:642–647. doi: 10.1038/nm.3568. [PubMed] [CrossRef[]
31. Herbst T., Sichelstiel A., Schär C., Yadava K., Bürki K., Cahenzli J., McCoy K., Marsland B.J., Harris N.L. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 2011;184:198–205. doi: 10.1164/rccm.201010-1574OC. [PubMed] [CrossRef[]
32. Larsen J.M., Musavian H.S., Butt T.M., Ingvorsen C., Thysen A.H., Brix S. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology. 2015;144:333–342. doi: 10.1111/imm.12376. [PMC free article] [PubMed] [CrossRef[]
33. Segal L.N., Clemente J.C., Tsay J.C.J., Koralov S.B., Keller B.C., Wu B.G., Li Y., Shen N., Ghedin E., Morris A., et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat. Microbiol. 2016;1 doi: 10.1038/nmicrobiol.2016.31. [PMC free article] [PubMed] [CrossRef[]
34. Clemente J.C., Ursell L.K., Parfrey L.W., Knight R. The impact of the gut microbiota on human health: An integrative view. Cell. 2012;148:1258–1270. doi: 10.1016/j.cell.2012.01.035. [PMC free article] [PubMed] [CrossRef[]
35. Degruttola A.K., Low D., Mizoguchi A., Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016;22:1137–1150. doi: 10.1097/MIB.0000000000000750. [PMC free article] [PubMed] [CrossRef[]
36. Pothmann A., Illing T., Wiegand C., Hartmann A.A., Elsner P. The Microbiome and Atopic Dermatitis: A Review. Am. J. Clin. Dermatol. 2019;20:749–761. doi: 10.1007/s40257-019-00467-1. [PubMed] [CrossRef[]
37. Pulikkan J., Mazumder A., Grace T. Advances in Experimental Medicine and Biology. Volume 1118. Springer New York LLC; New York, NY, USA: 2019. Role of the Gut Microbiome in Autism Spectrum Disorders; pp. 253–269. [PubMed[]
38. Kumpitsch C., Koskinen K., Schöpf V., Moissl-Eichinger C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019;17:87. doi: 10.1186/s12915-019-0703-z. [PMC free article] [PubMed] [CrossRef[]
39. Li K.J., Chen Z.L., Huang Y., Zhang R., Luan X.Q., Lei T.T., Chen L. Dysbiosis of lower respiratory tract microbiome are associated with inflammation and microbial function variety. Respir. Res. 2019;20 doi: 10.1186/s12931-019-1246-0. [PMC free article] [PubMed] [CrossRef[]
40. Dang A.T., Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019;12:843–850. doi: 10.1038/s41385-019-0160-6. [PubMed] [CrossRef[]
41. Karst S.M. The influence of commensal bacteria on infection with enteric viruses. Nat. Rev. Microbiol. 2016;14:197–204. doi: 10.1038/nrmicro.2015.25. [PMC free article] [PubMed] [CrossRef[]
42. Berger A.K., Mainou B.A. Interactions between enteric bacteria and eukaryotic viruses impact the outcome of infection. Viruses. 2018;10:19. doi: 10.3390/v10010019. [PMC free article] [PubMed] [CrossRef[]
43. Pfeiffer J.K., Virgin H.W. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine. Science. 2016;351 doi: 10.1126/science.aad5872. [PMC free article] [PubMed] [CrossRef[]
44. Sullender M.E., Baldridge M.T. Norovirus interactions with the commensal microbiota. PLoS Pathog. 2018;14:e1007183. doi: 10.1371/journal.ppat.1007183. [PMC free article] [PubMed] [CrossRef[]
45. Robinson C.M., Pfeiffer J.K. Viruses and the Microbiota. Annu. Rev. Virol. 2014;1:55–69. doi: 10.1146/annurev-virology-031413-085550. [PMC free article] [PubMed] [CrossRef[]
46. Edouard S., Million M., Bachar D., Dubourg G., Michelle C., Ninove L., Charrel R., Raoult D. The nasopharyngeal microbiota in patients with viral respiratory tract infections is enriched in bacterial pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:1725–1733. doi: 10.1007/s10096-018-3305-8. [PubMed] [CrossRef[]
47. Li Y., Ding J., Xiao Y., Xu B., He W., Yang Y., Yang L., Su M., Hao X., Ma Y. 16S rDNA sequencing analysis of upper respiratory tract flora in patients with influenza H1N1 virus infection. Front. Lab. Med. 2017;1:16–26. doi: 10.1016/j.flm.2017.02.005. [CrossRef[]
