26 oktober 2022: zie ook dit artikel: https://kanker-actueel.nl/meer-ernstige-bijwerkingen-plus-16-procent-zoals-overlijden-en-chronische-invaliditeit-deden-zich-voor-tijdens-de-studies-van-de-mrna-vaccins-van-moderna-en-pfizer-in-vergelijking-met-de-placebogroep.html

26 oktober 2022: Bron: artsencollectief,  2022 Sep 22;40(40):5798-5805.

Uit een nieuwe studie analyse blijkt dat de kans op ernstige bijwerkingen door de mRNA vaccins van Pfizer en Moderna groter is dan dat een vaccinatie met een van de mRNA-vaccins voorkomen dat mensen in het ziekenhuis belanden door een coronavirus (Omikron-) besmetting. Het risico op een ernstige bijwerking is 1 op 800. Om te voorkomen in het ziekenhuis te belanden ligt het risico bij het Pfizervaccin op 1 op 5.000. Bij Moderna is dat 1 op 1.700. 

Het artsencollectief schreef er een kort artikel over met link naar de studie, zie onderaan abstract en referenties. Peter Doshi is o.a. hoofdredacteur van BMJ

Peter Doshi, professor farmacologie aan de universiteit van Maryland (USA) en editor van het gezaghebbende medische tijdschrift British Medical Journal vindt dat er reden is tot ernstige zorg om de veiligheid van mRNA vaccins, vooral bij mensen voor wie het risico van Covid-19 laag is.

Hij zegt dit in een interview met de Duitse televisiezender Mitteldeutsche Rundfunk (MDR) naar aanleiding van zijn onlangs gepubliceerde analyse van de oorspronkelijke Pfizer en Moderna trial data (1).

Een team van artsen en wetenschappers, waarvan hij zelf deel uitmaakte, berekende na grondige analyse dat het extra risico op een ernstige bijwerking in de trials door de mRNA vaccins één op 800 was, terwijl de preventie van ziekenhuisopnames door het virus ongeveer één op de 5.000 was bij Pfizer en één op de 1.700 bij Moderna. Daarmee was de stijging van ernstige bijwerkingen door de vaccins groter dan de vermindering van COVID-gerelateerde ziekenhuisopnames.

Geen enkele Amerikaanse televisiezender was geïnteresseerd om hem hierover te interviewen, evenmin als de grote Amerikaanse kranten.

Om het aantal van één op 800 gevaccineerden met een ernstige bijwerking gedurende de trials in perspectief te plaatsen, stelt Doshi dat dit bij andere vaccins één of twee gevallen per miljoen gevaccineerden was.

“Met dit aantal zijn in het verleden vaccins van de markt gehaald.”

Desgevraagd ziet Doshi geen rechtvaardiging voor verplichte vaccinatie, bijvoorbeeld voor bepaalde beroepsgroepen, vooral op grond van het gebrek aan overtuigende gegevens dat de vaccins de overdracht van het virus verminderen en epidemieën stoppen. Daarnaast pleit hij sterk voor het vrijgeven van de originele trialdata, waaruit de risico’s en de voordelen van de vaccins veel nauwkeuriger berekend kunnen worden.

Doshi denkt dat voor een steeds kleinere bevolkingsgroep geldt, dat de voordelen van de vaccins opwegen tegen de risico’s, zeker bij de huidige, milde virusvarianten, en dat de vaccins nauwelijks geschikt zijn om besmettingen te voorkomen.

Het volledige interview is hier terug te zien, met Nederlandse ondertiteling:

De originele Duitse uitzending is hier terug te zien.

Referentie:

  1. Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022 Sep 22;40(40):5798-5805. doi: 10.1016/j.vaccine.2022.08.036. Epub 2022 Aug 31. PMID: 36055877; PMCID: PMC9428332.

Abstract

Introduction

In 2020, prior to COVID-19 vaccine rollout, the Brighton Collaboration created a priority list, endorsed by the World Health Organization, of potential adverse events relevant to COVID-19 vaccines. We adapted the Brighton Collaboration list to evaluate serious adverse events of special interest observed in mRNA COVID-19 vaccine trials.

Methods

Secondary analysis of serious adverse events reported in the placebo-controlled, phase III randomized clinical trials of Pfizer and Moderna mRNA COVID-19 vaccines in adults (NCT04368728 and NCT04470427), focusing analysis on Brighton Collaboration adverse events of special interest.

