30 juli 2021: Bron: European Journal of Epidemiology volume 35pages1123–1138 (2020)

Uit een grote reviewstudie naar de gevolgen en oorzaken van het coronavirus - Covid-19 blijkt dat niet alleen ouderen maar ook mensen van middelbare leeftijd kwetsbaar zijn om door het coronavirus in het ziekenhuis te belanden. De kans om te overlijden aan de besmetting met het coronavirus is vele malen groter dan het jaarlijkse risico op een dodelijk auto-ongeluk en veel gevaarlijker dan een seizoensgriep. Een Engels persoon in de leeftijd van 55-64 jaar die besmet raakt met SARS-CoV-2 loopt bijvoorbeeld een overlijdensrisico dat meer dan 200 keer hoger is dan het jaarlijkse risico om te overlijden bij een dodelijk auto-ongeluk. Deze resultaten bevestigen ook dat COVID-19 veel dodelijker is dan een  seizoensgriep; zoals ook de Wereldgezondheidsorganisatie aangeeft dat de mortaliteit door seizoensgriep gewoonlijk ver onder de 0,1% ligt, tenzij de toegang tot gezondheidszorg wordt beperkt.

Er staan in deze reviewstudie nog veel meer gedetailleerde gegevens. Voor wie het interesseert klik op de titel voor het volledige studierapport:

Assessing the age specificity of infection fatality rates for COVID-19: systematic review, meta-analysis, and public policy implications

Abstract

Determine age-specific infection fatality rates for COVID-19 to inform public health policies and communications that help protect vulnerable age groups. Studies of COVID-19 prevalence were collected by conducting an online search of published articles, preprints, and government reports that were publicly disseminated prior to 18 September 2020. The systematic review encompassed 113 studies, of which 27 studies (covering 34 geographical locations) satisfied the inclusion criteria and were included in the meta-analysis. Age-specific IFRs were computed using the prevalence data in conjunction with reported fatalities 4 weeks after the midpoint date of the study, reflecting typical lags in fatalities and reporting. Meta-regression procedures in Stata were used to analyze the infection fatality rate (IFR) by age.

Our analysis finds a exponential relationship between age and IFR for COVID-19. The estimated age-specific IFR is very low for children and younger adults (e.g., 0.002% at age 10 and 0.01% at age 25) but increases progressively to 0.4% at age 55, 1.4% at age 65, 4.6% at age 75, and 15% at age 85.

Moreover, our results indicate that about 90% of the variation in population IFR across geographical locations reflects differences in the age composition of the population and the extent to which relatively vulnerable age groups were exposed to the virus. These results indicate that COVID-19 is hazardous not only for the elderly but also for middle-aged adults, for whom the infection fatality rate is two orders of magnitude greater than the annualized risk of a fatal automobile accident and far more dangerous than seasonal influenza. Moreover, the overall IFR for COVID-19 should not be viewed as a fixed parameter but as intrinsically linked to the age-specific pattern of infections. Consequently, public health measures to mitigate infections in older adults could substantially decrease total deaths.

In summary, our analysis demonstrates that COVID-19 is not only dangerous for the elderly and infirm but also for healthy middle-aged adults. The metaregression explains nearly 90% of the geographical variation in population IFR, indicating that the population IFR is intrinsically linked to the age-specific pattern of infections. Consequently, public health measures to protect vulnerable age groups could substantially reduce the incidence of mortality.

References

  1. 1.

    Khalili M, Karamouzian M, Nasiri N, Javadi S, Mirzazadeh A, Sharifi H. Epidemiological characteristics of COVID-19: a systematic review and meta-analysis. Epidemiol Infect. 2020;148:e130. https://doi.org/10.1017/S0950268820001430.

    Article PubMed PubMed Central Google Scholar 

  2. 2.

    Oran DP, Topol EJ. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann Intern Med. 2020. https://doi.org/10.7326/M20-3012.

    Article PubMed PubMed Central Google Scholar 

  3. 3.

    Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489. https://doi.org/10.1126/science.abb3221.

    CAS Article PubMed PubMed Central Google Scholar 

  4. 4.

    Li H, Wang S, Zhong F, et al. Age-dependent risks of incidence and mortality of COVID-19 in Hubei Province and other parts of China. Front Med (Lausanne). 2020;7:190. https://doi.org/10.3389/fmed.2020.00190.

    Article Google Scholar 

  5. 5.

    Dudel C, Riffe T, Acosta E, van Raalte A, Strozza C, Myrskylä M. Monitoring trends and differences in COVID-19 case-fatality rates using decomposition methods: Contributions of age structure and age-specific fatality. PLoS ONE. 2020;15(9):e0238904. https://doi.org/10.1371/journal.pone.0238904.

    CAS Article PubMed PubMed Central Google Scholar 

  6. 6.

    Moraga P, Ketcheson D, Ombao H, Duarte C. Assessing the age- and gender-dependence of the severity and case fatality rates of COVID-19 disease in Spain. 2020. https://doi.org/10.12688/wellcomeopenres.15996.1

  7. 7.

    Byambasuren O, Dobler CC, Bell K, et al. Estimating The seroprevalence of SARS-CoV-2 infections: systematic review. 2020. medRxiv. https://doi.org/10.1101/2020.07.13.20153163

  8. 8.