48. Zhao N., Wang S., Li H., Liu S., Li M., Luo J., Su W., He H. Influence of novel highly pathogenic avian influenza A (H5N1) virus infection on migrating whooper swans fecal microbiota. Front. Cell. Infect. Microbiol. 2018;8 doi: 10.3389/fcimb.2018.00046. [PMC free article] [PubMed] [CrossRef[]
49. Groves H.T., Cuthbertson L., James P., Moffatt M.F., Cox M.J., Tregoning J.S. Respiratory disease following viral lung infection alters the murine gut microbiota. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.00182. [PMC free article] [PubMed] [CrossRef[]
50. Yildiz S., Mazel-Sanchez B., Kandasamy M., Manicassamy B., Schmolke M. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis. Microbiome. 2018;6 doi: 10.1186/s40168-017-0386-z. [PMC free article] [PubMed] [CrossRef[]
51. Wang J., Li F., Wei H., Lian Z.X., Sun R., Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiotamediated Th17 cell-dependent inflammation. J. Exp. Med. 2014;211:2397–2410. doi: 10.1084/jem.20140625. [PMC free article] [PubMed] [CrossRef[]
52. Wu Y., Guo C., Tang L., Hong Z., Zhou J., Dong X., Yin H., Xiao Q., Tang Y., Qu X., et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol. Hepatol. 2020;5:434–435. doi: 10.1016/S2468-1253(20)30083-2. [PMC free article] [PubMed] [CrossRef[]
53. Marchesi J.R., Adams D.H., Fava F., Hermes G.D.A., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., et al. The gut microbiota and host health: A new clinical frontier. Gut. 2016;65:330–339. doi: 10.1136/gutjnl-2015-309990. [PMC free article] [PubMed] [CrossRef[]
54. Anuradha S., Rajeshwari K. Probiotics in Health and Disease. J. Indian Acad. Clin. Med. 2005;6:67–72. []
55. Leyer G.J., Li S., Mubasher M.E., Reifer C., Ouwehand A.C. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics. 2009;124:e172–e179. doi: 10.1542/peds.2008-2666. [PubMed] [CrossRef[]
56. Rautava S., Salminen S., Isolauri E. Specific probiotics in reducing the risk of acute infections in infancy—A randomised, double-blind, placebo-controlled study. Br. J. Nutr. 2009;101:1722–1726. doi: 10.1017/S0007114508116282. [PubMed] [CrossRef[]
57. Hatakka K., Savilahti E., Pönkä A., Meurman J.H., Poussa T., Näse L., Saxelin M., Korpela R. Effect of long term consumption of probiotic milk on infections in children attending day care centres: Double blind, randomised trial. Br. Med. J. 2001;322:1327–1329. doi: 10.1136/bmj.322.7298.1327. [PMC free article] [PubMed] [CrossRef[]
58. Sanders M.E., Merenstein D.J., Reid G., Gibson G.R., Rastall R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019;16:605–616. doi: 10.1038/s41575-019-0173-3. [PubMed] [CrossRef[]
59. Sanders M.E., Guarner F., Guerrant R., Holt P.R., Quigley E.M.M., Sartor R.B., Sherman P.M., Mayer E.A. An update on the use and investigation of probiotics in health and disease. Gut. 2013;62:787–796. doi: 10.1136/gutjnl-2012-302504. [PMC free article] [PubMed] [CrossRef[]
60. Hao Q., Lu Z., Dong B.R., Huang C.Q., Wu T. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2011:CD006895. doi: 10.1002/14651858.CD006895.pub2. [PubMed] [CrossRef[]
61. Botić T., Klingberg T.D., Weingartl H., Cencič A. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria. Int. J. Food Microbiol. 2007;115:227–234. doi: 10.1016/j.ijfoodmicro.2006.10.044. [PubMed] [CrossRef[]
62. Mastromarino P., Cacciotti F., Masci A., Mosca L. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: Role of cell wall associated components. Anaerobe. 2011;17:334–336. doi: 10.1016/j.anaerobe.2011.04.022. [PubMed] [CrossRef[]