Results

Pfizer and Moderna mRNA COVID-19 vaccines were associated with an excess risk of serious adverse events of special interest of 10.1 and 15.1 per 10,000 vaccinated over placebo baselines of 17.6 and 42.2 (95 % CI −0.4 to 20.6 and −3.6 to 33.8), respectively. Combined, the mRNA vaccines were associated with an excess risk of serious adverse events of special interest of 12.5 per 10,000 vaccinated (95 % CI 2.1 to 22.9); risk ratio 1.43 (95 % CI 1.07 to 1.92). The Pfizer trial exhibited a 36 % higher risk of serious adverse events in the vaccine group; risk difference 18.0 per 10,000 vaccinated (95 % CI 1.2 to 34.9); risk ratio 1.36 (95 % CI 1.02 to 1.83). The Moderna trial exhibited a 6 % higher risk of serious adverse events in the vaccine group: risk difference 7.1 per 10,000 (95 % CI –23.2 to 37.4); risk ratio 1.06 (95 % CI 0.84 to 1.33). Combined, there was a 16 % higher risk of serious adverse events in mRNA vaccine recipients: risk difference 13.2 (95 % CI −3.2 to 29.6); risk ratio 1.16 (95 % CI 0.97 to 1.39).

Discussion

The excess risk of serious adverse events found in our study points to the need for formal harm-benefit analyses, particularly those that are stratified according to risk of serious COVID-19 outcomes. These analyses will require public release of participant level datasets.

Author contributions

All authors had full access to all of the data in the study (available at https://doi.org/10.5281/zenodo.6564402), and take responsibility for the integrity of the data and the accuracy of the data analysis.

Study concept and design: All authors.

Acquisition of data: Doshi.

Analysis and interpretation: All authors.

Statistical analysis: Jones, Greenland.

Drafting of the manuscript: Fraiman, Doshi.

Critical revision of the manuscript for important intellectual content: All authors.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Jean Rees for help identifying sources of data.

Funding

This study had no funding support.

Ethical review statement

This research was confirmed to be Not Human Subjects Research (NHSR) by University of Maryland, Baltimore (HP-00102561).

Conflicts of interest

JF, JE, MJ, SG, PW, RK: none to declare. PD has received travel funds from the European Respiratory Society (2012) and Uppsala Monitoring Center (2018); grants from the FDA (through University of Maryland M-CERSI; 2020), Laura and John Arnold Foundation (2017-22), American Association of Colleges of Pharmacy (2015), Patient-Centered Outcomes Research Institute (2014-16), Cochrane Methods Innovations Fund (2016-18), and UK National Institute for Health Research (2011-14); was an unpaid IMEDS steering committee member at the Reagan-Udall Foundation for the FDA (2016-2020) and is an editor at The BMJ. The views expressed here are those of the authors and do not necessarily reflect those of their employers.

Footnotes

1A compatibility interval is identical to a confidence interval, but relabeled to emphasize that it is not a Bayesian posterior interval (as is improperly suggested by the “confidence” label).13,14.

Appendix ASupplementary data to this article can be found online at https://doi.org/10.1016/j.vaccine.2022.08.036.

Appendix A. Supplementary data

The following are the Supplementary data to this article:

Supplementary data 1:

Data availability

All of the data in the study is available at https://doi.org/10.5281/zenodo.6564402