    Arora RK, Joseph A, Van Wyk J, et al. SeroTracker: a global SARS-CoV-2 seroprevalence dashboard. Lancet Infect Dis. 2020. https://doi.org/10.1016/s1473-3099(20)30631-9.

    Article PubMed PubMed Central Google Scholar 

  9. 9.

    Seoane B. A scaling approach to estimate the COVID-19 infection fatality ratio from incomplete data. medRxiv. 2020:2020.06.05.20123646. doi:https://doi.org/10.1101/2020.06.05.20123646

  10. 10.

    Rosenberg ES, Tesoriero JM, Rosenthal EM, et al. Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York. Ann Epidemiol. 2020. https://doi.org/10.1016/J.ANNEPIDEM.2020.06.004.

    Article PubMed PubMed Central Google Scholar 

  11. 11.

    New York City Department of Health. COVID-19 Data. 2020.

  12. 12.

    Shook-Sa BE, Boyce RM, Aiello AE. Estimation without Representation: Early SARS-CoV-2 Seroprevalence Studies and the Path Forward. J Infect Dis. 2020. https://doi.org/10.1093/INFDIS/JIAA429.

    Article PubMed PubMed Central Google Scholar 

  13. 13.

    Brown TS, Walensky RP. Serosurveillance and the COVID-19 epidemic in the US: undetected, uncertain, and out of control. JAMA. 2020. https://doi.org/10.1001/jama.2020.14017.

    Article PubMed PubMed Central Google Scholar 

  14. 14.

    Flower B, Atchison C. SARS-CoV-2 antibody seroprevalence in patients receiving dialysis in the USA. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)32006-7.

    Article PubMed PubMed Central Google Scholar 

  15. 15.

    Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates. Int J Infect Dis. 2020;101:138–48. https://doi.org/10.1016/j.ijid.2020.09.1464.

    CAS Article PubMed PubMed Central Google Scholar 

  16. 16.

    United Kingdom Parliament Office. Antibody tests for COVID-19. 2020.

  17. 17.

    Organization for Economic Cooperation and Development. Member countries. 2020.

  18. 18.

    Lattimore S, Wickenden C, Brailsford SR. Blood donors in England and North Wales: demography and patterns of donation. Transfusion. 2015;55(1):91–9. https://doi.org/10.1111/trf.12835.

    Article PubMed Google Scholar 

  19. 19.

    Public Health England. Sero-surveillance of COVID-19: week 22. 2020.

  20. 20.

    United Kingdom Office for National Statistics. Coronavirus (COVID-19) infection survey: characteristics of people testing positive for COVID-19 in England, August 2020. 2020.

  21. 21.

    Clarke C, Prendecki M, Dhutia A, et al. High prevalence of asymptomatic COVID-19 infection in hemodialysis patients detected using serologic screening. J Am Soc Nephrol. 2020. https://doi.org/10.1681/ASN.2020060827.

    Article PubMed Google Scholar 

  22. 22.

    Ward H, Atchison CJ, Whitaker M, et al. Antibody prevalence for SARS-CoV-2 in England following first peak of the pandemic: REACT2 study in 100,000 adults. medRxiv. 2020:2020.08.12.20173690. doi:https://doi.org/10.1101/2020.08.12.20173690

  23. 23.

    Anand S, Montez-Rath M, Han J, et al. Prevalence of SARS-CoV-2 antibodies in a large nationwide sample of patients on dialysis in the USA: a cross-sectional study. Lancet. 2020. https://doi.org/10.1016/S0140-6736(20)32009-2.

    Article PubMed PubMed Central Google Scholar 

  24. 24.

    Japan Ministry of Health Labour and Welfare. Updates on COVID-19 in Japan. 2020.

  25. 25.

    Takita M, Matsumura T, Yamamoto K, et al. Geographical profiles of COVID-19 outbreak in Tokyo: an analysis of the primary care clinic-based point-of-care antibody testing. J Prim Care Community Health. 2020;11:2150132720942695. https://doi.org/10.1177/2150132720942695.

    Article PubMed PubMed Central Google Scholar 

  26. 26.

    Snoeck CJ, Vaillant M, Abdelrahman T, et al. Prevalence of SARS-CoV-2 infection in the Luxembourgish population: the CON-VINCE study. 2020. medRxiv. https://doi.org/10.1101/2020.05.11.20092916

  27. 27.

    Havers FP, Reed C, Lim T, et al. Seroprevalence of antibodies to SARS-CoV-2 in 10 sites in the United States, March 23–May 12, 2020. JAMA Intern Med. 2020. https://doi.org/10.1001/jamainternmed.2020.4130.

    Article PubMed PubMed Central Google Scholar 

  28. 28.

    University of Utah Health. Utah HERO project announces phase one findings. 2020.

  29. 29.

    Our World in Data. Coronavirus (COVID-19) testing: tests per confirmed case. 2020. https://ourworldindata.org/coronavirus-testing#tests-per-confirmed-case. Accessed 18 Aug.

  30. 30.

    Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS-CoV-2 in the Icelandic population. N Engl J Med. 2020;382(24):2302–15. https://doi.org/10.1056/NEJMoa2006100.

    CAS Article PubMed Google Scholar 

  31. 31.

    Korea Center for Disease Control. Updates on COVID-19 in Korea as of July 9. 2020.

  32. 32.