63. Biliavska L., Pankivska Y., Povnitsa O., Zagorodnya S. Antiviral activity of exopolysaccharides produced by lactic acid bacteria of the genera Pediococcus, Leuconostoc and Lactobacillus against human adenovirus type 5. Medicina. 2019;55:519. doi: 10.3390/medicina55090519. [PMC free article] [PubMed] [CrossRef[]
64. Salva S., Nuñez M., Villena J., Ramón A., Font G., Alvarez S. Development of a fermented goats’ milk containing Lactobacillus rhamnosus: In vivo study of health benefits. J. Sci. Food Agric. 2011;91:2355–2362. doi: 10.1002/jsfa.4467. [PubMed] [CrossRef[]
65. Weiss G., Rasmussen S., Zeuthen L.H., Nielsen B.N., Jarmer H., Jespersen L., Frøkiær H. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology. 2010;131:268–281. doi: 10.1111/j.1365-2567.2010.03301.x. [PMC free article] [PubMed] [CrossRef[]
66. Miettinen M., Lehtonen A., Julkunen I., Matikainen S. Lactobacilli and Streptococci Activate NF-κB and STAT Signaling Pathways in Human Macrophages. J. Immunol. 2000;164:3733–3740. doi: 10.4049/jimmunol.164.7.3733. [PubMed] [CrossRef[]
67. Chiba E., Tomosada Y., Vizoso-Pinto M.G., Salva S., Takahashi T., Tsukida K., Kitazawa H., Alvarez S., Villena J. Immunobiotic Lactobacillus rhamnosus improves resistance of infant mice against respiratory syncytial virus infection. Int. Immunopharmacol. 2013;17:373–382. doi: 10.1016/j.intimp.2013.06.024. [PubMed] [CrossRef[]
68. Waki N., Yajima N., Suganuma H., Buddle B.M., Luo D., Heiser A., Zheng T. Oral administration of Lactobacillus brevis KB290 to mice alleviates clinical symptoms following influenza virus infection. Lett. Appl. Microbiol. 2014;58:87–93. doi: 10.1111/lam.12160. [PubMed] [CrossRef[]
69. Bae J.Y., Kim J., II, Park S., Yoo K., Kim I.H., Joo W., Ryu B.H., Park M.S., Lee I., Park M.S. Effects of lactobacillus plantarum and leuconostoc mesenteroides probiotics on human seasonal and Avian Influenza Viruses. J. Microbiol. Biotechnol. 2018;28:893–901. doi: 10.4014/jmb.1804.04001. [PubMed] [CrossRef[]
70. Harata G., He F., Hiruta N., Kawase M., Kubota A., Hiramatsu M., Yausi H. Intranasal administration of Lactobacillus rhamnosus GG protects mice from H1N1 influenza virus infection by regulating respiratory immune responses. Lett. Appl. Microbiol. 2010;50:597–602. doi: 10.1111/j.1472-765X.2010.02844.x. [PubMed] [CrossRef[]
71. Belkacem N., Serafini N., Wheeler R., Derrien M., Boucinha L., Couesnon A., Cerf-Bensussan N., Gomperts Boneca I., Di Santo J.P., Taha M.-K., et al. Lactobacillus paracasei feeding improves immune control of influenza infection in mice. PLoS ONE. 2017;12:e0184976. doi: 10.1371/journal.pone.0184976. [PMC free article] [PubMed] [CrossRef[]
72. Mahooti M., Abdolalipour E., Salehzadeh A., Mohebbi S.R., Gorji A., Ghaemi A. Immunomodulatory and prophylactic effects of Bifidobacterium bifidum probiotic strain on influenza infection in mice. World J. Microbiol. Biotechnol. 2019;35:91. doi: 10.1007/s11274-019-2667-0. [PubMed] [CrossRef[]
73. Corridoni D., Pastorelli L., Mattioli B., Locovei S., Ishikawa D., Arseneau K.O., Chieppa M., Cominelli F., Pizarro T.T. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS ONE. 2012;7:e42067. doi: 10.1371/journal.pone.0042067. [PMC free article] [PubMed] [CrossRef[]
74. Pagnini C., Saeed R., Bamias G., Arseneau K.O., Pizarro T.T., Cominelli F. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl. Acad. Sci. USA. 2010;107:454–459. doi: 10.1073/pnas.0910307107. [PMC free article] [PubMed] [CrossRef[]
75. Sindhu K.N.C., Sowmyanarayanan T.V., Paul A., Babji S., Ajjampur S.S.R., Priyadarshini S., Sarkar R., Balasubramanian K.A., Wanke C.A., Ward H.D., et al. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: A randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 2014;58:1107–1115. doi: 10.1093/cid/ciu065. [PMC free article] [PubMed] [CrossRef[]