References

1. Law B, Pim C. SO2-D2.1.3 Priority List of COVID-19 Adverse events of special interest . 2021 Oct [cited 2022 Feb 17]. Available from: https://brightoncollaboration.us/wp-content/uploads/2021/11/SO2_D2.1.3_COVID-19_AESI-update_V1.0_Part-2_09Nov2021.pdf.
2. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S., et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603–2615. [PMC free article] [PubMed[]
3. Baden L.R., El Sahly H.M., Essink B., Kotloff K., Frey S., Novak R., et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384(5):403–416. [PMC free article] [PubMed[]
4. Sadoff J., Gray G., Vandebosch A.n., Cárdenas V., Shukarev G., Grinsztejn B., et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021;384(23):2187–2201. [PMC free article] [PubMed[]
5. Health Canada. Search for clinical information on drugs and medical devices . 2019 [cited 2021 Nov 9]. Available from: https://clinical-information.canada.ca/.
6. Food and Drug Administration. Meeting Materials, Vaccines and Related Biological Products Advisory Committee . U.S. Food and Drug Administration. 2022 [cited 2022 Feb 18]. Available from: https://www.fda.gov/advisory-committees/vaccines-and-related-biological-products-advisory-committee/meeting-materials-vaccines-and-related-biological-products-advisory-committee.
7. Law B. SO2-D2.1.2 Priority List of COVID-19 Adverse events of special interest: Quarterly update December 2020 . 2020 Dec [cited 2020 Dec 20]. Available from: https://brightoncollaboration.us/wp-content/uploads/2021/01/SO2_D2.1.2_V1.2_COVID-19_AESI-update-23Dec2020-review_final.pdf.
8. Pfizer. PF-07302048 (BNT162 RNA-Based COVID-19 Vaccines) Protocol C4591001 . 2020 [cited 2022 Jul 17]. Available from: https://cdn.pfizer.com/pfizercom/2020-11/C4591001_Clinical_Protocol_Nov2020.pdf.
9. Pfizer-BioNTech. PFIZER-BIONTECH COVID-19 VACCINE (BNT162, PF-07302048) VACCINES AND RELATED BIOLOGICAL PRODUCTS ADVISORY COMMITTEE BRIEFING DOCUMENT. [cited 2021 Dec 20]; Available from: https://www.fda.gov/media/144246/download#page=87.
10. Pfizer. Final Analysis Interim Report: A Phase 1/2/3, Placebo-Controlled, Randomized, Observer-Blind, Dose-Finding Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of SARS-COV-2 RNA Vaccine Candidates Against COVID-19 in Healthy Individuals (Protocol C4591001) . [cited 2022 May 3]. Available from: https://clinical-information.canada.ca/ci-rc/item/244906; https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/c45/c4591001-fa-interim-report-body_Unblinded_Redacted.pdf&id=244906.
11. Moderna. Sponsor briefing document . 2020 Dec [cited 2022 Feb 21]. Available from: https://www.fda.gov/media/144452/download.
12. Moderna. Unblinded Safety Tables Batch 1 (DS2) . [cited 2022 May 3]. Available from: https://clinical-information.canada.ca/ci-rc/item/244946; https://clinical-information.canada.ca/ci-rc-vu.pdf?file=m5/5.3.5.1/m5351-mrna-1273-p301-p-unblinded-safety-tables-batch-1.pdf&id=244946.
13. Amrhein V., Greenland S., McShane B. Scientists rise up against statistical significance. Nature. 2019;567(7748):305–307. doi: 10.1038/d41586-019-00857-9. [PubMed] [CrossRef[]
14. Rafi Z, Greenland S. Semantic and cognitive tools to aid statistical science: replace confidence and significance by compatibility and surprise. BMC Med Res Methodol . 2020 Sep 30;20(1):244. Available from: http://dx.doi.org/10.1186/s12874-020-01105-9. [PMC free article] [PubMed]
15. Food and Drug Administration. Emergency Use Authorization for Pfizer-BioNTech COVID-19 Vaccine Review Memo . 2020 Dec [cited 2022 Feb 21]. Available from: https://www.fda.gov/media/144416/download.
16. Food and Drug Administration. Moderna COVID-19 Vaccine EUA FDA review memorandum . 2020 Dec [cited 2022 Feb 21]. Available from: https://www.fda.gov/media/144673/download.
17. Food and Drug Administration. Pfizer-BioNTech COVID-19 vaccine EUA review memorandum . 2020 Dec [cited 2022 Mar 30]. Available from: https://www.fda.gov/media/144416/download.