    Song SK, Lee DH, Nam JH, et al. IgG Seroprevalence of COVID-19 among Individuals without a History of the Coronavirus Disease Infection in Daegu. Korea Journal of Korean medical science. 2020;35(29):e269-e. https://doi.org/10.3346/jkms.2020.35.e269.

    CAS Article Google Scholar 

  33. 33.

    Byrne AW, McEvoy D, Collins AB, et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open. 2020;10(8):e039856-e. https://doi.org/10.1136/bmjopen-2020-039856.

    Article Google Scholar 

  34. 34.

    Long QX, Liu BZ, Deng HJ, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med. 2020;26(6):845–8. https://doi.org/10.1038/s41591-020-0897-1.

    CAS Article PubMed Google Scholar 

  35. 35.

    Sethuraman N, Jeremiah SS, Ryo A. Interpreting diagnostic tests for SARS-CoV-2. JAMA. 2020;323(22):2249–51. https://doi.org/10.1001/jama.2020.8259.

    CAS Article PubMed Google Scholar 

  36. 36.

    Choe PG, Kang CK, Suh HJ, et al. Antibody responses to SARS-CoV-2 at 8 weeks postinfection in asymptomatic patients. Emerg Infect Dis J. 2020. https://doi.org/10.3201/eid2610.202211.

    Article Google Scholar 

  37. 37.

    Ripperger TJ, Uhrlaub JL, Watanabe M, et al. Detection, prevalence, and duration of humoral responses to SARS-CoV-2 under conditions of limited population exposure. medRxiv. 2020:2020.08.14.20174490. doi:https://doi.org/10.1101/2020.08.14.20174490

  38. 38.

    U.S. Center for Disease Control and Prevention. COVID-19 pandemic planning scenarios. 2020.

  39. 39.

    Harbord RM, Higgins JPT. Meta-regression in Stata. Stata J. 2008;8(4):493–519.

    Article Google Scholar 

  40. 40.

    Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 2009;172(1):137–59. https://doi.org/10.1111/j.1467-985X.2008.00552.x.

    Article PubMed PubMed Central Google Scholar 

  41. 41.

    Chamie G, Marquez C, Crawford E, et al. SARS-CoV-2 community transmission disproportionately affects Latinx population during shelter-in-place in San Francisco. Clin Infect Dis. 2020. https://doi.org/10.1093/cid/ciaa1234

  42. 42.

    Czech Ministry of Health. Collective immunity study SARS-CoV-2: Czech prevalence. 2020.

  43. 43.

    Denmark State Blood Institute. Notat: Nye foreløbige resultater fra den repræsentative seroprævalensundersøgelse af COVID-19. 2020.

  44. 44.

    Dimeglio C, Loubes J-M, Miedougé M, Herin F, Soulat J-M, Izopet J. The real seroprevalence of SARS-CoV-2 in France and its consequences for virus dynamics. 2020. J Infect. 81:318–356. https://doi.org/10.1016/j.jinf.2020.04.031

  45. 45.

    Jersey Health & Community Services. Prevalence of antibodies: community survey round 2. 2020.

  46. 46.

    Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of COVID-19 outbreak in the municipality of Vo, Italy. Nature. 2020;584:425–9. https://doi.org/10.1038/s41586-020-2488-1.

    CAS Article PubMed Google Scholar 

  47. 47.

    Mahajan S, Srinivasan R, Redlich CA, et al. Seroprevalence of SARS-CoV-2-specific IgG antibodies among adults living in connecticut between March 1 and June 1, 2020: post-infection prevalence (PIP) study. medRxiv. 2020:2020.08.04.20168203. https://doi.org/10.1101/2020.08.04.20168203

  48. 48.

    McLaughlin CC, Doll MK, Morrison KT, et al. High community SARS-CoV-2 antibody seroprevalence in a ski resort community, Blaine County, Idaho, US. Preliminary results. medRxiv. 2020. doi:https://doi.org/10.1101/2020.07.19.20157198

  49. 49.

    Nawa N, Kuramochi J, Sonoda S, et al. Seroprevalence of SARS-CoV-2 IgG Antibodies in Utsunomiya City, Greater Tokyo, after first pandemic in 2020 (U-CORONA): a household- and population-based study. medRxiv. 2020. https://doi.org/10.1101/2020.07.20.20155945

  50. 50.

    Nishiura H, Kobayashi T, Yang Y, et al. The rate of underascertainment of novel coronavirus (2019-nCoV) infection: estimation using Japanese passengers data on evacuation flights. J Clin Med. 2020. https://doi.org/10.3390/jcm9020419.

    Article PubMed PubMed Central Google Scholar 

  51. 51.

    Norrbotten Region. Forekomst av antikroppar mot covid-19—Norrbottens befolkning maj 2020. 2020.

  52. 52.

    Norway Public Health Institute. Truleg berre ein liten andel av befolkninga som har vore smitta av koronavirus. 2020.

  53. 53.

    Oklahoma State Department of Health. Weekly epidemiology and surveillance report. 2020.

  54. 54.

    Oregon State University. TRACE results suggest 17% of Hermiston community infected with SARS-CoV-2. 2020.

  55. 55.

    Petersen MS, Strøm M, Christiansen DH, et al. Seroprevalence of SARS-CoV-2-specific antibodies, Faroe Islands. Emerg Infect Dis. 2020. https://doi.org/10.3201/EID2611.202736.