76. Khailova L., Baird C.H., Rush A.A., Barnes C., Wischmeyer P.E. Lactobacillus rhamnosus GG treatment improves intestinal permeability and modulates inflammatory response and homeostasis of spleen and colon in experimental model of Pseudomonas aeruginosa pneumonia. Clin. Nutr. 2017;36:1549–1557. doi: 10.1016/j.clnu.2016.09.025. [PMC free article] [PubMed] [CrossRef[]
77. Eguchi K., Fujitani N., Nakagawa H., Miyazaki T. Prevention of respiratory syncytial virus infection with probiotic lactic acid bacterium Lactobacillus gasseri SBT2055. Sci. Rep. 2019;9 doi: 10.1038/s41598-019-39602-7. [PMC free article] [PubMed] [CrossRef[]
78. Percopo C.M., Ma M., Brenner T.A., Krumholz J.O., Break T.J., Laky K., Rosenberg H.F. Critical Adverse Impact of IL-6 in Acute Pneumovirus Infection. J. Immunol. 2019;202:871–882. doi: 10.4049/jimmunol.1800927. [PMC free article] [PubMed] [CrossRef[]
79. Turner R.B., Woodfolk J.A., Borish L., Steinke J.W., Patrie J.T., Muehling L.M., Lahtinen S., Lehtinen M.J. Effect of probiotic on innate inflammatory response and viral shedding in experimental rhinovirus infection—A randomised controlled trial. Benef. Microbes. 2017;8:207–215. doi: 10.3920/BM2016.0160. [PMC free article] [PubMed] [CrossRef[]
80. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. [PMC free article] [PubMed] [CrossRef[]
81. Peiris J.S.M., Chu C.M., Cheng V.C.C., Chan K.S., Hung I.F.N., Poon L.L.M., Law K.I., Tang B.S.F., Hon T.Y.W., Chan C.S., et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet. 2003;361:1767–1772. doi: 10.1016/S0140-6736(03)13412-5. [PMC free article] [PubMed] [CrossRef[]
82. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol. 2020;38:1–9. [PubMed[]
83. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.Y. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. J. Thorac. Oncol. 2020 doi: 10.1016/j.jtho.2020.02.010. [PMC free article] [PubMed] [CrossRef[]
84. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020;8:420–422. doi: 10.1016/S2213-2600(20)30076-X. [PMC free article] [PubMed] [CrossRef[]
85. Gao Q.Y., Chen Y.X., Fang J.Y. 2019 Novel coronavirus infection and gastrointestinal tract. J. Dig. Dis. 2020;21:125–126. doi: 10.1111/1751-2980.12851. [PMC free article] [PubMed] [CrossRef[]
86. Xu K., Cai H., Shen Y., Ni Q., Chen Y., Hu S., Li J., Wang H., Yu L., Huang H., et al. Management of COVID-19: The Zhejiang experience. Zhejiang Da Xue Xue Bao. Yi Xue Ban. 2020;49:147–157. [PubMed[]
87. Mak J.W.Y., Chan F.K.L., Ng S.C. Probiotics and COVID-19: One size does not fit all. Lancet Gastroenterol. Hepatol. 2020 doi: 10.1016/S2468-1253(20)30122-9. [PMC free article] [PubMed] [CrossRef[]
88. Gu S., Chen Y., Wu Z., Chen Y., Gao H., Lv L., Guo H., Zhang X., Luo R., Huange C., et al. Alterations of the Gut Microbiota in Patients with COVID-19 or H1N1 Influenza. Clin. Infect. Dis. 2020:ciaa709. doi: 10.1093/cid/ciaa709. [PMC free article] [PubMed] [CrossRef[]
89. Didari T., Solki S., Mozaffari S., Nikfar S., Abdollahi M. A systematic review of the safety of probiotics. Expert Opin. Drug Saf. 2014;13:227–239. doi: 10.1517/14740338.2014.872627. [PubMed] [CrossRef[]
90. Dhar D., Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020;285:198018. doi: 10.1016/j.virusres.2020.198018. [PMC free article] [PubMed] [CrossRef[]
91. Biosearch S.A. Evaluation of the Probiotic Lactobacillus Coryniformis K8 on COVID-19 Prevention in Healthcare. [(accessed on 5 June 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04366180?cond=NCT04366180&draw=2&rank=1.