18. Food and Drug Administration. Initial Results of Near Real-Time Safety Monitoring COVID-19 Vaccines . 2021 [cited 2022 Mar 30]. Available from: https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/initial-results-near-real-time-safety-monitoring-covid-19-vaccines-persons-aged-65-years-and-older.
19. Centers for Disease Control and Prevention. Selected adverse events reported after COVID-19 vaccination . 2021 [cited 2021 May 28]. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/adverse-events.html.
20. Krug A, Stevenson J, Høeg TB. BNT162b2 Vaccine-Associated Myo/Pericarditis in Adolescents: A Stratified Risk-Benefit Analysis. Eur J Clin Invest . 2022 May;52(5):e13759. Available from: http://dx.doi.org/10.1111/eci.13759. [PMC free article] [PubMed]
21. Dutta S., Kaur R., Charan J., Bhardwaj P., Ambwani S.R., Babu S., et al. Analysis of Neurological Adverse Events Reported in VigiBase From COVID-19 Vaccines. Cureus. 2022;14(1):e21376. doi: 10.7759/cureus.21376. [PMC free article] [PubMed] [CrossRef[]
22. Montano D. Frequency and Associations of Adverse Reactions of COVID-19 Vaccines Reported to Pharmacovigilance Systems in the European Union and the United States. Front Public Health . 2021;9:756633. Available from: http://dx.doi.org/10.3389/fpubh.2021.756633. [PMC free article] [PubMed]
23. Jeet Kaur R, Dutta S, Charan J, Bhardwaj P, Tandon A, Yadav D, et al. Cardiovascular Adverse Events Reported from COVID-19 Vaccines: A Study Based on WHO Database. Int J Gen Med . 2021 Jul 27;14:3909–27. Available from: http://dx.doi.org/10.2147/IJGM.S324349. [PMC free article] [PubMed]
24. Centers for Disease Control and Prevention. Vaccine Adverse Event Reporting System (VAERS) Standard Operating Procedures for COVID-19 (as of 29 January 2021) . 2021 Jan [cited 2022 Mar 30]. Available from: https://www.cdc.gov/vaccinesafety/pdf/VAERS-v2-SOP.pdf.
25. Centers for Disease Control and Prevention. Vaccine safety publications . 2022 [cited 2022 Mar 31]. Available from: https://www.cdc.gov/vaccinesafety/research/publications/index.html.
26. Patone M., Handunnetthi L., Saatci D., Pan J., Katikireddi S.V., Razvi S., et al. Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection. Nat Med. 2021;27(12):2144–2153. doi: 10.1038/s41591-021-01556-7. [PMC free article] [PubMed] [CrossRef[]
27. Jabagi M.J., Botton J., Bertrand M., Weill A., Farrington P., Zureik M., et al. Myocardial Infarction, Stroke, and Pulmonary Embolism After BNT162b2 mRNA COVID-19 Vaccine in People Aged 75 Years or Older. JAMA. 2022;327(1):80–82. doi: 10.1001/jama.2021.21699. [PMC free article] [PubMed] [CrossRef[]
28. Barda N., Dagan N., Ben-Shlomo Y., Kepten E., Waxman J., Ohana R., et al. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Setting. N Engl J Med. 2021;385(12):1078–1090. doi: 10.1056/NEJMoa2110475. [PMC free article] [PubMed] [CrossRef[]
29. Mörl F, Günther M, Rockenfeller R. Is the Harm-to-Benefit Ratio a Key Criterion in Vaccine Approval? Frontiers in Medicine . 2022;9. Available from: https://www.frontiersin.org/articles/10.3389/fmed.2022.879120. [PMC free article] [PubMed]
30. Greenhalgh T, Fisman D, Cane DJ, Oliver M, Macintyre CR. Adapt or die: how the pandemic made the shift from EBM to EBM+ more urgent. BMJ Evid Based Med . 2022 Jul 19;bmjebm – 2022–111952. Available from: https://ebm.bmj.com/lookup/doi/10.1136/bmjebm-2022-111952. [PMC free article] [PubMed]
31. Hampton L.M., Aggarwal R., Evans S.J.W., Law B. General determination of causation between Covid-19 vaccines and possible adverse events. Vaccine. 2021;39(10):1478–1480. doi: 10.1016/j.vaccine.2021.01.057. [PMC free article] [PubMed] [CrossRef[]
32. Li X, Ostropolets A, Makadia R, Shoaibi A, Rao G, Sena AG, et al. Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study. BMJ . 2021 Jun 14 [cited 2022 Mar 28];373. Available from: https://www.bmj.com/content/373/bmj.n1435. [PMC free article] [PubMed]
33. Lash TL, Fox MP, Fink AK. Applying Quantitative Bias Analysis to Epidemiologic Data . Springer New York; 2009. 192 p. Available from: https://play.google.com/store/books/details?id=a32fDAEACAAJ.
34. MacLehose RF, Ahern TP, Lash TL, Poole C, Greenland S. The Importance of Making Assumptions in Bias Analysis. Epidemiology . 2021 Sep 1;32(5):617–24. Available from: http://dx.doi.org/10.1097/EDE.0000000000001381. [PMC free article] [PubMed]