    Article PubMed PubMed Central Google Scholar 

  56. 56.

    Rhode Island Department of Health. COVID-19 serology testing brief. 2020.

  57. 57.

    Riverside County Joint Information Center. Antibody study shows coronavirus spread wider in Riverside County. 2020.

  58. 58.

    Naranbhai V, Chang C, Beltran W, et al. High seroprevalence of anti-SARS-CoV-2 antibodies in Chelsea, Massachusetts. J Infect Dis. 2020;222:1955–9. https://doi.org/10.1093/infdis/jiaa579.

    CAS Article PubMed Google Scholar 

  59. 59.

    San Miguel County Department of Health & Environment. IgG antibody tests: statistics and demographics. 2020.

  60. 60.

    Skowronski DM, Sekirov I, Sabaiduc S, et al. Low SARS-CoV-2 sero-prevalence based on anonymized residual sero-survey before and after first wave measures in British Columbia. Canada: March-May; 2020. p. 2020.

    Google Scholar 

  61. 61.

    Slovenia Government Communication Office. First study carried out on herd immunity of the population in the whole territory of Slovenia. 2020.

  62. 62.

    Stadlbauer D, Tan J, Jiang K, et al. Seroconversion of a city: longitudinal monitoring of SARS-CoV-2 seroprevalence in New York City. medRxiv. 2020:2020.06.28.20142190. https://doi.org/10.1101/2020.06.28.20142190

  63. 63.

    Stockholm Region. Lägesrapport om arbetet med det nya coronaviruset. 2020.

  64. 64.

    Streeck H, Schulte B, Kuemmerer B, et al. Infection fatality rate of SARS-CoV-2 infection in a German community with a super-spreading event. 2020. Nat Commun 11:5829. https://doi.org/10.1038/s41467-020-19509-y.

  65. 65.

    University of Miami. SPARK-C: understanding the burden of COVID-19 in Miami-Dade County through rapid serological testing of a representative random sample. 2020.

  66. 66.

    Washoe County Health District. Seroprevalence of SARS-CoV-2 specific antibodies among adults in Washoe County, Nevada on June 9–10, 2020. 2020.

  67. 67.

    Weis S, Scherag A, Baier M, et al. Seroprevalence of SARS-CoV-2 antibodies in an entirely PCR-sampled and quarantined community after a COVID-19 outbreak: the CoNAN study. medRxiv. 2020. https://doi.org/10.1101/2020.07.15.20154112

  68. 68.

    Wells PM, Doores KM, Couvreur S, et al. Estimates of the rate of infection and asymptomatic COVID-19 disease in a population sample from SE England. 2020.

  69. 69.

    Sweden Public Health Authority. the infection fatality rate of COVID-19 in Stockholm: technical report. 2020.

  70. 70.

    Feehan AK, Fort D, Garcia-Diaz J, et al. Seroprevalence of SARS-CoV-2 and infection fatality ratio, Orleans and Jefferson Parishes, Louisiana, USA, May 2020. Emerg Infect Dis. 2020. https://doi.org/10.3201/eid2611.203029.

    Article PubMed PubMed Central Google Scholar 

  71. 71.

    Giustizia News. Coronavirus, l'incubo senza fine di Ariano Irpino: 60 positivi al tampone dopo i test sierologici. May 28.

  72. 72.

    Austria Statistik. COVID-19 prevalence study: a maximum of 0.15% of the population in Austria infected with SARS-CoV-2. 2020.

  73. 73.

    Saltzman J. Study: 1 out of 10 residents in 4 neighborhoods unwittingly had coronavirus. Boston Globe. 2020 May 15.

  74. 74.

    Micolitti A. Caldari Ortona: 12% cittadini sottoposti a test sierologici positivi con anticorpi al Covid 19. Rete8. 2020 June 3.

  75. 75.

    Finland National Institute for Health and Welfare. Weekly report of THL serological population study of the coronavirus epidemic. 2020.

  76. 76.

    Bogogiannidou Z, Vontas A, Dadouli K, et al. Repeated leftover serosurvey of SARS-CoV-2 IgG antibodies, Greece, March and April 2020. Eurosurveillance. 2020;25(31):2001369. https://doi.org/10.2807/1560-7917.ES.2020.25.31.2001369.

    Article PubMed Central Google Scholar 

  77. 77.

    Times of Israel Staff. Coronavirus : Israël est encore loin de l’immunité de groupe. Times of Israel. 2020 July 23.

  78. 78.

    Aziz NA, Corman VM, Echterhoff AKC, et al. Seroprevalence and correlates of SARS-CoV-2 neutralizing antibodies: results from a population-based study in Bonn, Germany. medRxiv. 2020:2020.08.24.20181206. doi:https://doi.org/10.1101/2020.08.24.20181206

  79. 79.

    CBC News. Serology study gives officials first look at spread of COVID-19 through Alberta's population. 2020 July 30.

  80. 80.

    Feehan AK, Velasco C, Fort D, et al. Racial and workplace disparities in seroprevalence of SARS-CoV-2 in Baton Rouge, Louisiana, July 15–31, 2020. medRxiv. 2020:2020.08.26.20180968. doi:https://doi.org/10.1101/2020.08.26.20180968

  81. 81.