92. University of Roma La Sapienza Bacteriotherapy in the Treatment of COVID-19. [(accessed on 5 June 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04368351?term=lactobacillus&cond=COVID&draw=2.
93. Poscia R. Oxygen-Ozone as Adjuvant Treatment in Early Control of COVID-19 Progression and Modulation of the Gut Microbial Flora (PROBIOZOVID) [(accessed on 5 June 2020)]; Available online: https://clinicaltrials.gov/ct2/show/NCT04366089?term=lactobacillus&cond=COVID&draw=2.
94. Loffredo L., Perri L., Catasca E., Pignatelli P., Brancorsini M., Nocella C., De Falco E., Bartimoccia S., Frati G., Carnevale R., et al. Dark chocolate acutely improves walking autonomy in patients with peripheral artery disease. J. Am. Heart Assoc. 2014;3 doi: 10.1161/JAHA.114.001072. [PMC free article] [PubMed] [CrossRef[]
95. Cangemi R., Pignatelli P., Carnevale R., Bartimoccia S., Nocella C., Falcone M., Taliani G., Violi F. SIXTUS Study Group Low-grade endotoxemia, gut permeability and platelet activation in community-acquired pneumonia. J. Infect. 2016;73:107–114. doi: 10.1016/j.jinf.2016.05.013. [PubMed] [CrossRef[]
96. Loffredo L., Cangemi R., Perri L., Catasca E., Calvieri C., Carnevale R., Nocella C., Equitani F., Ferro D., Violi F., et al. Impaired flow-mediated dilation in hospitalized patients with community-acquired pneumonia. Eur. J. Intern. Med. 2016;36:74–80. doi: 10.1016/j.ejim.2016.09.008. [PubMed] [CrossRef[]
97. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46:846–848. doi: 10.1007/s00134-020-05991-x. [PMC free article] [PubMed] [CrossRef[]
98. Guzik T.J., Mohiddin S.A., Dimarco A., Patel V., Savvatis K., Marelli-Berg F.M., Madhur M.S., Tomaszewski M., Maffia P., Nicklin S.A., et al. COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc. Res. 2020:cvaa106. doi: 10.1093/cvr/cvaa106. [PMC free article] [PubMed] [CrossRef[]
99. Violi F., Basili S., Nigro C., Pignatelli P. Role of NADPH oxidase in atherosclerosis. Future Cardiol. 2009;5:83–92. doi: 10.2217/14796678.5.1.83. [PubMed] [CrossRef[]
100. Bayard V., Chamorro F., Motta J., Hollenberg N.K. Does flavanol intake influence mortality from nitric oxide-dependent processes? Ischemic heart disease, stroke, diabetes mellitus, and cancer in Panama. Int. J. Med. Sci. 2007;4:53–58. doi: 10.7150/ijms.4.53. [PMC free article] [PubMed] [CrossRef[]
101. Babu P.V.A., Liu D. Green tea catechins and cardiovascular health: An update. Curr. Med. Chem. 2008;15:1840–1850. doi: 10.2174/092986708785132979. [PMC free article] [PubMed] [CrossRef[]
102. Kim D.C., Ku S.K., Bae J.S. Anticoagulant activities of curcumin and its derivative. BMB Rep. 2012;45:221–226. doi: 10.5483/BMBRep.2012.45.4.221. [PubMed] [CrossRef[]
103. Freedman J.E., Parker C., Li L., Perlman J.A., Frei B., Ivanov V., Deak L.R., Iafrati M.D., Folts J.D. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation. 2001;103:2792–2798. doi: 10.1161/01.CIR.103.23.2792. [PubMed] [CrossRef[]
104. Yahfoufi N., Alsadi N., Jambi M., Matar C. The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients. 2018;10:1618. doi: 10.3390/nu10111618. [PMC free article] [PubMed] [CrossRef[]
105. Vázquez-Calvo Á., Jiménez de Oya N., Martín-Acebes M.A., Garcia-Moruno E., Saiz J.-C. Antiviral Properties of the Natural Polyphenols Delphinidin and Epigallocatechin Gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front. Microbiol. 2017;8:1314. doi: 10.3389/fmicb.2017.01314. [PMC free article] [PubMed] [CrossRef[]
106. Utomo R.Y., Ikawati M., Meiyanto E. Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. Preprints.Org. 2020;2:1–8. doi: 10.20944/preprints202003.0214.v1. [CrossRef[]