35. Greenland S. Invited Commentary: Dealing With the Inevitable Deficiencies of Bias Analysis-and All Analyses. Am J Epidemiol. 2021 Aug 1;190(8):1617–21. Available from: 10.1093/aje/kwab069. [PubMed] [CrossRef]
36. Krumholz H.M., Ross J.S., Presler A.H., Egilman D.S. What have we learnt from Vioxx? BMJ. 2007;334(7585):120–123. doi: 10.1136/bmj.39024.487720.68. [PMC free article] [PubMed] [CrossRef[]
37. Nissen S.E., Wolski K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N Engl J Med. 2007;356(24):2457–2471. doi: 10.1056/NEJMoa072761. [PubMed] [CrossRef[]
38. Anderson S. CBER Plans for Monitoring COVID-19 Vaccine Safety and Effectiveness . VRBPAC Meeting; 2020 Oct 22 [cited 2022 Jul 19]. Available from: https://www.fda.gov/media/143557/download#page=17.
39. Anderson S. An Update of FDA Monitoring COVID-19 Vaccine Safety and Effectiveness . VRBPAC Meeting; 2021 Feb 26 [cited 2022 Jul 19]. Available from: https://www.fda.gov/media/146268/download#page=8.
40. Anderson S. FDA Updates of COVID-19 Vaccine Safety Activities . VRBPAC Meeting; 2021 Jun 10 [cited 2022 Jul 19]. Available from: https://www.fda.gov/media/150051/download#page=9.
41. Food and Drug Administration. Background Rates of Adverse Events of Special Interest for COVID-19 Vaccine Safety Monitoring . 2021 Jan [cited 2021 Jul 19]. Available from: https://bestinitiative.org/wp-content/uploads/2022/01/C19-Vax-Safety-AESI-Bkgd-Rate-Protocol-FINAL-2020.pdf#page=12.
42. Pfizer. 5.3.6 Cumulative analysis of post-authorization adverse event reports of PF-07302048 (BNT162b2) received through 28-Feb-2021 . 2021 Apr [cited 2022 Jul 19]. Available from: https://phmpt.org/wp-content/uploads/2022/04/reissue_5.3.6-postmarketing-experience.pdf#page=30.
43. Gupta A., Madhavan M.V., Sehgal K., Nair N., Mahajan S., Sehrawat T.S., et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020;26(7):1017–1032. doi: 10.1038/s41591-020-0968-3. [PubMed] [CrossRef[]
44. Lei Y., Zhang J., Schiavon C.R., He M., Chen L., Shen H., et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021;128(9):1323–1326. doi: 10.1161/CIRCRESAHA.121.318902. [PMC free article] [PubMed] [CrossRef[]
45. Tanveer S, Rowhani-Farid A, Hong K, Jefferson T, Doshi P. Transparency of COVID-19 vaccine trials: decisions without data. BMJ Evid Based Med . 2021 Aug 9; Available from: http://dx.doi.org/10.1136/bmjebm-2021-111735. [PubMed]
46. Doshi P, Godlee F, Abbasi K. Covid-19 vaccines and treatments: we must have raw data, now. BMJ . 2022 Jan 19;376:o102. Available from: http://dx.doi.org/10.1136/bmj.o102. [PubMed]
47. Benn CS, Schaltz-Buchholzer F, Nielsen S, Netea MG, Aaby P. Randomised Clinical Trials of COVID-19 Vaccines: Do Adenovirus-Vector Vaccines Have Beneficial Non-Specific Effects? . 2022 [cited 2022 May 9]. Available from: https://papers.ssrn.com/abstract=4072489.
48. Murad M.H., Saadi S. Evidence-based medicine has already adapted and is very much alive. BMJ Evidence-based Medicine. 2022 doi: 10.1136/bmjebm-2022-112046. https://ebm.bmj.com/content/early/2022/07/19/bmjebm-2022-112046 [PubMed] [CrossRef[]
49. Munro A. The Pandemic Evidence Failure. 2022. https://alasdairmunro.substack.com/p/the-pandemic-evidence-failure
50. Mansanguan S, Charunwatthana P, Piyaphanee W, Dechkhajorn W, Poolcharoen A, Mansanguan C. Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Trop. Med. Infect. Dis. 2022;7(8):196. doi: 10.3390/tropicalmed7080196. [PMC free article] [PubMed] [CrossRef[]

Plaats een reactie ...

Reageer op "mRNA vaccins van Pfizer en Moderna geven meer kans op ernstige bijwerkingen dan dat ze een ziekenhuisopname voorkomen. Blijkt uit nieuwe analyse van studiegegevens"


Gerelateerde artikelen
 

Gerelateerde artikelen

Mediterrane dieet als dagelijks >> Er stierven in Japan beduidend >> Dr. Sabine Hazan mocht eindelijk >> Booster vaccinaties lijken >> Maurice de Hond geeft commentaar >> Opsluiting van kwetsbare mensen >> mRNA vaccinatie tegen coronavirus >> Vitamine-C infusen met hoge >> Hydroxychloroquine plus azithromycine >> Oversterfte in Nederland en >>