    Hicks S, Pohl K, Neeman T, et al. A dual antigen ELISA allows the assessment of SARS-CoV-2 antibody seroprevalence in a low transmission setting. medRxiv. 2020:2020.09.09.20191031. doi:https://doi.org/10.1101/2020.09.09.20191031

  82. 82.

    Lundkvist Å, Hanson S, Olsen B. Pronounced difference in Covid-19 antibody prevalence indicates cluster transmission in Stockholm, Sweden. Infect Ecol Epidemiol. 2020;10(1):1806505. https://doi.org/10.1080/20008686.2020.1806505.

    Article PubMed PubMed Central Google Scholar 

  83. 83.

    University of Louisville School of Medicine. Phase II results of Co-Immunity Project show higher-than-expected rates of exposure to novel coronavirus in Jefferson County. 2020.

  84. 84.

    van den Broek-Altenburg E, Atherly A, Diehl S, et al. Risk factors for COVID-19: community exposure and mask-wearing. 2020. doi:https://doi.org/10.2139/ssrn.3676570

  85. 85.

    Knabl L, Mitra T, Kimpel J, et al. High SARS-CoV-2 Seroprevalence in children and adults in the Austrian ski resort Ischgl. medRxiv. 2020:2020.08.20.20178533. doi:https://doi.org/10.1101/2020.08.20.20178533

  86. 86.

    Naranbhai V, Chang CC, Beltran WFG, et al. High seroprevalence of anti-SARS-CoV-2 antibodies in Chelsea, Massachusetts. J Infect Dis. 2020. https://doi.org/10.1093/infdis/jiaa579.

    Article PubMed PubMed Central Google Scholar 

  87. 87.

    Fenwick C, Croxatto A, Coste AT, et al. Changes in SARS-CoV-2 antibody responses impact the estimates of infections in population-based seroprevalence studies. medRxiv. 2020:2020.07.14.20153536. doi:https://doi.org/10.1101/2020.07.14.20153536

  88. 88.

    Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers. medRxiv. 2020:2020.08.30.20184309. doi:https://doi.org/10.1101/2020.08.30.20184309

  89. 89.

    Hibino S, Hayashida K, Ahn AC, Hayashida Y. Dynamic change of COVID-19 seroprevalence among asymptomatic population in Tokyo during the second wave. medRxiv. 2020:2020.09.21.20198796. doi:https://doi.org/10.1101/2020.09.21.20198796

  90. 90.

    Northeast Texas Public Health Department. Hideaway COVID-19 antibody testing program. 2020.

  91. 91.

    Ripperger TJ, Uhrlaub JL, Watanabe M, et al. Orthogonal SARS-CoV-2 Serological Assays Enable Surveillance of Low Prevalence Communities and Reveal Durable Humoral Immunity. Immunity. 2020. https://doi.org/10.1016/j.immuni.2020.10.004.

    Article PubMed PubMed Central Google Scholar 

  92. 92.

    Reifer J, Hayum N, Heszkel B, Klagsbald I, Streva VA. SARS-CoV-2 IgG antibody responses in New York City. Diagn Microbiol Infect Dis. 2020. https://doi.org/10.1016/J.DIAGMICROBIO.2020.11512.

    Article PubMed PubMed Central Google Scholar 

  93. 93.

    Merkely B, Szabo AJ, Kosztin A, et al. Novel coronavirus epidemic in the Hungarian population, a cross-sectional nationwide survey to support the exit policy in Hungary. Geroscience. 2020;42(4):1063–74. https://doi.org/10.1007/s11357-020-00226-9.

    CAS Article PubMed Google Scholar 

  94. 94.

    Sutton M, Cieslak P, Linder M. Seroprevalence estimates of SARS-CoV-2 infection in convenience sample—Oregon, May 11–June 15. Morb Mortal Wkly Report. 2020;69:1100–1. https://doi.org/10.15585/mmwr.mm6932a4.

    Article Google Scholar 

  95. 95.

    Armann JP, Unrath M, Kirsten C, Lueck C, Dalpke A, Berner R. Anti-SARS-CoV-2 IgG antibodies in adolescent students and their teachers in Saxony, Germany (SchoolCoviDD19): very low seropraevalence and transmission rates. 2020. doi:https://doi.org/10.1101/2020.07.16.20155143

  96. 96.

    Bendavid E, Mulaney B, Sood N, et al. COVID-19 antibody seroprevalence in Santa Clara County, California. medRxiv. 2020. https://doi.org/10.1101/2020.04.14.20062463

  97. 97.

    Bryan A, Pepper G, Wener MH, et al. Performance characteristics of the Abbott Architect SARS-CoV-2 IgG assay and seroprevalence in Boise, Idaho. J Clin Microbiol. 2020. https://doi.org/10.1128/JCM.00941-20.

    Article PubMed PubMed Central Google Scholar 

  98. 98.

    Erikstrup C, Hother CE, Pedersen OBV, et al. Estimation of SARS-CoV-2 infection fatality rate by real-time antibody screening of blood donors. Clin Infect Dis. 2020. https://doi.org/10.1093/CID/CIAA849.

    Article PubMed PubMed Central Google Scholar 

  99. 99.

    Fiore J, Centra M, de Carlo A, et al. Far away from herd immunity to SARS-CoV-2: results from a survey in healthy blood donors in southeastern Italy. 2020. doi:https://doi.org/10.1101/2020.06.17.20133678

  100. 100.