107. Chen L., Hu C., Hood M., Zhang X., Zhang L., Kan J., Du J. A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: A Perspective from System Biology Analysis. Nutrients. 2020;12:1193. doi: 10.3390/nu12041193. [PMC free article] [PubMed] [CrossRef[]
108. Runfeng L., Yunlong H., Jicheng H., Weiqi P., Qinhai M., Yongxia S., Chufang L., Jin Z., Zhenhua J., Haiming J., et al. Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2) Pharmacol. Res. 2020;156:104761. doi: 10.1016/j.phrs.2020.104761. [PMC free article] [PubMed] [CrossRef[]
109. Feldmann M., Maini R.N., Woody J.N., Holgate S.T., Winter G., Rowland M., Richards D., Hussell T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet. 2020;395:1407–1409. doi: 10.1016/S0140-6736(20)30858-8. [PMC free article] [PubMed] [CrossRef[]
110. Wang L., He W., Yu X., Hu D., Bao M., Liu H., Zhou J., Jiang H. Coronavirus disease 2019 in elderly patients: Characteristics and prognostic factors based on 4-week follow-up. J. Infect. 2020;80 doi: 10.1016/j.jinf.2020.03.019. [PMC free article] [PubMed] [CrossRef[]
111. Charles P., Elliott M.J., Davis D., Potter A., Kalden J.R., Antoni C., Breedveld F.C., Smolen J.S., Eberl G., de Woody K., et al. Regulation of Cytokines, Cytokine Inhibitors, and Acute-Phase Proteins Following Anti-TNF-α Therapy in Rheumatoid Arthritis. J. Immunol. 1999;163:1521–1528. [PubMed[]
112. Paleolog E.M., Young S., Stark A.C., McCloskey R.V., Feldmann M., Maini R.N. Modulation of Angiogenic Vascular Endothelial Growth Factor by Tumor Necrosis Factor Alpha and interleukin-1 in Rheumatoid Arthritis. Arthritis Rheum. 1998;41 doi: 10.1002/1529-0131(199807)41:7<1258::AID-ART17>3.0.CO;2-1. [PubMed] [CrossRef[]
113. Hussell T., Pennycook A., Openshaw P.J.M. Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur. J. Immunol. 2001;31:2566–2573. doi: 10.1002/1521-4141(200109)31:9<2566::AID-IMMU2566>3.0.CO;2-L. [PubMed] [CrossRef[]
114. Jamilloux Y., Henry T., Belot A., Viel S., Fauter M., El Jammal T., Walzer T., François B., Sève P. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun. Rev. 2020:102567. doi: 10.1016/j.autrev.2020.102567. [PMC free article] [PubMed] [CrossRef[]
115. May J.M., Harrison F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Signal. 2013;19:2068–2083. doi: 10.1089/ars.2013.5205. [PMC free article] [PubMed] [CrossRef[]
116. Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211. [PMC free article] [PubMed] [CrossRef[]
117. Atherton J.G., Kratzing C.C., Fisher A. The effect of ascorbic acid on infection of chick-embryo ciliated tracheal organ cultures by coronavirus. Arch. Virol. 1978;56:195–199. doi: 10.1007/BF01317848. [PMC free article] [PubMed] [CrossRef[]
118. Shaik-Dasthagirisaheb Y.B., Varvara G., Murmura G., Saggini A., Caraffa A., Antinolfi P., Tetè S., Tripodi D., Conti F., Cianchetti E., et al. Role of vitamins D, e and C in immunity and inflammation. J. Biol. Regul. Homeost. Agents. 2013;27:291–295. [PubMed[]
119. Gombart A.F., Pierre A., Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020;12:236. doi: 10.3390/nu12010236. [PMC free article] [PubMed] [CrossRef[]
120. HESS A.F. Diet, Nutrition and Infection. New Engl. J. Med. 1932;207:637–648. doi: 10.1056/NEJM193210132071501. [CrossRef[]
121. Robertson E.C. The Vitamins and Resistance to Infection. Medicine. 1934;13:123–206. doi: 10.1097/00005792-193405000-00001. [CrossRef[]
122. Wintergerst E.S., Maggini S., Hornig D.H. Immune-enhancing role of Vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Metab. 2006;50:85–94. doi: 10.1159/000090495. [PubMed] [CrossRef[]