    Fischer B, Knabbe C, Vollmer T. SARS-CoV-2 IgG seroprevalence in blood donors located in three different federal states, Germany, March to June 2020. Euro Surveill. 2020. https://doi.org/10.2807/1560-7917.ES.2020.25.28.2001285.

    Article PubMed PubMed Central Google Scholar 

  101. 101.

    Fontanet A, Tondeur L, Madec Y, et al. Cluster of COVID-19 in northern France: a retrospective closed cohort study. medRxiv. 2020:2020.04.18.20071134. doi:https://doi.org/10.1101/2020.04.18.20071134

  102. 102.

    Kraehling V, Kern M, Halwe S, et al. Epidemiological study to detect active SARS-CoV-2 infections and seropositive persons in a selected cohort of employees in the Frankfurt am Main metropolitan area. medRxiv. 2020. https://doi.org/10.1101/2020.05.20.20107730

  103. 103.

    Nesbitt DJ, Jin D, Hogan JW, et al. Low seroprevalence of SARS-CoV-2 in Rhode Island blood donors determined using multiple serological assay formats. medRxiv. 2020. https://doi.org/10.1101/2020.07.20.20157743

  104. 104.

    Ng D, Goldgof G, Shy B, et al. SARS-CoV-2 seroprevalence and neutralizing activity in donor and patient blood from the San Francisco Bay Area. medRxiv. 2020. doi:https://doi.org/10.1101/2020.05.19.20107482

  105. 105.

    Percivalle E, Cambie G, Cassaniti I, et al. Prevalence of SARS-CoV-2 specific neutralising antibodies in blood donors from the Lodi Red Zone in Lombardy, Italy, as at 06 April 2020. Euro Surveill. 2020. https://doi.org/10.2807/1560-7917.ES.2020.25.24.2001031.

    Article PubMed PubMed Central Google Scholar 

  106. 106.

    Slot E, Hogema BM, Reusken CBEM, et al. Herd immunity is not a realistic exit strategy during a COVID-19 outbreak. 2020. doi:https://doi.org/10.21203/rs.3.rs-25862/v1

  107. 107.

    Thompson CP, Grayson N, Paton R, et al. Detection of neutralising antibodies to SARS coronavirus 2 to determine population exposure in Scottish blood donors between March and May 2020. medRxiv. 2020:2020.04.13.20060467. doi:https://doi.org/10.1101/2020.04.13.20060467

  108. 108.

    Valenti L, Bergna A, Pelusi S, et al. SARS-CoV-2 seroprevalence trends in healthy blood donors during the COVID-19 Milan outbreak. medRxiv. 2020. https://doi.org/10.1101/2020.05.11.20098442

  109. 109.

    Doi A, Iwata K, Kuroda H, et al. Estimation of seroprevalence of novel coronavirus disease (COVID-19) using preserved serum at an outpatient setting in Kobe, Japan: a cross-sectional study. medRxiv. 2020. https://doi.org/10.1101/2020.04.26.20079822

  110. 110.

    Emmenegger M, Cecco ED, Lamparter D, et al. Population-wide evolution of SARS-CoV-2 immunity tracked by a ternary immunoassay. medRxiv. 2020. https://doi.org/10.1101/2020.05.31.20118554

  111. 111.

    Canadian Blood Services. COVID-19 seroprevalence report—August 19, 2020. 2020.

  112. 112.

    Poletti P, Tirani M, Cereda D, et al. Age-specific SARS-CoV-2 infection fatality ratio and associated risk factors, Italy, February to April 2020. Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin. 2020;25(31):2001383. doi:https://doi.org/10.2807/1560-7917.ES.2020.25.31.2001383

  113. 113.

    Rigatti SJ, Stout R. SARS-CoV-2 antibody prevalence and association with routine laboratory values in a life insurance applicant population. medRxiv. 2020:2020.09.09.20191296. doi:https://doi.org/10.1101/2020.09.09.20191296

  114. 114.

    Toenshoff B, Muller B, Elling R, et al. Prevalence of SARS-CoV-2 infection in children and their parents in Southwest Germany. 2020. doi:https://doi.org/10.2139/ssrn.3668418

  115. 115.

    Dodd RY, Xu M, Stramer SL. Change in donor characteristics and antibodies to SARS-CoV-2 in donated blood in the US, June–August 2020. JAMA. 2020. https://doi.org/10.1001/jama.2020.18598.

    Article PubMed Google Scholar 

  116. 116.

    Ulyte A, Radtke T, Abela IA, et al. Variation in SARS-CoV-2 seroprevalence in school-children across districts, schools and classes. medRxiv. 2020:2020.09.18.20191254. doi:https://doi.org/10.1101/2020.09.18.20191254

  117. 117.

    Vassallo RR, Bravo MD, Dumont LJ, Hazegh K, Kamel H. Seroprevalence of antibodies to SARS-CoV-2 in US blood donors. medRxiv. 2020:2020.09.17.20195131. doi:https://doi.org/10.1101/2020.09.17.20195131

  118. 118.

    Biggs HM. Estimated community seroprevalence of SARS-CoV-2 antibodies—two Georgia Counties, April 28–May 3, 2020. Morb Mortal Wkly Rep 2020;69(29):965–70. doi:https://doi.org/10.15585/MMWR.MM6929E2

  119. 119.

    Italy National Institute of Statistics. Primi risultati dell'indagine di sieroprevalenza sul SARS-CoV-2. 2020.

  120. 120.

    Pastor-Barriuso R, Perez-Gomez B, Hernan MA, et al. SARS-CoV-2 infection fatality risk in a nationwide seroepidemiological study. medRxiv. 2020:2020.08.06.20169722. doi:https://doi.org/10.1101/2020.08.06.20169722

  121. 121.

    Perez-Saez J, Lauer SA, Kaiser L, et al. Serology-informed estimates of SARS-CoV-2 infection fatality risk in Geneva, Switzerland. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30584-3.

    Article PubMed Google Scholar 

  122. 122.

    Netherlands National Institute for Public Health and the Environment. Children and COVID-19. 2020.

  123. 123.

    Portugal National Institute of Health. Relatório de Apresentação dos Resultados Preliminares do Primeiro Inquérito Serológico Nacional COVID-19. 2020.

  124. 124.

    Menachemi N, Yiannoutsos CT, Dixon BE, et al. Population point prevalence of SARS-CoV-2 infection based on a statewide random sample—Indiana, April 25–29, 2020. Morb Mortal Wkly Rep. 2020;69(29):960–4. https://doi.org/10.15585/MMWR.MM6929E1.

    CAS Article Google Scholar 

  125. 125.

    Ireland Health Service Executive. Preliminary report of the results of the study to investigate COVID-19 infection in people living in Ireland (SCOPI): a national seroprevalence study, June–July 2020. 2020.

  126. 126.

    Waterfield T, Watson C, Moore R, et al. Seroprevalence of SARS-CoV-2 antibodies in children: a prospective multicentre cohort study. medRxiv. 2020:2020.08.31.20183095. doi:https://doi.org/10.1101/2020.08.31.20183095

  127. 127.

    Carrat F, de Lamballerie X, Rahib D, et al. Seroprevalence of SARS-CoV-2 among adults in three regions of France following the lockdown and associated risk factors: a multicohort study. medRxiv. 2020:2020.09.16.20195693. doi:https://doi.org/10.1101/2020.09.16.20195693

  128. 128.

    Molenberghs G, Faes C, Aerts J, et al. Belgian Covid-19 mortality, excess deaths, number of deaths per million, and infection fatality rates (8 March–9 May 2020). medRxiv. 2020. https://doi.org/10.1101/2020.06.20.20136234

  129. 129.

    Sweden Public Health Authority. Seroprevalence of antibodies following COVID-19 infection in blood samples from outpatient care, interim report 1, updated on June 18 using data thru week 21—Påvisning av antikroppar efter genomgången covid-19 i blodprov från öppenvården, delrapport 1 - uppdaterad 2020-06-18 med data för prover insamlade vecka 21. 2020.

  130. 130.

    Ontario Public Health. COVID-19 seroprevalence in Ontario: March 27, 2020 to June 30, 2020. 2020.

  131. 131.

    Australia Department of Health. Coronavirus (COVID-19) current situation and case numbers. 2020.

  132. 132.

    Iceland Directorate of Health. COVID-19 in Iceland—statistics 28 Feb to 14 June 2020. 2020.

  133. 133.

    Korea Center for Disease Control. Weekly report on the COVID-19 situation in the Republic of Korea. 2020.

  134. 134.

    Lithuania Central Registry. Koronaviruso (COVID-19) Lietuvoje statistika. 2020.

  135. 135.

    New Zealand Ministry of Health. COVID-19 current cases. 2020.

  136. 136.

    United Kingdom BioBank. UK Biobank SARS-CoV-2 serology study weekly report—21 July 2020. 2020.

  137. 137.

    Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. 2020. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180.

    Article PubMed PubMed Central Google Scholar 

  138. 138.

    Pagani G, Conti F, Giacomelli A, et al. Seroprevalence of SARS-CoV-2 significantly varies with age: preliminary results from a mass population screening. J Infect. 2020. https://doi.org/10.1016/j.jinf.2020.09.021.

    Article PubMed Google Scholar 

  139. 139.

    France Public Health. COVID-19: point épidémiologique du 9 juillet 2020. 2020.

  140. 140.

    Davies NG, Klepac P, Liu Y, et al. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat Med. 2020. https://doi.org/10.1038/s41591-020-0962-9.

    Article PubMed PubMed Central Google Scholar 

  141. 141.

    Acemoglu D, Chernozhukov V, Werning I, Whinston M. Optimal targeted lockdowns in a multi-group SIR model. National Bureau of Economic Research Working Paper 27102. 2020.

  142. 142.

    U.S. National Center for Health Statistics. Underlying cause of death, 1999–2018. 2020.

  143. 143.

    United Kingdom Office of National Statistics. Mortality statistics—underlying cause, sex and age. 2020.

  144. 144.

    World Health Organization. Coronavirus disease (COVID-19): similarities and differences with influenza. 2020.

  145. 145.

    Blackburn J, Yiannoutsos CT, Carroll AE, Halverson PK, Menachemi N. Infection fatality ratios for COVID-19 among noninstitutionalized persons 12 and older: results of a random-sample prevalence study. Ann Intern Med. 2020. https://doi.org/10.7326/M20-5352.