123. Spoelstra-De Man A.M.E., Elbers P.W.G., Oudemans-Van Straaten H.M. Vitamin C: Should we supplement? Curr. Opin. Crit. Care. 2018;24:248–255. doi: 10.1097/MCC.0000000000000510. [PMC free article] [PubMed] [CrossRef[]
124. Kim T.K., Lim H.R., Byun J.S. Vitamin C supplementation reduces the odds of developing a common cold in Republic of Korea Army recruits: Randomised controlled trial. BMJ Mil. Heal. 2020 doi: 10.1136/bmjmilitary-2019-001384. [PubMed] [CrossRef[]
125. Hemilä H. Vitamin C and Infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339. [PMC free article] [PubMed] [CrossRef[]
126. Fisher B.J., Seropian I.M., Kraskauskas D., Thakkar J.N., Voelkel N.F., Fowler A.A., Natarajan R. Ascorbic acid attenuates lipopolysaccharide-induced acute lung injury. Crit. Care Med. 2011;39:1454–1460. doi: 10.1097/CCM.0b013e3182120cb8. [PubMed] [CrossRef[]
127. Fisher B.J., Kraskauskas D., Martin E.J., Farkas D., Wegelin J.A., Brophy D., Ward K.R., Voelkel N.F., Fowler A.A., Natarajan R. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012;303:L20–L32. doi: 10.1152/ajplung.00300.2011. [PubMed] [CrossRef[]
128. Carr A.C., Rosengrave P.C., Bayer S., Chambers S., Mehrtens J., Shaw G.M. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit. Care. 2017;21:300. doi: 10.1186/s13054-017-1891-y. [PMC free article] [PubMed] [CrossRef[]
129. Hemilä H., Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2007:CD005532. [PubMed[]
130. Marik P.E., Khangoora V., Rivera R., Hooper M.H., Catravas J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest. 2017;151:1229–1238. doi: 10.1016/j.chest.2016.11.036. [PubMed] [CrossRef[]
131. Kim W.Y., Jo E.J., Eom J.S., Mok J., Kim M.H., Kim K.U., Park H.K., Lee M.K., Lee K. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J. Crit. Care. 2018;47:211–218. doi: 10.1016/j.jcrc.2018.07.004. [PubMed] [CrossRef[]
132. Okamoto K., Tanaka H., Makino Y., Makino I. Restoration of the glucocorticoid receptor function by the phosphodiester compound of vitamins C and E, EPC-K1 L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6- yl hydrogen phosphate] potassium salt), via a redox-dependent mechanism. Biochem. Pharmacol. 1998;56:79–86. doi: 10.1016/S0006-2952(98)00121-X. [PubMed] [CrossRef[]
133. Fujita I., Hirano J., Itoh N., Nakanishi T., Tanaka K. Dexamethasone induces sodium-dependant vitamin C transporter in a mouse osteoblastic cell line MC3T3-E1. Br. J. Nutr. 2001;86:145–149. doi: 10.1079/BJN2001406. [PubMed] [CrossRef[]
134. Barabutis N., Khangoora V., Marik P.E., Catravas J.D. Hydrocortisone and Ascorbic Acid Synergistically Prevent and Repair Lipopolysaccharide-Induced Pulmonary Endothelial Barrier Dysfunction. Chest. 2017;152:954–962. doi: 10.1016/j.chest.2017.07.014. [PMC free article] [PubMed] [CrossRef[]
135. Hager D.N., Hinson J.S., Rothman R.E. Vitamin C for Sepsis and Acute Respiratory Failure. JAMA J. Am. Med. Assoc. 2020;323:791–792. doi: 10.1001/jama.2019.21984. [PubMed] [CrossRef[]
136. Fowler A.A., Truwit J.D., Hite R.D., Morris P.E., Dewilde C., Priday A., Fisher B., Thacker L.R., Natarajan R., Brophy D.F., et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients with Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA. 2019;322:1261–1270. doi: 10.1001/jama.2019.11825. [PMC free article] [PubMed] [CrossRef[]
137. Cho J., Ahn S., Yim J., Cheon Y., Jeong S.H., Lee S.G., Kim J.H. Influence of Vitamin C and maltose on the accuracy of three models of glucose meters. Ann. Lab. Med. 2016;36:271–274. doi: 10.3343/alm.2016.36.3.271. [PMC free article] [PubMed] [CrossRef[]
138. Carr A.C. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit. Care. 2020;24:133. doi: 10.1186/s13054-020-02851-4. [PMC free article] [PubMed] [CrossRef[]