    Article PubMed PubMed Central Google Scholar 

  146. 146.

    O'Driscoll M, Ribeiro Dos Santos G, Wang L, et al. Age-specific mortality and immunity patterns of SARS-CoV-2 infection in 45 countries. medRxiv. 2020:2020.08.24.20180851. doi:https://doi.org/10.1101/2020.08.24.20180851

  147. 147.

    Martin-Olalla JM. Age and sex disaggregation of crude excess deaths during the 2020 spring COVID-19 outbreak in Spain. medRxiv. 2020:2020.08.06.20169326. doi:https://doi.org/10.1101/2020.08.06.20169326

  148. 148.

    Verity R, Okell LC, Dorigatti I, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020;20(6):669–77. https://doi.org/10.1016/S1473-3099(20)30243-7.

    CAS Article PubMed PubMed Central Google Scholar 

  149. 149.

    Ferguson N, Laydon D, Nedjati-Gilani G, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. 2020.

  150. 150.

    Hauser A, Counotte MJ, Margossian CC, et al. Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: a modeling study in Hubei, China, and six regions in Europe. PLOS Medicine. 2020;17(7):e1003189. https://doi.org/10.1371/journal.pmed.1003189.

    CAS Article PubMed PubMed Central Google Scholar 

  151. 151.

    Meyerowitz-Katz G, Merone L. A systematic review and meta-analysis of published research data on COVID-19 infection-fatality rates. 2020.

  152. 152.

    Ioannidis J. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ. 2020. https://www.who.int/bulletin/online_first/BLT.20.265892.pdf

  153. 153.

    Ward H, Cooke G, Atchison C. Declining prevalence of antibody positivity to SARS-CoV-2: a community study of 365,000 adults. 2020

  154. 154.

    Gudbjartsson DF, Norddahl GL, Melsted P, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020. https://doi.org/10.1056/NEJMoa2026116.

    Article PubMed PubMed Central Google Scholar 

  155. 155.

    Brazeau N, Verity R, Jenks S, et al. COVID-19 infection fatality ratio: estimates from seroprevalence. 2020. doi:https://doi.org/10.25561/83545.

  156. 156.

    Kang S-J, Jung SI. Age-related morbidity and mortality among patients with COVID-19. Infect Chemother. 2020;52(2):154–64.

    Article Google Scholar 

  157. 157.

    Mak JKL, Kuja-Halkola R, Wang Y, Hagg S, Jylhava J. Frailty and comorbidity in predicting community COVID-19 mortality in the UK Biobank: the effect of sampling. medRxiv. 2020:2020.10.22.20217489. doi:https://doi.org/10.1101/2020.10.22.20217489

  158. 158.

    Demombynes G. COVID-19 age-mortality curves are flatter in developing countries: the World Bank. 2020. World Bank Policy Research Working Paper 9313. https://openknowledge.worldbank.org/handle/10986/34028

  159. 159.

    Lexmond AS, Nouwen CJA, Fourtassi O, Callan JP. Evolution of COVID-19 cases in selected low- and middle-income countries: have they peaked due to high levels of infection and immunity? medRxiv. 2020:2020.09.26.20201814. doi:https://doi.org/10.1101/2020.09.26.20201814

  160. 160.

    Buss LF, Prete CA, Abrahim CMM, et al. COVID-19 herd immunity in the Brazilian Amazon. medRxiv. 2020:2020.09.16.20194787. doi:https://doi.org/10.1101/2020.09.16.20194787

  161. 161.

    Prowse TAA, Purcell T, Baía-da-Silva DC, et al. Inferred resolution through herd immmunity of first COVID-19 wave in Manaus, Brazilian Amazon. medRxiv. 2020:2020.09.25.20201939. doi:https://doi.org/10.1101/2020.09.25.20201939

  162. 162.

    Brazil Ministry of Health. COVID-19 no Brasil, obitos acumulados−−Manaus. 2020.

  163. 163.

    Herzog S, Bie JD, Abrams S, et al. Seroprevalence of IgG antibodies against SARS coronavirus 2 in Belgium: a prospective cross-sectional study of residual samples. medRxiv. 2020. https://doi.org/10.1101/2020.06.08.20125179

  164. 164.

    Pollán M, Pérez-Gómez B, Pastor-Barriuso R, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020. https://doi.org/10.1016/s0140-6736(20)31483-5.

    Article PubMed PubMed Central Google Scholar 

  165. 165.

    Stringhini S, Wisniak A, Piumatti G, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet. 2020;396(10247):313–9. https://doi.org/10.1016/s0140-6736(20)31304-0.

    CAS Article PubMed PubMed Central Google Scholar 




Plaats een reactie ...

Reageer op "Coronavirus - COVID-19 is niet alleen gevaarlijk voor ouderen, maar ook voor volwassenen van middelbare leeftijd blijkt uit grote reviewstudie"


Gerelateerde artikelen
 

Gerelateerde artikelen

Mediterrane dieet als dagelijks >> Er stierven in Japan beduidend >> Dr. Sabine Hazan mocht eindelijk >> Booster vaccinaties lijken >> Maurice de Hond geeft commentaar >> Opsluiting van kwetsbare mensen >> mRNA vaccinatie tegen coronavirus >> Vitamine-C infusen met hoge >> Hydroxychloroquine plus azithromycine >> Oversterfte in Nederland en >>