139. Hemilä H. Vitamin C and SARS coronavirus. J. Antimicrob. Chemother. 2003;52:1049–1050. doi: 10.1093/jac/dkh002. [PMC free article] [PubMed] [CrossRef[]
140. Hemilä H. Vitamin C intake and susceptibility to pneumonia. Pediatr. Infect. Dis. J. 1997;16:836–837. doi: 10.1097/00006454-199709000-00003. [PubMed] [CrossRef[]
141. Hemilä H., Douglas R.M. Vitamin C and acute respiratory infections. Int. J. Tuberc. Lung Dis. 1999;3:756–761. [PubMed[]
142. Grant W.B., Lahore H., McDonnell S.L., Baggerly C.A., French C.B., Aliano J.L., Bhattoa H.P. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 2020;12:988. doi: 10.3390/nu12040988. [PMC free article] [PubMed] [CrossRef[]
143. Hansdottir S., Monick M.M., Hinde S.L., Lovan N., Look D.C., Hunninghake G.W. Respiratory epithelial cells convert inactive vitamin D to its active form: Potential effects on host defense. J. Immunol. 2008;181:7090–7099. doi: 10.4049/jimmunol.181.10.7090. [PMC free article] [PubMed] [CrossRef[]
144. Tripathi S., Tecle T., Verma A., Crouch E., White M., Hartshorn K.L. The human cathelicidin LL-37 inhibits influenza a viruses through a mechanism distinct from that of surfactant protein d or defensins. J. Gen. Virol. 2013;94:40–49. doi: 10.1099/vir.0.045013-0. [PMC free article] [PubMed] [CrossRef[]
145. Chen Y., Zhang J., Ge X., Du J., Deb D.K., Li Y.C. Vitamin D receptor inhibits nuclear factor κb activation by interacting with IκB kinase β protein. J. Biol. Chem. 2013;288:19450–19458. doi: 10.1074/jbc.M113.467670. [PMC free article] [PubMed] [CrossRef[]
146. Bonizzi G., Karin M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 2004;25:280–288. doi: 10.1016/j.it.2004.03.008. [PubMed] [CrossRef[]
147. Monlezun D.J., Bittner E.A., Christopher K.B., Camargo C.A., Quraishi S.A. Vitamin D status and acute respiratory infection: Cross sectional results from the United States national health and nutrition examination survey, 2001–2006. Nutrients. 2015;7:1933–1944. doi: 10.3390/nu7031933. [PMC free article] [PubMed] [CrossRef[]
148. Martineau A.R., Jolliffe D.A., Hooper R.L., Greenberg L., Aloia J.F., Bergman P., Dubnov-Raz G., Esposito S., Ganmaa D., Ginde A.A., et al. Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 2017;356 doi: 10.1136/bmj.i6583. [PMC free article] [PubMed] [CrossRef[]
149. Caccialanza R., Laviano A., Lobascio F., Montagna E., Bruno R., Ludovisi S., Corsico A.G., Di Sabatino A., Belliato M., Calvi M., et al. Early nutritional supplementation in non-critically ill patients hospitalized for the 2019 novel coronavirus disease (COVID-19): Rationale and feasibility of a shared pragmatic protocol. Nutrition. 2020:110835. doi: 10.1016/j.nut.2020.110835. [PMC free article] [PubMed] [CrossRef[]
150. Remuzzi G., Schieppati A. Lessons from the Di Bella affair. Lancet. 1999;353:1289–1290. doi: 10.1016/S0140-6736(99)90044-2. [PubMed] [CrossRef[]

Articles from Nutrients are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI

Plaats een reactie ...

Reageer op "Dieetsuppletie, probiotica en bepaalde voedingssupplementen (incl. TCM) preventief of als aanvullende of alleenstaande behandeling van patienten besmet met coronavirus - SARS-CoV-2 - geeft interessante resultaten te zien in een overzicht van studies"


Gerelateerde artikelen
 

Gerelateerde artikelen

Booster vaccinaties lijken >> Maurice de Hond geeft commentaar >> Opsluiting van kwetsbare mensen >> mRNA vaccinatie tegen coronavirus >> Vitamine-C infusen met hoge >> Hydroxychloroquine plus azithromycine >> Oversterfte in Nederland en >> Oversterfte in Duitsland is >> Duitse gezondheidswerkers >> Vitamine D suppletie geeft >>